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A B S T R A C T

The use of algorithms in finance and trading has become an increasingly thriving research area, with
researchers creating automated and pre programmed trading instructions utilising indicators from technical and
sentiment analysis. The indicators of the two analyses have been used mostly individually, despite evidence that
their combination can be profitable and financially advantageous. In this paper, we examine the advantages
of combining indicators from both technical and sentiment analysis through a novel genetic programming
algorithm, named STGP-SATA. Our algorithm introduces technical and sentiment analysis types, through a
strongly-typed architecture, whereby the associated tree contains one branch with only technical indicators
and another branch with only sentiment analysis indicators. This approach allows for better exploration and
exploitation of the search space of the indicators. To evaluate the performance of STGP-SATA we compare
it with three other GP variants on three financial metrics, namely Sharpe ratio, rate of return and risk. We
furthermore compare STGP-SATA against two financial and four algorithmic benchmarks, namely, multilayer
perceptron, support vector machine, extreme gradient boosting, and long short term memory network. Our
study shows that the combination of technical and sentiment analysis indicators through STGP-SATA improves
the financial performance of the trading strategies and statistically and significantly outperforms the other
benchmarks across the three financial metrics.
1. Introduction

Algorithmic trading involves the use of pre-programmed trading
strategies to execute orders and generate profits. This practice has been
employed in trading for many years and continues to gain popularity,
particularly as more services and companies become available for trad-
ing. The topic of algorithmic trading is of interest to researchers who
are exploring the potential of Machine Learning (ML) implementations
to maximise returns and minimise risk. ML algorithms examine histori-
cal information of the stock market and identify patterns, learning how
certain indicators are associated with certain trends. Then, when they
recognise such a pattern, the algorithms generate signals indicating an
upcoming change in trend, which can be used to generate profit.

Technical analysis is a financial technique that uses price trends
and patterns to identify trading opportunities. Sentiment analysis cor-
responds to recognising events relevant to stocks, identifying their
importance towards influencing their price and using that for predicting
stock prices. Researchers have mainly utilised Technical Analysis (TA)
indicators, such as volatility and moving average, for algorithmic trad-
ing, but sentiment analysis (SA) indicators, such as sentiment polarity,
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have also been successfully considered in the more recent years. The
benefits observed by the two individual analyses have now brought
about the promise of achieving an improved performance by their
combination. Indeed, [1,2], very recently provided initial evidence
supporting this promise, by creating financially advantageous trading
strategies utilising both analysis types.

In our approach, we aim to integrate both TA and SA indicators
within genetic programming (GP) algorithms. By combining these two
types of indicators, we seek to improve the accuracy and effectiveness
of our trading strategies. The reason for using GP algorithms is due to
the immense number of potential trading strategies that can be created.
GP algorithms have been shown to be effective in evolving profitable
trading rules that can adapt to changing market conditions [3]. Another
advantage of GP algorithms is their ability to efficiently search the vast
solution space and generate domain-specific solutions/strategies. By
incorporating both TA and SA indicators into them, we can create more
sophisticated and robust trading strategies that can adjust to market
conditions in real-time. As a result, we believe this approach has the
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potential to lead to improved trading outcomes and higher profits for
investors.

Our proposed algorithm STGP-SATA, which was first introduced
n [2], uses a strongly-typed GP architecture, where TA and SA indica-
ors are handled in separate parts of the model (subtrees/branches of
he tree). This has several advantages. Firstly, it allows the algorithm

to focus on the search space of each individual indicator type and
ncourages better exploration and exploitation of the solution space
f each indicator. This is achieved by combining the two types of
ndicators at the root of the tree with an AND function. The primary
otivation behind the design of the STGP-SATA algorithm is to ensure

hat both technical and sentiment analysis indicators are given due
onsideration, effectively creating diverse and effective trading strate-
ies. In addition, STGP-SATA enables the creation of more adaptable
trategies that can adjust to changing market conditions by deciding
hether to give more weight on TA or SA indicators, and subsequently
aximise profits for investors. While a non-strongly-typed GP with both
A and SA indicators allows for complex interactions, STGP-SATA is
ore advantageous. It ensures a balanced representation, preventing

ne indicator type from dominating and enabling focused exploration
f solutions, leading to more effective combinations.

Our current article extends our previous work in the following
six ways: (i) we present a more in-depth presentation of the STGP-
SATA algorithm, (ii) we increase the number of companies we use
n our experiments from 10 to 60, (iii) we increase the number of
enchmarks from 3 to 9, as we include both financial and machine
earning benchmarks, (iv) we discuss not only average results, but also
esults of the best trading strategy, which offers a realistic case study, as
n the real-world a single (the best) trading strategy is used, and finally,
v) we analyse the results depending on the type of market (e.g. uptrend

vs. downtrend market).
The main objective of our research is to demonstrate the effective-

ness of combining TA and SA indicators and incorporating them into
the terminal set of a strongly-typed GP algorithm for creating finan-
cially advantageous trading strategies. Ultimately, our research aims
to contribute to the development of more effective algorithmic trading
strategies that can generate profits and minimise risk for investors in
the financial market.

The remainder of this paper is structured as follows. Section 2
provides an overview of previous research work related to the use of
TA and SA indicators in algorithmic trading. In Section 3, we describe
he methodology used in our research, including the data preparation,
ndicator engineering, and the implementation of the GP algorithms.

Section 4 presents the details of the experimental setup, including the
dataset used, performance metrics, and the different benchmarks. The
results and analysis of the study are presented in Section 5, where we
compare the performance of the different GP algorithms and evaluate
the effectiveness of combining TA and SA indicators. Finally, in Sec-
tion 6, we conclude the paper by summarising the main findings of our
esearch and discussing potential avenues for future work.

2. Literature review

This section aims to examine prior research on financial forecasting
and algorithmic trading, with particular emphasis on studies utilising
technical and sentiment analysis indicators. Several of these papers also
incorporate both technical and sentiment analysis indicators.

2.1. Technical analysis

Technical analysis is a financial method that employs price patterns
and trends to identify trading opportunities. The indicators derived
from technical analysis have been utilised as inputs to machine learning
algorithms for many years. Since the 1980𝑠, numerous studies have used
artificial neural networks for financial forecasting, and subsequently for

algorithmic trading.

2 
Some studies include [4], which used technical analysis indicators
with linear models, and [5], which utilised a long short-term memory
(LSTM) model to predict future trends of stock prices. In [6] the
uthors created a hybrid deep learning model and used TA for financial
orecasting, using two stocks in their experiments. [7] demonstrated the

use of meta-synthesis techniques to identify optimisation components
within financial systems, highlighting the importance of blending tradi-
tional financial metrics with AI methods to optimise decision-making.
Moreover, the study of [8] explored the role of technical indicators in
improving the accuracy of option price predictions using deep learning
models, showcasing improvements in predictive accuracy.

One of the first papers to incorporate technical analysis indica-
ors for financial forecasting using genetic programming (GP) is [9],

where the algorithm outperformed commonly used, non-adaptive tech-
nical rules. Over the last decade, several studies have reported similar
outcomes, such as [10,11], and [12]. Following, [13] used Genetic

lgorithms (GA) to optimise technical trading strategies, highlight-
ng the ability of evolutionary algorithms to identify market inef-
iciencies and improve profitability. Continuing, [14] proposed self-
daptive Evolutionary algorithms for stock prediction and portfolio

composition, demonstrating higher Sharpe ratios and reduced risk.
Similarly, [15] applied genetic programming combined with directional
hange and technical analysis indicators, using a multi-objective op-
imisation approach. The authors achieved to improve returns while
alancing risk, showcasing the effectiveness of evolutionary methods
n trading strategy development.

As demonstrated in [3,16], GP algorithms can develop trading
trategies, generate solutions that survive extreme market conditions,
nd create new solutions while optimising the solution parameters.

2.2. Sentiment analysis

Algorithmic trading is a complex topic with numerous variables to
consider, and further research may be required to include additional
indicators. One approach is to determine the significance of events and
how they affect the stock market. One of the most influential studies
on sentiment analysis is Kohara et al.’s [17] research, which used
neural networks to investigate how prior knowledge from newspaper
headlines could enhance the accuracy of prediction in multivariate
models. Similarly, researchers have investigated the importance of
sentiment analysis for financial forecasting, investment decisions and
trading, i.e. [18–21].

A substantial contribution to the literature is the work of Xie
et al. [22], who used support vector machines (SVM) with tree kernels
and semantic frame parses to generalise from sentences to scenarios.
Ding et al. [23] created an event-driven stock model by feeding news
into a deep convolutional neural network (CNN), and Day et al. [24]
considered the source of the sentiment by attempting to assess the
uality of the news and its impact on stock movement. [25] performed

sentiment analysis on tweets and [26] segregated tweets on non-
fungible tokens (NFTs) using Pearson Product-Moment Correlation
Coefficient (PPMCC) and studied 8-scale emotions, along with Posi-
ive and Negative sentiments. Following, [27] presented a framework
ombining sentiment analysis with graph neural networks (GNNs) for
redicting stock price movements, using relational data between stocks
nd social media sentiment to model the interdependence of market
ynamics and investor sentiment. The study of [28] demonstrated

the benefits of integrating technical analysis, fundamental indicators,
and market sentiment into a multilayer perceptron neural network for
stock market forecasting. The authors concluding that the inclusion of
sentiment analysis improves model accuracy for a significant portion
of the S&P 500 companies. Furthermore, [29] introduced neutrosophic
logic for sentiment analysis to address uncertainty in social media
data, combining the improved sentiment results with LSTM for stock
movement prediction. Similarly, [30] analysed news sentiment and
combined it with LSTM for stock price prediction, demonstrating better
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performance compared to traditional models.
Finally, [31,32], and [1,33] are the only known studies thus far to

use sentiment analysis indicators as inputs to a GP algorithm for algo-
rithmic trading. Although the studies differ in their implementation and
trading strategies, both were successful in demonstrating the financial
profitability of sentiment analysis.

2.3. Technical and sentiment analysis combination

Researchers have been exploring the combination of technical and
entiment analysis for financial forecasting, with promising results in

terms of profitability. In [34], an external knowledge base was used
o detect events based on reasoning, combining event knowledge and
tandard information of companies. Similarly, [35] used deep neural

networks (DNNs) to predict stock price movements by combining his-
torical prices and online financial news. [36] utilised text mining on
ews from Reuters regarding the S&P500 index in a hybrid model of
ecurrent neural networks (RNNs) and convolutional neural networks
CNNs), incorporating financial news articles and technical indicators
s inputs. The model outperformed CNN in the same implementation
nd demonstrated the usefulness of both technical and sentiment anal-
sis in financial forecasting. Nan et al. [37] developed a reinforcement
earning approach that utilised traditional time series stock price data

and news headline sentiments while leveraging knowledge graphs to
xploit news about implicit relationships. Their study showed that the

trained reinforcement learning agent resulted in better profits when
the additional information on headline sentiments was included. The
combination of technical and sentiment analysis has shown promising
results in improving the accuracy and profitability of financial forecast-
ng models, indicating the potential for further research in this area.

Moreover, [38] used Genetic Algorithm hybrid models for portfolio
ptimisation, using tweets and the United States stock, achieving better
erformance in terms of common measures of portfolio performance
ncluding Sharpe ratio, cumulative returns, and value-at-risk. In their
ork, the authors of [39] used stock historical data, technical indi-

cators and financial news to calculate the investors’ sentiment index,
hile they combined the data types and adopted a LSTM network for
redicting the China Shanghai A-share market. Similarly, the study
f [40] combined LSTM with investor sentiment from social media and
echnical indicators, demonstrating that sentiment analysis improves

predictive accuracy. [41] showcased that GA for feature selection with
STM improves prediction accuracy using sentiment and technical

indicators. Moreover, [42] combined sentiment and technical analysis
sing the LASSO algorithm to eliminate multicollinearity among vari-

ables, achieving an 8.53% improvement compared to standard LSTM
ethods. In addition, [43] demonstrated the importance of combin-

ng indicators from different analysis types, but this time using Deep
Reinforcement Learning, optimising trading strategies effectively. A
weighted linear equation is used by [44] to integrate both sentiment
nd technical analysis, highlighting the effectiveness of their combi-

nation in market predictions. Similarly, the authors of [45] achieved
o show the same by using deep learning to predict stock prices.
hey combined economic and sentimental data, demonstrating their

advantages in predicting performance of stock market strategies. [46]
sed ensemble learning approaches showcased that the combination of
entiment and technical analysis and its important in identifying stocks
ith growth potential.

In their work, the authors of [47] proposed a hybrid learning-
based model for sentiment and technical analysis, which utilises a
hree-stage method to determine the final trend prediction based on
wo intermediate predictions. Following, in [48], the authors studied

the correlation between news sentiment indices, technical analysis,
and the US stock market using econometric models, revealing signif-
icant linkages. Similarly, the authors of [49] proposed the creation
f TA’s sentiment in the stock market index by aggregating signals
rom over 2000 trading rules and demonstrates its strong correlation
 d

3 
with traditional sentiment measures. The TA sentiment index effec-
tively predicts short-term market momentum and long-term reversals.
In their study, [50] used machine learning classifiers, highlighting the
integration of both sentiment and technical analysis indicators, as well
as macroeconomic data for predictions. Unlike strongly-typed genetic
programming (STGP) algorithm approaches, the above studies do not
ensure logical consistency between TA and SA, as they mainly focus on
optimising neural network architectures. While effective, these methods
may not be as easy to interpret, and mostly used to predict future
values, rather than optimise specific financial metrics.

In Genetic Programming, there are studies that combine technical
and sentiment analysis indicators for algorithmic trading, such as [2,
32]. In [32], the authors found that using news and Twitter for senti-
ment analysis is more financially profitable than performing technical
analysis alone or combining TA and SA indicators while considering a
simple GP architecture. However, [2] showed that the combination of
technical and sentiment analysis indicators under a strongly-typed GP
is more financially profitable.

While significant progress has been made in integrating TA and
SA indicators for stock market prediction and algorithmic trading,
several limitations persist. One such limitation is interpretability, many
machine learning models, such as LSTMs, can achieve high predictive
accuracy but lack interpretability, making it difficult to understand how
sentiment and technical indicators contribute to predictions. Another
limitation is the imbalanced use of indicator types, where one type may
dominate the analysis, reducing the effectiveness of a truly hybrid ap-
proach. Furthermore, scalability and real-time application is something
not easily addressed, with the latter being underexplored. This is be-
cause it is not easy to gather and use clean high-frequency textual data,
as opposed to historical stock market data. Moreover, many studies are
tailored to specific markets or asset types, therefore these methods may
not be well applied across different financial environments. Differences
in sentiment across regions or industries may introduce biases that are
challenging to generalise or adapt to without extensive preprocessing
and normalisation. Finally, the dynamic nature of financial markets
poses challenges for model longevity. Models trained on specific market
conditions may struggle to adapt to sudden shifts, such as economic
crises, geopolitical events, or rapid technological changes. Such lim-
itations motivate the need for novel methodologies that address the
trade-offs between interpretability, the combination of different data
types, and the scalability of such applications.

Genetic programming has several advantages to address these limi-
tations, including white-box models, effective global search, and good
exploration and exploitation, which make it a promising approach
for combining TA and SA indicators. The proposed approach has the
otential to generate more effective and profitable algorithmic trading
trategies that can take advantage of both TA and SA indicators. By

using a strongly-typed GP, we can ensure that each individual always
contains dedicated TA and SA nodes, which can prevent the search from
focusing on one type only, and improve the accuracy and robustness of
our trading strategies, leading to better financial returns.

3. Methodology

Our research methodology consists of four parts. Section 3.1 pro-
vides an overview of the GP methodology, which includes the model
representation and GP operators. In Section 3.2, we introduce the two
ypes of analysis, namely technical analysis and sentiment analysis,

and discuss the relevant indicators that we will consider in our study.
ection 3.3 discusses the trading signals and trading strategy we im-
lement, while Section 3.4 presents the fitness function and metrics
hat will be considered and how we evaluate the performance of the
lgorithm. The experiments were conducted on a high-performance
omputing cluster consisting of 30 compute nodes and 13 GPU nodes,
quipped with between 1 and 4 NVIDIA GPUs per node. This enabled
fficient handling of the computational demands of processing multiple
atasets, each undergoing 50 generations of evolutionary runs.
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Table 1
Function set for the STGP-SATA algorithm.

Explanation Function nodes

Root node AND
SA and TA type for AND ANDSA, ANDTA
SA and TA type for OR ORSA, ORTA
SA and TA type for Greater Than GTSA, GTTA
SA and TA type for Less Than LTSA, LTTA

3.1. Genetic programming and the STGP-SATA algorithm

Genetic programming (GP) algorithms are evolutionary algorithms
nspired by natural selection, where in this study, candidate solutions
re represented as tree structures. These trees evolve over generations

through genetic operators, such as subtree crossover and point mu-
ation that we utilise in our paper. Subtree crossover swaps subtrees
etween parent individuals, combining their characteristics to create
ffspring. Point mutation alters specific nodes within a tree, intro-

ducing variability and ensuring a diverse exploration of the solution
pace. These operations, combined with selection mechanisms, drive
he evolution of increasingly optimal solutions.

In a strongly-typed GP architecture, each node in the tree structure
s explicitly typed, ensuring that operations only occur between com-
atible data types. This prevents logical inconsistencies, such as mixing
ndicators of unrelated types, thereby improving the reliability of the
volved strategies.

The balanced strongly-typed approach allows the algorithm to not
ely on one type of analysis too much, thus, reducing the possibility
f creating strategies that can underperform by using an indicator type
ore than other. This can lead to more consistent financial returns and

etter performing trading strategies.

3.1.1. Model representation
Part 1 of Fig. 1 shows a sample tree that the STGP-SATA algorithm

an create. The strongly-typed architecture of our algorithm enforces
hat the root will have two children, one allowing only SA indicators
nd the other allowing only TA indicators. The root is always an AND
unction that unites the two branches; the first branch of the AND
unction is forced to be SA-related and the second branch is forced to
e TA-related.

The function nodes are based on the logical functions AND, OR,
reater than (GT) and Less than (LT), with different variants allowing

or different indicators. In particular, our algorithm uses ANDSA, ORSA,
TSA, LTSA function nodes in the SA branch and it uses ANDTA, ORTA,
TTA, LTTA function nodes in the TA branch. The function set is sum-
arised in Table 1. This ensures that the algorithm generates models

that fully utilise both types of indicators, enforcing type consistency,
which helps prevent errors and enhances the exploration of the search
space.

With respect to the terminal sets, different sets are allowed at
ifferent branches of the corresponding trees. The terminal sets for the
A (Table 2) and SA branches (Table 3) of the tree refer to the specific

ndicators or variables that are allowed to be used in each branch, and
n addition to those specific indicators, both terminal sets also include
 random variable called Ephemeral Random Constant (ERC) that acts
s a threshold value to the indicators and consists of random values
etween −1 and 1.

Compared to a non-strongly-typed GP, our proposed algorithm can
fully take advantage of the search space of each individual indicator
ype. The two branches corresponding to the two indicator types are

united using the AND function at the root of the tree, and this creates
the foundation for better exploration and exploitation. Thus, the model
can create more diverse, effective and adaptable trading strategies.
4 
3.1.2. GP operators
We incorporate the subtree crossover and point mutation operators

in our research. When performing subtree crossover in the case of
strongly-typed GP algorithms, we exchange corresponding parts from
both the left (SA) and the right (TA) subtree of the model. The nodes
being exchanged must be of the same type (e.g., a terminal node with
another terminal node) and data type (e.g., SA branch with SA branch)
to maintain the tree’s validity. To ensure the legality of the tree ex-
change, we first exchange the SA branches of the two selected parents,
and once that process is complete, we exchange the TA branches of the
two trees.

With respect to point mutation in a strongly-typed setting, there
again are certain limitations that must be observed. For example,
unction node ORSA can only be changed to ANDSA, function node GTTA
an be replaced only with LTTA(similarly for other function nodes), an
RC can be only replaced with another ERC and a terminal variable
an only be replaced with another variable of the same indicator type.
he algorithm thus ensures that valid data types replaced the mutated
odes. Point mutation happens in one of the two branches per tree.

The individuals who will act as parents of those operators are
selected through tournament selection. A selected individual will un-
dergo crossover with probability 𝑝 and will undergo mutation with the
remaining probability, 1 − 𝑝. Elitism is, also, in place to ensure the best
individual of each generation is being copied to the next one.

3.2. Financial analysis processes

With our framework established, we move on by incorporating
inancial indicators derived from both technical and sentiment analysis

to generate robust trading strategies. In this section, we will discuss the
rocesses of technical analysis and sentiment analysis in two separate
ubsections. To ensure a fair comparison between the algorithms, es-

pecially the GP-SA and GP-TA algorithms, we use the same number of
indicators. This prevents any inherent bias arising from the algorithm
using the indicators of one analysis type more than the other, which
could disproportionately influence the performance of the algorithms.

3.2.1. Technical analysis
Technical analysis (TA) is a widely used tool in financial forecast-

ng and algorithmic trading. It involves analysing financial metrics
o create technical indicators that help identify trends in the stock
arket, understand the financial status of companies, and generate
igher profits. Researchers often develop and refine TA indicators
rom financial data to derive actionable insights into market trends
nd trader behaviour. These indicators utilise financial data such as
tock prices and trading volumes, enabling traders to make data-driven
ecisions about buying and selling assets based on historical price
ovements.

In our study, we consider six widely used technical analysis (TA)
indicators (or indicators), namely Moving Average, Momentum, Rate
of Change, Williams %R, Midprice, and Volatility. We chose these
indicators as they are widely recognised and used in the bibliography
to understand diverse market dynamics, so by focusing on them, our
research can be easily contrasted with other studies in the literature,
such as [51–56]. The indicators are defined in Eqs. (1)–(6) below. These
are calculated based on historical data on (adjusted) close prices, high-
est and lowest daily prices of selected companies, available on Yahoo!
Finance (more details on our datasets are presented in Section 4.1).
ach indicator is considered with respect to look-up windows of 𝑛 = 5
nd 𝑛 = 10 days, giving rise to 12 TA indicators summarised in Table 2.

The computation of indicators was automated using Python, using the
andas [57] library for rolling window calculations and the NumPy

library [58] for mathematical operations.
The Moving Average is defined as follows and is used to smooth out

stock price data and helps with noise elimination towards identifying
trends by filtering out short-term price fluctuations. It is one of the most
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Table 2
Technical analysis indicators. Each indicator is considered for two different lookup

indows (𝑛).
Lookup windows 𝑛 = 5 and 𝑛 = 10
Moving average
Momentum
ROC
Williams %R
Volatility
Midprice

fundamental TA tools, widely used to measure general trend directions
nd reduce noise. 𝑝𝑗 denotes the adjusted closing price of the 𝑗th day
n our dataset for a corresponding stock.

Moving Average(𝑛, 𝑗) =
∑𝑗

𝑖=𝑗−𝑛 𝑝𝑖
𝑛

, for 𝑗 ≥ 𝑛. (1)

Momentum tracks short-term fluctuations in price relative to a base-
ine, highlighting the velocity of price changes and potential turning
oints. In this way, Momentum measures how quickly the market is
oving up or down. The Momentum captures the difference between

the most recent adjusted closing price and the adjusted closing price 𝑛
days ago, as follows.

Momentum(𝑛, 𝑗) = 𝑝𝑗 − 𝑝𝑗−𝑛, (2)

In addition, the Rate of Change (ROC) normalises the price difference
by dividing it by the price 𝑛 days ago. It measures the percentage
shift in price over a given lookback window, providing a proportional
change as opposed to the absolute change from Momentum. This way,
ROC enables the comparison between assets with different price levels,
even if they have the same Momentum, because it highlights the
relative significance of their price movements.

ROC(𝑛, 𝑗) =
( 𝑝𝑗
𝑝𝑗−𝑛

− 1
)

⋅ 100. (3)

Volatility is a statistical measure of the dispersion of returns over
 given period of time. It captures the variability of the returns over

a specific period and it is important in understanding uncertainty. A
higher volatility implies greater potential price changes, making it a
critical component in risk management and trading strategy decisions.
We calculate the following relevant indicator.

Volatility(𝑛, 𝑗) =
√

√

√

√Var
(

{ 𝑝𝑗−𝑖
𝑝𝑗−𝑛

− 1
}

𝑖∈{0,…,𝑛−1}

)

, (4)

where Var defines the sample variance over a dataset.
The Williams %R indicator, defined in Eq. (5), reflects the level of

most recent closing price, 𝑐 𝑙𝑗 (at day 𝑗), to the highest high price, ℎℎ𝑛,𝑗 ,
of all values in the lookup window ending at day 𝑗. 𝑙 𝑙𝑛,𝑗 denotes the
lowest low price over all days in the lookup window ending at day 𝑗. It
finds overbought/oversold market conditions by comparing the current
closing price with the high–low range of the lookback window. It is
a popular measure for short-term decision-making and helps traders
identify potential price reversals.

Williams %R(𝑛, 𝑗) = −100 ⋅ ℎℎ𝑛,𝑗 − 𝑐 𝑙𝑗
ℎℎ𝑛,𝑗 − 𝑙 𝑙𝑛,𝑗

(5)

𝑀 𝑖𝑑 𝑝𝑟𝑖𝑐 𝑒, defined in Eq. (6), returns the midpoint value of the
highest high price, ℎℎ𝑛,𝑗 , and the lowest low price, 𝑙 𝑙𝑛,𝑗 , over all days
n the lookup window ending at day 𝑗. It determines the central value
etween the highest high and lowest low in the lookback window,
erving as a measure of central tendency within a recent high and
ow range. By highlighting this midpoint, traders can detect potential

quilibrium levels or pivot points in price action over the lookback P

5 
Table 3
Sentiment analysis indicators. TEXT corresponds to a complete article, TITLE to the
title of that article, and SUMM to the summary of that article, as provided by the
Google Search results.

TextBlob SentiWordNet AFINN

TEXTpol, TEXTsub TEXTsenti TEXTafinn
TITLEpol, TITLEsub TITLEsenti TITLEafinn
SUMMpol, SUMMsub SUMMsenti SUMMafinn

period.

Midprice(𝑛, 𝑗) = ℎℎ𝑛,𝑗 − 𝑙 𝑙𝑛,𝑗
2

(6)

Overall, by incorporating these indicators—covering trend detec-
tion (Moving Average), market speed (Momentum and ROC), over-
ought/oversold signals (Williams %𝑅), price reference points (Mid-
rice), and market risk (Volatility) - our analysis captures a broad

spectrum of market behaviours.
All TA indicators were normalised between [−1, 1].

3.2.2. Sentiment analysis
As financial markets get influenced by events and stocks’ prices

increase/decrease along with people’s decisions on online information,
there is a surge of studies using sentiment analysis indicators in the ar-
eas of financial forecasting and algorithmic trading. Sentiment analysis
(SA) is the process of extracting the sentiment out of articles and online
comments and utilising into increasing the accuracy of stock estimation
and trading strategies’ profits.

Two widely adopted sentiment analysis indicators are the sentiment
olarity and subjectivity of given texts. The former, captures the in-

clination of sentiment, and the relative text is classified as positive,
negative or neutral. The latter captures the extent to which the re-
spective text expresses a personal opinion rather than a fact. In our
analysis we use indicators based on the polarity and subjectivity, while
distinguishing between the method of calculating them (definitions of
respective methods appear below).

Sentiment analysis classification research commonly uses
specialised SA programs to calculate the polarity and subjectivity of
text. Three popular tools are TextBlob [59], SentiWordNet [60], and
AFINN sentiment [61]. TextBlob is a Python library that provides
 straightforward API for determining the polarity and subjectivity
f text. SentiWordNet 3.0 is a lexical resource based on the English
anguage’s lexical taxonomy, WordNet, that is specifically designed
o support sentiment classification and opinion mining. It contains

a list of words classified as positive, negative, or neutral, and the
overall sentiment of a given text is calculated as a weighted average
of these words. AFINN sentiment is a widely used sentiment lexicon
that includes over 3300 words, each with a polarity score, developed
by Finn Årup Nielsen. In our research, we utilise the built-in function
for the lexicon, which is available in Python. The selection of these
tools was based on their popularity within the academic community,
as demonstrated in [62–67], and [68].

In particular, we consider 12 SA indicators summarised in Table 3.
The sentiment analysis indicators we use involve the polarity and
subjectivity levels extracted by TextBlob, as well as the sentiment po-
larity extracted by SentiWordNet and AFINN. We analyse the relevant
articles, titles, and summaries separately, resulting in a total of 12
sentiment analysis indicators.
All SA indicators were normalised between [−1, 1].

In our analysis, we downloaded articles related to the selected
ompanies and linked their sentiment to the corresponding dates and
rice changes in the stock market. Firstly, we gathered articles using
 custom web scraper that utilised the Google Search Console API in
ython. This API was chosen for its ability to provide automated and
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Fig. 1. Sample tree of STGP-SATA. The first child of the AND function is enforced to be SA-related and the second child to be TA-related. This tree checks if the TEXTpol indicator
is greater than the ERC 0.7 and if the ROC10 indicator is less than the ERC 0.3. If both of them are true, the recommendation will be to buy (1), otherwise it will be to hold (0).
efficient access to large volumes of search data, including near real-
time and historical results. For each company, the scraper queried the
first twenty pages of daily Google search results, using the company’s
name as the primary keyword. The articles were collected for the same
timeframe as the technical analysis indicators to ensure consistency.
Furthermore, along with the full-text content of each article, the scraper
extracted the title and summary, allowing for the creation of sentiment
indicators not only from the body of the article but also from its title
and summary.

Afterwards, to ensure only relevant articles were included in the
analysis, we applied two filtering criteria: 1. Articles must be at least
500 characters long to avoid overly brief or irrelevant content; 2.
Articles must explicitly mention the company’s name and stock ticker
symbol, allowing us to filter out articles that were not related to the
companies we were interested in.

Following, to match the sentiment of articles with corresponding
stock price data, we synchronised the publication dates of the articles
with relevant stock prices. For articles published on weekends, when
the stock market is closed, the sentiment scores were assigned to the
preceding Friday to capture their potential influence on stock prices the
following Monday.

Finally, for days when multiple articles were published for the
same company, we calculated the average sentiment value across all
relevant articles for that day. For days with no articles, we assigned
a sentiment value of zero (0) to denote neutrality or lack of action,
ensuring continuity and avoiding gaps in the data.

3.3. Trading signals and trading strategy

Specifically, the result of the root AND function, which is a True/
False value, is utilised by the algorithms to determine whether to
issue a ‘buy’ signal or maintain a ‘hold’ position for a given stock.
The recommendation is made as follows. Each evolving GP model is
incorporated into another tree architecture with an If-Then-Else (ITE)
node as the root. The second and third branches of this ITE statement
are fixed and represent buy (1) and hold (0) decisions, respectively, as
illustrated in Fig. 1. It is important to note that only Part 1 of Fig. 1
undergoes evolution through GP operations. The overall tree in Fig. 1
starts with the root node AND (i.e. Part 1), while the SA branch starts
with the root node GTSA (blue-coloured nodes), and the TA branch
corresponds to the root node LTTA (yellow-coloured nodes).

If the GP tree (Part 1) evaluates to True, the ITE tree directs the
process to the second branch (1). This triggers the GP algorithm to
issue a ‘buy’ signal, initiating a trade. The stock is then sold based on
the following rule: For a given holding period, 𝑑, and a target return
rate, 𝑟, if the stock price increases by more than 𝑟 within 𝑑 days, the
stock is sold on that day. Otherwise, it is sold at the end of the 𝑑 days.
6 
For instance, if 𝑑 = 30 and 𝑟 = 0.05, this implies that the stock is sold
either when its price exceeds a 5% increase within 30 days or at the
end of the 30-day period, whichever comes first. Conversely, if the GP
tree evaluates to False (signal: 0), the ITE tree leads to a ‘hold’ action,
and no trade is executed.

Parameters 𝑑 and 𝑟 are optimised during the validation phase and
are the same for all GP algorithms considered, but different across
different companies (see Section 4.3).

3.4. Fitness function and metrics

STGP-SATA is trained to optimise the Sharpe ratio, a widely used
metric that evaluates the trade-off between return and risk. The Sharpe
ratio was selected as the fitness function due to its ability to balance
profitability against risk, making it particularly suitable for evaluat-
ing trading strategies. It is a comprehensive measure of performance,
suitable for risk-averse investors. By maximising the Sharpe ratio,
STGP-SATA is able to prioritise strategies that achieve high returns
while minimising the risk.

Calculating the Sharpe ratio requires determining the returns (𝑅)
from individual trades, defined as the profit expressed as a percentage
of the initial investment. The calculation of the profit takes into account
the transaction costs, 𝑐𝑡 = 0.025%, as well, as has been similarly seen
in [69,70], and [15]. This cost is applied consistently across all algo-
rithms and all trades, ensuring fairness in performance comparisons.
Incorporating transaction costs ensures that the Sharpe ratio reflects
realistic market conditions. 𝑅 is found as shown in Eq. (7), where 𝑉𝑓
denotes the final value, or the price the stock was sold, and 𝑉𝑖 denotes
the initial value, or the price the stock was bought.

𝑅 =
(1 − 𝑐𝑡) ⋅ 𝑉𝑓 − 𝑉𝑖

𝑉𝑖
(7)

The rate of return, 𝑅𝑜𝑅, denotes the sample mean of the returns of
all trades in a corresponding period of time in question.

The risk is captured as the standard deviation of the returns, that is
√

𝑣𝑎𝑟[𝑅].
The Sharpe ratio, which is the metric STGP-SATA maximises is

calculated as seen below. 𝑆𝑟, is defined as the ratio of the expected
value of the excess return compared to the risk free return, 𝑅𝑓 , over
the risk. Formally,

𝑆𝑟 =
E[𝑅 − 𝑅𝑓 ]
√

𝑣𝑎𝑟[𝑅]
(8)

where 𝑅𝑓 is the risk free return, a given value of 0.022%, consistent
across all algorithms, an average value as portrayed in Fernandez
et al. [71] and as seen in Long et al. [72].
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Table 4
Companies in our experiment.

Sector Companies

Technology Apple, Adobe, Asus, BlackBerry, Facebook, Fujifilm, Fujitsu,
Google, IBM, Intel, Kodak, Microsoft, Nikon, Nokia, Nvda,
Panasonic, Sony, Tencent, Xerox

Design-Cosmetics Adidas, Asics, Asus, Dior, Estee, Fila, Kering, Nike, Shiseido

Drinks-Food Coca Cola, McDonalds, Nestle, Sainsbury, Starbucks, Tesco,
Walmart

E-commerce Alibaba, Amazon, Ebay

Vehicles BMW, Ford, General Motors, Honda, Hyundai, Kia,
Mitsubishi, Nissan, Subaru, Suzuki, Tesla, Toyota, Yamaha
Motor

Conglomerate-
Finance-
Pharmaceutical

Berkshire Hathaway, Johnson Johnson, Hitachi, HSBC,
Yamaha Corp

Gaming-
Production-
Media

Activision Blizzard, Netflix, Nintendo, New York Times Co,
Ubisoft

The Sharpe ratio is a widely recognised concept in finance that
auges the return on an investment strategy relative to the risk it en-
ails. This metric facilitates comparisons of investment strategies with
arying levels of risk, helping investors to make informed decisions. By
ssessing the risk of a stock or company and evaluating whether its po-
ential return justifies that risk, the Sharpe ratio empowers investors to
ake sound investment choices. Our STGP-SATA algorithm prioritises

he return–risk tradeoff by placing the Sharpe ratio at the heart of its
trategy.

4. Experimental setup

4.1. Data

In this study, we utilised datasets from 60 different companies,
which are listed in Table 4. These companies were chosen due to their
popularity, ensuring we would be able to collect enough sentiment
analysis data for each one of them. Furthermore, we wanted to repre-
sent a broad range of industries. This diversity ensures that the findings
re not biased towards a particular sector and can be generalised across

different market conditions. We collected news articles and historical
prices for each company. The selection of companies was based on
their popularity to ensure that we could collect a sufficient amount of
articles. The research period covered 5 years, from January 1st, 2015,
to January 31st, 2020, which excludes the pandemic of COVID-19,
since that would make the train/validation sets too different from the
test set, and the parameter tuning would not be reliable.

To perform technical analysis, we collected the daily closing price
data from Yahoo! Finance. For sentiment analysis, we gathered articles,
their titles, and their summaries using a scraper and the Google Search
Console API in Python. The choice of data sources was based on their
reliability and accessibility. Yahoo! Finance provided an accurate and
tandardised source of historical price data, while the Google Search
onsole API enabled the retrieval of comprehensive textual data for
entiment analysis. After collecting all the necessary data, we generated
he 12 SA indicators and the 12 TA indicators presented in Section 3.

Then, we split the datasets of the 60 companies in sequence into three
arts : 60% for training, 20% for validation, and 20% for testing.

For each of the 60 companies, we conducted 50 independent runs
on the training set, evolving distinct trading strategies for each run.
This approach ensures the robustness of our findings by accounting for
variability across multiple runs.
 t

7 
4.2. Benchmarks

The proposed STGP-SATA is benchmarked against three other GP
algorithms in this study:

• GP-TA is a GP algorithm that only includes technical analysis
indicators in its terminal set.

• GP-SA is a GP algorithm that only includes sentiment analysis
indicators in its terminal set.

• GP-SATA is a (non-strongly-typed) GP algorithm that combines
indicators of technical and sentiment analysis.

Furthermore, the study also included two additional algorithmic
enchmarks, namely:

• Multilayer perceptron (MLP)
• Support vector machine (SVM)
• eXtreme Gradient Boosting (XGBoost)
• Long short-term memory (LSTM)
The four algorithmic benchmarks have been extensively used in

related literature, and in this study, the scikit-learn library’s built-in
models in Python were employed. We use these algorithms to tackle the
following binary classification problem: ‘‘Will the stock price increase
by 𝑟% within the next 𝑑 days?’’. Class 1 represents a buy action, while
Class 0 represents a hold action. As previously stated in Section 3.3, the
ell action is carried out as part of the trading strategy.

Finally, STGP-SATA is evaluated against the following financial
benchmarks:

• Buy and Hold (BnH): A very popular investment strategy de-
pendent on historical prices, where we buy one unit at the very
beginning of the trading period and sell at the very end. This
strategy relies on the fact that, over time, the value of investments
will generally increase.

• Trading-Strategy𝑑 ,𝑟 (TS𝑑 ,𝑟): Buy at the beginning of every trading
period. Sell when the price increases by more than the rate of
reference 𝑟, or after 𝑑 days have passed, whichever happens
sooner.

The TS𝑑 ,𝑟 benchmark follows the same trading strategy that the GP
algorithms are using, but without the learning element of generating
buy and hold signals. This allows us to examine the added value of our
GP algorithm when it is separated from the pure trading element of the
trategy.

4.3. Parameter tuning

To determine the optimal GP parameters, a grid search was per-
formed on the validation set and it was completed in two steps. The
parameter tuning process was designed to ensure optimal performance
nd fairness across all algorithms.

A grid search was conducted on the validation set in two phases: (1)
uning genetic programming (GP) parameters; and (2) tuning trading
trategy parameters (𝑑 and 𝑟) specific to each company.

In the first phase, GP parameters such as population size, crossover
probability (𝑝),1 number of generations, tournament size, and maxi-

um tree depth were tuned. A grid search was performed to identify
 parameter combination that optimised performance across all GP
ariants, ensuring fair comparison. During this phase, trading strategy
arameters (𝑑 = 30 days and 𝑟 = 0.05) were kept constant to reduce
uning complexity and runtime. The optimal GP parameters identified
y this process were used in all runs for all algorithms and companies
nd are presented in Table 5.

1 The mutation probability is 1-p, thus it was not necessary to include it in
he parameter tuning process.
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Table 5
GP Parameters for GP-TA, GP-SA, GP-SATA. STGP-SATA.

GP parameters

Population size 1000
Crossover probability 0.95
Mutation probability 0.05
Generations 50
Tournament size 4
Maximum tree depth 6

In the second phase, the trading strategy parameters, 𝑑 and 𝑟, were
tuned independently for each company and algorithm. This indepen-
dent tuning approach ensures that the trading performance is optimised
while maintaining consistency in the GP algorithms’ application. The
parameters were selected based on their overall performance on the
validation set.

The parameter tuning for MLP, SVM, LSTM, and XGBoost is per-
formed separately using binary classification, where one class corre-
sponds to a price increase of a certain percentage for the next day and
the other to a different price update (see Section 4.2). Later, the model
with the best predictive ability on the validation set is chosen. The
predicted class is used at the testing dataset and it serves as a signal,
fed into the trading strategy. The trading strategy parameters are set to
be the same 𝑑 (days) and 𝑟 (percentage increase) values as in the GP-
ariants. The tuning process for these two machine learning algorithms
or trading purposes is based on [73].

5. Results and analysis

This section presents the results of our experiments comparing
TGP-SATA with the benchmarks presented in Section 4.2. We run 50
ndependent runs on the training set of each of the 60 companies, for
ach algorithm. Each of these runs corresponds to a different trading

strategy. The derived trading strategies were subsequently applied to
he test set, which formed the basis of the analysis. Conducting 50
ndependent runs for each of the 60 companies increases statistical
onsistency, making our results more robust and delivering a more

reliable evaluation of the algorithm’s performance.
During some of the 50 independent runs performed, the GP algo-

ithms did not execute any trading action due to the likelihood of
incurring losses. Based on Table 6, this occurred in 3 companies for
STGP-SATA, followed by GP-SATA and GP-TA (4 companies each) and
GP-SA (7 companies). These runs were reported as 0 for Sharpe ratio,
ate of return, and risk. Moreover, when only one trade was made, the

risk was uncomputable and reported as 0, again. To prevent distortions
in statistical analysis, the mean values presented in Tables 6 to 12 were
alculated based on independent runs that involved more than one
rade, since two or more trades are needed to measure the standard
eviation of returns, i.e. the risk. The tables contain the mean, median,
tandard deviation, maximum, and minimum values of the distribution
or each algorithm across 60 companies. However, some algorithms did
ot produce any results for certain companies (i.e. they did not execute
ny trades at all for any of the 50 individual GP runs), leading to rows
ith mean values of 0.

To validate the statistical significance of our findings, we conducted
a two-sample Kolmogorov–Smirnov (KS) test to compare the results
across all runs and companies for each algorithm,while we excluded
values of 0. The KS test was chosen because it is sensitive to differences
in the shape of the empirical cumulative distribution functions of two
samples and identifies the maximum difference between their distri-
butions. This makes it particularly suitable for detecting variations in
the performance distributions of the algorithms. The test was applied
separately for each financial metric.

To address the issue of multiple comparisons, we applied the Holm-
onferroni correction to adjust the significance threshold for statistical
8 
tests. This correction ensures that the overall Type I error rate re-
mains within the desired significance level (𝛼 = 0.05). The minimum
acceptable 𝑝-value for a given rank, is calculated using the formula
𝛼(𝑟𝑎𝑛𝑘) = 0.05

3−𝑟𝑎𝑛𝑘+1 , where 𝑟𝑎𝑛𝑘 ∈ {1, 2, 3}. The term 𝑟𝑎𝑛𝑘 corresponds
to 𝑝-value magnitude order, with 1 being the smallest and 3 being the
largest. For example, if the 𝑝-value between STGP-SATA and GP-SATA
is 0.01, the 𝑝-value between STGP-SATA and GP-SA is 0.02, and the
𝑝-value between STGP-SATA and GP-TA is 0.03, that means the first
𝑝-value is the smallest so it is assigned a 𝑟𝑎𝑛𝑘 of 1, the second 𝑝-value
has a 𝑟𝑎𝑛𝑘 of 2, and the third 𝑝-value, being the largest, has a 𝑟𝑎𝑛𝑘 of
3.

Since we compared the STGP-SATA to the 3 GP benchmarks, re-
sulting in 3 different comparisons for each financial metric, the de-
nominator 3 corresponds to the number of different comparisons being
made. To determine if two distributions are statistically different at 5%
significance level, the 𝑝-value for each comparison is compared to the
corresponding minimum acceptable 𝑝-value for its rank. Specifically,
the first-ranked 𝑝-value should be less than 0.0166, the second-ranked
𝑝-value should be less than 0.025, and the third-ranked 𝑝-value should
be less than 0.05. This approach ensures that the probability of a
false positive result is kept below a predetermined threshold, thereby
providing more reliable statistical results.

5.1. Sharpe ratio

Table 6 displays the average Sharpe ratio values of 50 runs for
each company across the three GP algorithms. GP-TA was the best
performing algorithm in 17 out of 60 companies, while GP-SA was the
est in 21 companies. On the other hand, GP-SATA had the highest
harpe ratio in 10 companies, while STGP-SATA, which has the highest
ean Sharpe ratio (see Table 7), was the best performing algorithm in

11 companies.
Even though STGA-SATA does not have the highest number of best

performing occurrences, it is important to also look at the descriptive
statistics of each algorithm. Table 7 presents the mean and median
Sharpe ratio for each algorithm, as well as the standard deviation and
the maximum and minimum values. When looking at Sharpe ratio
results, it is important to keep in mind that this metric can be sensitive
to the number of trades and can experience large values (either positive
or negative) if very few trades are performed. This is because the risk,
which is calculated as the standard deviation of returns experienced
in a given period, can end up being extremely small if an algorithm
happens to perform very few trades (e.g., 2–4 trades throughout the
test set). Given that risk is the denominator of the Sharpe ratio, a very
small decimal number of risk can lead to a very high value of the Sharpe
ratio.

As we can observe in Table 7, the proposed STGP-SATA algorithm
has the highest mean value (10.79), which is approximately three times
the value of GP-SATA (3.61). However, as we said above, we need to
take into account the variability of the Sharpe ratio results. As we can
bserve, STGP-SATA has the largest maximum value (426), as well as
he lowest minimum value (−9.7). Its standard deviation is also the
ighest. The median can therefore be a more appropriate metric in
his case. As we can observe, STGP-SATA still has the highest median
alue (1.8) among the four GP algorithms. The companies that perform
ith a Sharpe ratio less than 1 are 26, and in 15 companies the STGP-
ATA trees used slightly more TA than SA indicators (HYUND, NISSAN,
OKIA). On the other hand, the number of companies performing with
 Sharpe ratio more than 1 were 34, of which 22 companies were using
s many or slightly SA than the TA indicators (HONDA, KIA, SZK).

The null hypothesis of the KS tests is that each pair of distributions
being compared come from the same continuous distribution. A 𝑝-
value below the corresponding significance level indicates that the
null hypothesis is rejected, and the two distributions are considered
statistically different. As STGP-SATA has both the highest average and
median Sharpe ratio values, it is used as the control algorithm for
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Table 6
Averages for Sharpe ratio per company. Boldface is used to denote the best value for the particular dataset.

Company GP-SATA GP-TA GP-SA STGP-SATA Company GP-SATA GP-TA GP-SA STGP-SATA

AAPL 2.36 6.24 2.99 3.99 KIA 5.04 0 1.06 45.5
ADBE 3.44 4.94 17.36 7.60 KODAK 0.97 1.66 1.49 1.23
ADID 1.12 0.10 −0.88 0.73 MCDON 0 −4.3 0.91 0
ALIB 2.64 2.77 12.87 1.72 MITSU −38.3 5.4 0 1.83
AMAZ 3.5 14.7 1.79 3.51 MSFT 44.8 6.1 0 0.017
ASICS 1.16 4.81 1.59 0.11 NESTLE 3.49 −0.01 2.32 3.56
ASUS 15.63 0.5 3.43 9.97 NFLX −0.34 0.91 17.8 8.39
ATVI −0.12 3.5 2.56 4.96 NIKE 5.77 4.87 6.05 1.82
BERK 2.8 19.15 4.22 0.52 NIKON 6.19 10.83 −0.6 4.35
BLACB 45.42 2.8 −0.03 1.71 NINT 0.31 −0.12 1.13 0.73
BMW 11.22 17.6 6.01 7.70 NISS −1.09 −0.69 −188 −0.20
COKE 0.61 0.68 −0.58 0.61 NOKIA −5.14 −2.49 1.56 −2.73
DIOR −0.17 0.49 24.2 −0.01 NVDA 9.65 35 6.7 7.87
EBAY 0.11 0 6.36 426 NYT 0.3 −0.74 3.22 0.41
ESTEE 1.56 1.23 2.09 2.05 PANA 2.77 3.9 2.5 −0.31
FB −0.74 3.04 0 −0.68 SAINS 1.99 2.02 2.27 2.10
FILA 0.13 0.27 0 0.68 SHIS 1.65 0.56 4.91 0.64
FORD 39.89 −0.59 8.3 20.5 SONY 0.83 1.76 13.44 19.9
FJFILM −1.16 −1.59 0.55 −1.30 STARB −0.3 −2.7 2.76 −0.04
FJTSU 15.21 13.7 3.7 18 SUBA 0.58 7.73 −0.18 5.43
GM −0.22 −20.9 4.01 0 SZK 5.2 2.67 −1.09 13.95
GOOG 3.52 2.3 2.47 2.85 TENC 0 −0.55 0 0
HITA 0 0 0.24 0 TESCO −1.1 2.24 0.93 −1.20
HONDA 6.34 2.5 6.63 6.99 TESLA 2.02 2.18 3.5 2.72
HSBC 0.03 0.17 2.92 −0.6 TOYO 0.25 0 1.16 0.91
HYUND 5.71 −0.64 0.71 −9.7 UBIS 0.69 1.5 0 1.1
IBM 0.73 10.57 0.93 7.90 WALM 0.69 1.95 1.13 3.65
INTC 0.70 1.46 1.97 2.62 XEROX 1.36 −0.82 0.14 −0.10
JNJ 4.17 2.53 10.44 3.05 YACO 0.72 0.44 1.37 1.23
KERI −1.23 0.92 0.75 0.22 YAMO 3.16 0.65 0 2.33
.

c

Table 7
Summary statistics of Sharpe ratio. Boldface is used to denote the best value for each
statistic.

Statistic GP-SATA GP-TA GP-SA STGP-SATA

Average 3.61 2.8 0.23 10.79
Median 1.1 1.4 1.7 1.8
StDev 11.1 7 25 54.6
Max 45.42 35 24 426
Min −38.4 −20 −188 −9.7

Table 8
Pairwise Kolmogorov–Smirnov test p-values on Sharpe ratio of the proposed STGP-
SATA algorithm against the 3 GP benchmarks. Statistical significance changes based
n the Holm-Bonferroni correction. Statistically significant differences at the 5% level

are indicated in boldface.
Algorithm STGP-SATA p-values Rank Significance level

GP-SATA 0.0016 3 0.05
GP-SA 4.2E−7 1 0.016
GP-TA 6.44E−06 2 0.025

the statistical test and is thus compared pairwise with the other GP
variants. The results show that STGP-SATA statistically outperforms all
algorithms, with p-values (second column) significantly lower than the
corresponding significance level values (fourth column). More specifi-
cally, STGP-SATA statistically and significantly outperforms GP-SATA
with a 𝑝-value of 0.0016, GP-SA with a 𝑝-value of 4.2𝐸 − 7, and GP-TA
with a 𝑝-value of 6.44𝐸 − 06.

Concluding, STGP-SATA has the highest average and median values
of Sharpe ratio, and it statistically outperforms the other three GP
variants when performing the Kolmogorov–Smirnov statistical test.

5.2. Rate of return

Similarly to Table 6, Table 10 presents the mean rate of return per
rade over 50 runs per algorithm. Based on the average values of the
0 runs per company, STGP-SATA has the highest number (along with
9 
Table 9
Summary statistics of rate of return. The best value per metric is presented in boldface

Statistic GP-SATA GP-TA GP-SA STGP-SATA

Average 0.0081 0.0074 0.0079 0.0105
Median 0.005 0.006 0.007 0.008
StDev 0.021 0.027 0.020 0.020
Max 0.095 0.093 0.065 0.09
Min −0.037 −0.09 −0.05 −0.033

GP-SA) of best performances, as each algorithm has the highest rate
of return in 20 companies. It is also worth noting that all algorithms
have yielded negative returns for certain companies. More specifically,
GP-SATA, GP-TA and STGP-SATA have 13, 12 and 11 companies with
negative rate of return, while GP-SA has only 7. Furthermore, when
looking at the summary statistics in Table 9, we can observe that the
proposed STGP-SATA has again the best average and median values.
Furthermore, it has the lowest standard deviation and the highest
minimum value, indicating that even when it is not performing well,
its losses are less than the other GP algorithms.

When performing the KS-tests, STGP-SATA is again selected as the
ontrol algorithm, since it has the highest average and median values

for rate of return. We can observe from Table 11 that STGP-SATA
statistically outperforms GP-SATA, since the 𝑝-value is 0.0068, as well
as GP-TA with a 𝑝-value of 3.59𝐸 − 6 and GP-SA with a 𝑝-value of
1.46𝐸 − 6.

To sum up, STGP-SATA has the highest average and median values
in rate of return, and it statistically and significantly outperforms at the
5% level the other 3 GP algorithms.

5.3. Risk

Table 12 presents the mean results for risk per trade over 50 runs
for each one of the GP algorithms. We note that GP-SA performs the
best in 24 companies, STGA-SATA in 20, GP-TA in 18, and GP-SATA in
13.
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Table 10
Averages for rate of returns per company. Boldface is used to denote the best value for the particular dataset.

Company GP-SATA GP-TA GP-SA STGP-SATA Company GP-SATA GP-TA GP-SA STGP-SATA

AAPL 0.018 0.023 0.013 0.02 KIA 0.04 0 0.016 0.05
ADBE 0.009 0.011 0.016 0.005 KODA 0.014 0.02 0.05 0.03
ADID 0.019 0.004 0.0014 0.02 MCD 0 −0.0003 0.012 0
ALIB 0.012 0.014 0.03 0.002 MIT −0.006 0.024 0 0.008
AMAZ −0.004 0.02 −0.001 0.004 MSFT 0.028 0.03 0 0.0012
ASIC 0.008 0.025 −0.009 0.015 NEST 0.0016 −0.002 0.008 0.0005
ASUS 0.02 0.019 0.0008 0.03 NFLX 0.027 −0.01 0.003 0.05
ATVI −0.0026 0.015 0.009 0.015 NIKE −0.011 0.029 0.028 0.011
BERK 0.005 0.008 0.005 0.004 NIK 0.03 0.045 −0.03 0.021
BLB 0.027 0.03 −0.008 0.03 NINT 0.002 −0.012 0.014 0.027
BMW 0.041 0.037 0.030 0.002 NISS −0.037 −0.027 −0.05 −0.013
COKE 0.009 0.008 −0.04 0.0082 NOK −0.032 −0.029 0.004 −0.033
DIOR −0.0008 0.001 −0.009 −0.003 NVDA −0.009 0.042 0.048 −0.025
EBAY −0.013 0 0.001 0.015 NYT 0.007 −0.0015 0.03 0.010
ESTEE 0.006 0.009 0.009 0.010 PANA 0.0044 0.015 0.02 −0.009
FB −0.012 0.015 0 −0.009 SAIS 0.02 0.015 0.016 0.02
FILA 0.004 −0.0007 0 0.013 SHIS 0.03 0.02 −0.01 0.012
FORD 0.012 −0.02 0.014 0.02 SONY 0.003 −0.0015 0.0003 −0.010
FJF −0.020 −0.02 0.03 −0.01 STB −0.015 −0.03 0.007 −0.002
FJT 0.09 0.09 0.064 0.09 SUBA 0.0008 0.03 −0.015 −0.006
GM −0.020 −0.09 0.023 0 SZK −0.013 0.0007 −0.03 0.03
GOOG 0.003 −0.007 0.005 0.005 TENC 0 −0.05 0 0
HITA 0 0 0.012 0 TESC −0.006 0.008 0.016 0.015
HONDA 0.014 0.001 0.008 0.008 TESL 0.047 0.07 0.054 0.06
HSBC 0.0004 0.002 0.009 −0.013 TOYO 0.006 0 0.008 0.015
HYU 0.002 −0.02 0.012 0 UBIS 0.04 0.02 0 0.02
IBM 0.03 0.03 0.009 0.03 WAL 0.0006 0.004 −0.002 0.008
INTC 0.0006 0.001 −0.009 0.02 XERO −0.003 −0.006 0.004 0.0015
JNJ 0.008 0.007 0.015 0.007 YACO 0.0086 −0.007 0.005 0.0016
KERI −0.018 0.013 0.017 0.004 YAMO 0.019 0.006 0 0.003
s
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Table 11
Pairwise Kolmogorov–Smirnov test p-values on rate of return of the proposed STGP-
SATA algorithm against the 3 GP benchmarks. Statistical significance changes based on
he Holm-Bonferroni correction. Statistically significant differences at the 5% level are

indicated in boldface.
Algorithm STGP-SATA p-values Rank Significance level

GP-SATA 0.0068 3 0.05
GP-SA 1.46E−6 2 0.025
GP-TA 3.59E−6 1 0.016

In terms of summary statistics, which are presented in Table 13,
we can observe that all GP algorithms have very similar risk values. In
terms of average risk, GP-SA has the lowest average risk value (0.026),

ith STGP-SATA experiencing only a slightly higher risk value (0.027).
imilarly, in terms of median risk, the best value is 0.022, with STGP-
ATA having a slightly higher value of 0.025. The standard deviation
s also very similar across all four GP algorithms.

Given that GP-SA is the algorithm that shows the lowest average
nd median risk values, it is used as the control algorithm and it is

compared pairwise with the rest of the GP variants. As we can observe
rom Table 14, although GP-SA statistically outperforms GP-SATA and
P-TA, it does not statistically outperform our proposed algorithm,

ince the test’s 𝑝-value is 0.129418.
Lastly, it is worth noting that STGP-SATA is able to show low risk

values in situations where it is yielding negative returns. Looking back
t Table 10, we had identified that GP-SATA was yielding negative
eturns in 13 companies, GP-TA in 12, STGP-SATA in 11, and GP-SA in
. When taking into consideration only these cases of negative returns,
P-SATA and GP-TA have an average risk value of 0.03, while STGP-
ATA and GP-SA have an average risk value of 0.023. Consequently, the
verage Share ratio for the companies yielding negative returns is −2.6
GP-SATA), −0.8 (STGP-SATA), −1 (GP-TA), and −4.6 (GP-SA). This
hows that the STGP-SATA algorithm is able to perform at lower risk

even in non-profitable trading strategies. This is particularly important,
as all trading strategies underperform from time to time. The key factor
lies in maintaining minimal volatility during periods of turmoil, as
10 
it enables traders to minimise their losses effectively. Therefore, the
noteworthy aspect of STGP-SATA is its ability to exhibit the lowest
risk and highest Sharpe ratio values in such situations, signifying the
algorithm’s crucial ability to mitigate losses efficiently.

In conclusion, although GP-SA performs with the least risk, it is not
tatistically and significantly different than STGP-SATA, which ranks

second. Furthermore, STGP-SATA has the least risk in the runs that
perform with a negative rate of return and Sharpe ratio.

5.4. Results of each market

The robustness of the algorithms’ performance was assessed by
ategorising companies into market trend groups and evaluating per-
ormance within these categories. Regarding the time period, we chose

to exclude the pandemic of COVID-19, because that would make the
rain/validation sets too different from the test set, making the param-

eter tuning not reliable. Although all 60 companies’ data comes from
the same time period, there is a lot of variation among their price series.
Some of them tend to experience a positive price movement, while
others experience a negative overall movement. We thus believe it is
important to examine the GP algorithms’ performance across different
market profiles.

To do this, we looked at the first and last price of the test set for
each company, and calculated the return value. We then created three
groups:

• Group 1, which includes those companies whose price experi-
enced a long-term increase of at least 20%.

• Group 2, which includes those companies whose price experi-
enced a long-term increase between 0% and 19.99%.

• Group 3, which includes those companies whose price experi-
enced a long-term decrease, i.e. had a negative return.

After defining the above groups, 27 companies were placed in Group
1, 17 in Group 2, and 16 in Group 3. We then report the average
value of each metric (Sharpe ratio, rate of return, and risk) for each
GP algorithm, across the datasets of each group. As we can observe
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Table 12
Averages for risk per company. Boldface is used to denote the best value for the particular dataset.

Company GP-SATA GP-TA GP-SA STGP-SATA Set GP-SATA GP-TA GP-SA STGP-SATA

AAPL 0.019 0.008 0.023 0.02 KIA 0.036 0 0.051 0.001
ADBE 0.014 0.0095 0.004 0.02 KODA 0.062 0.03 0.03 0.046
ADID 0.022 0.026 0.014 0.03 MCDN 0 0.029 0.03 0
ALIB 0.037 0.03 0.004 0.045 MITS 0.021 0.02 0 0.037
AMAZ 0.041 0.002 0.031 0.03 MSFT 0.02 0.02 0 0.05
ASIC 0.058 0.045 0.039 0.06 NEST 0.014 0.017 0.003 0.014
ASUS 0.017 0.036 0.021 0.005 NFLX 0.006 0.089 0.062 0.016
ATVI 0.031 0.008 0.004 0.02 NIKE 0.048 0.023 0.021 0.033
BERK 0.012 0.011 0.012 0.015 NIKO 0.01 0.01 0.048 0.034
BLB 0.035 0.03 0.08 0.03 NINT 0.045 0.049 0.035 0.042
BMW 0.005 0.011 0.021 0.065 NISS 0.053 0.057 0.023 0.05
COKE 0.01 0.01 0.07 0.01 NOKI 0.02 0.02 0.043 0.02
DIOR 0.029 0.024 0.019 0.03 NVDA 0.083 0.008 0.01 0.1
EBAY 0.048 0 0.02 0.02 NYT 0.041 0.04 0.019 0.03
EST 0.013 0.016 0.004 0.008 PANA 0.008 0.02 0.01 0.034
FB 0.04 0.041 0 0.03 SAIS 0.02 0.022 0.027 0.02
FILA 0.03 0.048 0 0.02 SHIS 0.064 0.058 0.086 0.079
FORD 0.001 0.048 0.001 0 SONY 0.015 0.016 0.032 0.025
FJF 0.027 0.029 0.055 0.015 STB 0.039 0.036 0.029 0.04
FJT 0.01 0.017 0.017 0.008 SUBA 0.037 0.016 0.055 0.042
GM 0.09 0.004 0.016 0 SZK 0.079 0.056 0.068 0.041
GOOG 0.016 0.04 0.01 0.01 TENC 0 0.098 0 0
HITA 0 0 0.056 0 TESC 0.013 0.022 0.018 0.004
HOND 0.003 0.008 0.007 0.012 TESL 0.076 0.034 0.047 0.05
HSBC 0.006 0.008 0.005 0.015 TOYO 0.022 0 0.018 0.02
HYUN 0.022 0.044 0.021 0.0022 UBIS 0.051 0.027 0 0.04
IBM 0.045 0.003 0.067 0.025 WAL 0.015 0.007 0.017 0.01
INTC 0.073 0.03 0.044 0.006 XERO 0.021 0.021 0.06 0.05
JNJ 0.003 0.004 0.001 0.003 YACO 0.028 0.037 0.02 0.02
KERI 0.033 0.034 0.02 0.02 YAMO 0.006 0.017 0 0.035
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Table 13
Summary statistics for risk. Since we need the risk to be as small as possible, The
lowest value per metric is presented in boldface.

Statistic GP-SATA GP-TA GP-SA STGP-SATA

Average 0.029 0.027 0.026 0.027
Median 0.022 0.022 0.022 0.025
StDev 0.022 0.020 0.023 0.021
Max 0.09 0.098 0.086 0.11
Min 0 0 0 0

Table 14
Pairwise Kolmogorov–Smirnov test p-values on risk of the GP-SA algorithm against
he 3 GP benchmarks. Statistical significance changes based on the Holm-Bonferroni
orrection. Statistically significant differences at the 5% level are indicated in
oldface.
Algorithm GP-SA p-values Rank Significance level

GP-SATA 1.73E−16 2 0.025
GP-TA 1.05E−30 1 0.016
STGP-SATA 0.129418 3 0.05

from Table 15, STGP-SATA demonstrates advantages in terms of Sharpe
ratio, particularly in Groups 1 and 3. Its average Sharpe ratios of
4.9 and 28.7, respectively, performing better than the rest of the GP-
variants. Even when examining the medians, STGP-SATA maintains
competitive results, indicating robust performance across most datasets.
For instance, in Group 1, the median Sharpe ratio of 2.05—while lower
than the average—is still higher than the median values of GP-SATA,
GP-SA, and GP-TA. This confirms its ability to perform consistently
well. Similarly, in Group 3, despite the exceptional average Sharpe ratio
of 28.7, the median value of 1.47 highlights its good performance. For
the rate of return and risk results, the proposed algorithm achieves
the best average rate of return in Groups 2 and 3, alongside strong
median values, demonstrating its capacity in neutral and downtrend
markets. Additionally, STGP-SATA achieves the lowest average and
econd lowest median risk in Group 2. These results suggest that the

algorithm balances profitability and risk exceptionally well.
11 
Given the variation of results across groups and metrics, it is useful
to look at the Sharpe ratio, which as an aggregate metric takes into
account both return and risk. As mentioned, STGP-SATA shows strong
performance for datasets that either have very strong positive price

ovements (Group 1) and negative price movements (Group 3). This
ndicates that our proposed algorithm is able to perform very well on
trongly uptrend markets, as well as on downtrend markets. This is an
mportant finding, as it demonstrates that our algorithm can perform
ell on opposite types of markets. Lastly, the fact that GP-SATA is also
erforming very well in terms of Sharpe ratio (best value in Group
) indicates the importance of combining SA and TA indicators, even
hen this happens in a non-strongly-typed manner. Furthermore, the
etter performance of STGP-SATA in rate of return and risk indicates its
ffectiveness in achieving stable returns even in neutral markets where

price movements are less pronounced.
This better performance of STGP-SATA in Groups 1 and 3, indicat-

ng its robustness in capturing trends in both highly optimistic and
pessimistic market conditions, is likely due to its ability to balance
sentiment and technical indicators to mitigate losses and capitalise
n short-term opportunities. The strongly-typed GP structure ensures
ogical consistency, allowing the algorithm to better adapt to datasets
ith pronounced trends, whether strongly positive (Group 1) or nega-

ive (Group 3). By maintaining separate branches for TA and SA, the
lgorithm effectively balances insights from both data types, reducing
he risk of dominating the decision-making process.

5.5. Best tree results

Building upon the insights gained from the analysis of market
trend groups and aggregated results, this section evaluates the best-
performing models generated during the 50 independent training runs
for each dataset. While the average results presented in previous sec-
tions offer a broad understanding of the algorithms’ expected perfor-
mance, it is equally important to consider the best outcomes achieved.
In this context, the best tree refers to the model with the highest fitness
score from the training set, selected from the 50 independent runs,
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Table 15
Separated average and median results per metric per market group.

Market Algorithm Sharpe ratio (Avg/Median) Rate of return (Avg/Median) Risk (Avg/Median)

Group 1 (>20%) GP-SATA 3.7/1.12 0.0092/0.004 0.031/0.027
GP-SA 4/2.1 0.012/0.0095 0.025/0.02
GP-TA 3.6/1.46 0.010/0.005 0.021/0.02
STGP-SATA 4.9/2.05 0.010/0.006 0.028/0.025

Group 2 (0%–19.99%) GP-SATA 5/1.65 0.010/0.006 0.02/0.013
GP-SA 4.1/2.5 0.011/0.01 0.028/0.021
GP-TA 3/1.66 0.0053/0.008 0.032/0.023
STGP-SATA 3.3/1.24 0.012/0.011 0.02/0.015

Group 3 (<0%) GP-SATA 2/0.71 0.0042/0.003 0.036/0.031
GP-SA −10/0.68 −0.0031/0 0.027/0.024
GP-TA 1.6/1.09 0.0041/0.0043 0.026/0.022
STGP-SATA 28.7/1.47 0.0074/0.011 0.033/0.03
𝑂
i
a

p

c

r
g

Table 16
Best trees average performance across the 60 datasets.

Algorithm Sharpe ratio Return Risk

GP-SATA 0.45 0.003 0.005
GP-SA 0.47 0.008 0.003
GP-TA 0.063 0.003 0.006
STGP-SATA 0.53 0.007 0.004

and subsequently tested on the unseen test set. This focus on the best-
performing model is particularly significant in the financial sector,
where practitioners aim to maximise profitability by identifying and
deploying the most effective trading strategy. If an investor was using
 GP algorithm in the stock market, they would first run the algorithm
ultiple times and then select the best performing tree (model) for trad-

ng. By focusing on the best trees, we further explore the robustness of
TGP-SATA in achieving better performance under practical conditions.
aving an algorithm with very good performance in terms of best tree is
n important aspect in the financial sector. Table 16, thus, presents the

average performance of the best trees across the 60 datasets for each
P algorithm.

As we can observe, GP-SA has the best return and risk values across
he four GP algorithms. However, the proposed STGP-SATA comes
econd in both metrics, with only a small difference from the values of

GP-SA. More importantly, STGP-SATA has the best Sharpe ratio with a
value of 0.53, while the second-best algorithm (GP-SATA) has a value
of 0.45. As the Sharpe ratio is an aggregate metric that takes into
account both return and risk, the fact that the best tree of STGP-SATA
has the best value makes it a very positive result. It is also worth
noting that practitioners pay particular attention to such aggregate
metrics [74], thus STGP-SATA best tree’s performance is of particular
importance. When it comes to the algorithm’s interpretability, the
average indicators used by the strategies are 14 for both tree branches
(between the 24 combined sentiment and technical analysis indicators),
as opposed to 50 for GP-SATA, 134 for GP-SA, and 61 for GP-TA.

5.6. Algorithmic complexity

Understanding the computational complexity of STGP-SATA is
needed to evaluate its scalability and practical feasibility. This section
provides an analysis of the computational cost associated with our
proposed STGP-SATA algorithm, considering its key parameters and
evolutionary operations. The main parameters of STGP-SATA, as well
as the rest of the GP variants (GP-SATA, GP-SA and GP-TA), are the
population size (𝑝), the number of generations (𝑔), the maximum tree
size (𝑛), the training set size (𝑚), and the elitism chosen children (𝑒).
The maximum depth a tree can achieve is 𝑘, and each function node
produces a binary outcome connecting two terminal nodes. Thus, the
maximum size a tree can potentially achieve is 𝑛 = 2𝑘. The complexity
is broken into the following three parts:
12 
(i) Population initialisation:
The initialisation of an individual has computational complexity

(𝑛), as its maximum size is n. This is repeated p times to make the
nitial population so the complexity of the initialisation step of the
lgorithm is 𝑂(𝑝𝑛).

(ii) Fitness calculation:
The fitness calculation of each individual has to pass through all

the data points of the training set (𝑚). As there are 𝑝 individuals in the
opulation, the combined complexity is 𝑂(𝑝𝑚).

(iii) Operators application:
The operators used by STGP-SATA are mutation, crossover, and

elitism. Mutation has a constant complexity of 𝑂(1) for randomly
changing a node in the tree. Crossover has a complexity of 𝑂(2𝑛) = 𝑂(𝑛)
for STGP-SATA, since it is applied to both branches separately, and it
includes extracting and replacing each of the two subtrees with selected
subtrees that would not violate the validity of the overall tree. These
operators are applied repeatedly until a new generation of less than p
individuals is created (elitism will complete the new generation), thus,
the overall complexity of applying the mutation operator is at most
𝑂(𝑝), while the overall complexity for applying the crossover operator is
𝑂(𝑝𝑛). We note that for the GP-SATA, GP-SA, and GP-TA the crossover
omplexity is again 𝑂(𝑝𝑛).

For elitism we implement an initial sorting of the fitness values
among the individuals of the population, and select the one with the
highest fitness between them. The complexity of this step is 𝑂(𝑒𝑙 𝑜𝑔 𝑒),
however that can be 𝑂(𝑝𝑙 𝑜𝑔 𝑝) in the worst case scenario where the
algorithm sorts the fitness functions of all children and then through
a tournament selects the highest. This brings the overall complexity of
the operators application to 𝑂(𝑝 + 𝑝𝑛 + 𝑝𝑙 𝑜𝑔 𝑝) = 𝑂(𝑝𝑛).

Steps (ii) and (iii) are repeated for each generation, i.e. 𝑔 times.
We can conclude that the total complexity of STGP-SATA is 𝑂(𝑝𝑛 +

𝑔(𝑝𝑚 + 𝑝 + 2𝑝𝑛 + 𝑝𝑙 𝑜𝑔 𝑝)), which is equivalent to 𝑂(𝑝𝑛 + 𝑔 ∗ 𝑝(𝑚 + 𝑛)).

5.7. Interpretability

Genetic programming algorithms are white-box models, offering a
transparency in the decision-making process. In our proposed algo-
ithm, this transparency is achieved through the explicit structure of the
enerated trees, which outlines how inputs are processed to produce

solutions. Such interpretability allows researchers to understand the
reasoning behind each decision, making it easier to identify and cor-
rect errors. This transparency is particularly important in algorithmic
trading, where interpretable decision-making processes is important for
risk management. This can help traders assess whether the algorithm’s
logic aligns with financial principles and market conditions. Further-
more, the algorithms’ interpretability enables real-time adjustments to
changing market trends, making them adaptable and robust in dynamic
financial environments. These properties not only improve trust in the
model but also improve their performance in creating profitable trading
strategies.
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Fig. 2. Tree of STGP-SATA for NETFLIX.

When it comes to the proposed algorithm’s interpretability, the
average indicators used by the strategies are 14 for both tree branches
(selected out of the 24 combined sentiment and technical analysis
indicators), as opposed to 50 for GP-SATA, 134 for GP-SA, and 61 for
GP-TA. That means, that for each function node we can calculate two
terminal nodes, one is the SA/TA indicator and the other is the numeric
threshold. Then we include the root node of each tree, too. Thus, for
STGP-SATA the average total number of nodes is 28, GP-SATA and
GP-TA is 82, and for GP-SA is 142. The significantly lower number of
nodes/indicators used leads to small tree sizes for STGP-SATA, which
makes it easier to be read and interpreted by humans. To illustrate this,
we provide a tree image in Fig. 2, coming from the NETFLIX dataset. As
we can observe, the tree consists of 15 nodes, showing a straightforward
and simple to implement trading strategy. In this specific tree, the root
node (AND) combines the sentiment analysis (AND_SA) and technical
analysis (AND_TA) branches, with each branch using two indicators and
two thresholds. The tree then is connected to the ‘‘If then else’’ (ITE)
statement to give the signal of 1 if TRUE or 0 if FALSE. This separation
of data types enhances explainability by preventing type imbalance and
allowing for actionable insights.

5.8. Non-GP benchmarks

5.8.1. STGP-SATA compared to the algorithmic benchmarks
For further algorithmic benchmarks aside of the GP variants, the

built-in models of scikit-learn library are used in Python for the MLP,
SVM, XGBoost, and LSTM algorithms.

As we can observe from Table 17, the average values of MLP on
the 60 companies for Sharpe ratio was 0.26, for rate of return 0.009
and for risk 0.044. This comes in contrast with the values of the GP,
which are significantly higher for Sharpe ratio and lower for risk. When
performing the KS statistical test, MLP was statistically different from
STGP-SATA with a 𝑝-value of 1𝑒 − 08 for Sharpe ratio and 0.00011
for risk. On the other hand, the distribution of the returns for the two
algorithms was not statistically different with a 𝑝-value of 0.26 at the
𝑎 = 0.05 statistical level.

The same results continued on to the SVM, where the average value
for Sharpe ratio was 0.25, for rate of return 0.009 and for risk 0.045,
again seeing a big differences between rate of Sharpe ratio and risk.
The KS tests, also, showed SVM being statistically different at a 𝑝-value
of 3.65𝑒 − 08 for Sharpe ratio and 4.75𝑒 − 05 for risk; while it was not
statistically different regarding rate of return, since the 𝑝-value was 0.5.
13 
Table 17
Comparison of average values for STGP-SATA, MLP, SVM, XGBoost, and LSTM.

Algorithm Sharpe ratio Rate of return Risk

MLP 0.26 0.009 0.044
SVM 0.25 0.009 0.045
XGBoost 0.26 0.009 0.044
LSTM 0.45 0.0035 0.044
STGP-SATA 10.79 0.0105 0.027

For XGBoost, the average value for Sharpe ratio was higher, at 0.26,
for rate of return 0.009 and for risk 0.044. The KS tests showed XGBoost
being statistically different at a 𝑝-value of 3.15𝑒− 9 for Sharpe ratio and
4.75𝑒 − 0.5 for risk, while the difference is not statistically different for
rate of return with a 𝑝-value of 0.37.

Finally, for LSTM, the average value for Sharpe ratio was 0.45, for
rate of return 0.0035 and for risk 0.044. The KS tests showed LSTM
being statistically different at a 𝑝-value of 1.3𝑒− 11 for Sharpe ratio and
0.07 for rate of return, and 4.75𝑒 − 5 for risk.

Based on the metrics and the statistical tests, the algorithmic bench-
marks are outperformed from STGP-SATA in Sharpe ratio and risk.
This shows the disadvantage of these two algorithms compared to GP
algorithms when it comes to algorithmic trading and creating strategies
using metrics that consider both the returns and the risk.

5.8.2. STGP-SATA compared to Buy and Hold
In this section, we will compare the STGP-SATA algorithm to the

Buy and Hold (BnH) strategy. To make a fair comparison between the
BnH financial strategy and the GP algorithm we run the STGP-SATA
using the cumulative returns as its fitness function, which measure the
total profit or loss over a given period. The reason we focus on the
cumulative returns and not using the Sharpe ratio as fitness function is
because BnH involves just one trade, meaning we buy one unit of stock
on the first day and we sell it on the last day. Thus, it does not take into
account the rate of return and risk metrics involved in the calculation
of the Sharpe ratio.

When comparing STGP-SATA and BnH, the GP algorithm has an av-
erage cumulative returns of 0.40 and a median of 0.26, while BnH has
an average of 0.16 and a median of 0.169. The Kolmogorov–Smirnov
test confirms that the differences in their values are statistically signif-
icant at the 5% level, with a 𝑝-value of 0.04.

5.8.3. STGP-SATA compared to a financial trading strategy
Wanting to evaluate the results in the three main financial metrics,

and not only the cumulative returns, we compare the STGP-SATA
algorithm to the TS𝑑 ,𝑟 financial strategy.

As mentioned in Sections 3.3 and 4.2, through the TS𝑑 ,𝑟 we buy
on the first day of every trading period and we sell when the price
increases by more than 𝑟, or after 𝑑 days have passed. The variables 𝑟
and 𝑑 vary from company to company and they are the same for all
algorithms, as explained in Section 4.3.

When comparing STGP-SATA and TS𝑑 ,𝑟, the first thing we observe
is that the latter does on average many more trades (230), while
the former performs only 10. This is expected, because STGP-SATA
is able to focus on the most profitable and low-risk opportunities,
while choosing not to trade at all in all other cases. As a result, STGP-
SATA has better values across all three metrics, as it can be seen from
Table 18. The Kolmogorov–Smirnov test confirms that the differences
in Sharpe ratio and return are statistically significant, with p-values of
2.25𝑒− 10 (Sharpe ratio), and 1.02𝑒− 05 (return). The 𝑝-value for risk is
0.051, thus marginally non-significant at the 5% level.
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Table 18
Average values of STGP-SATA and TS𝑑 , 𝑟.

Algorithm/Metric Sharpe ratio Return Risk

TS𝑑 , 𝑟 0.15 0.004 0.048
STGP-SATA 10.8 0.01 0.027

5.9. Summary of findings

In conclusion, as seen in Tables 6–18 and focusing on the find-
ngs from STGP-SATA, the results have been summarised in 2 cate-
ories: first on GP variants’ results and, second, on the results of other
enchmarks.

When comparing the GP variants with each other, it is evident that:

• The strongly-typed GP algorithm STGP-SATA statistically outper-
forms the remaining GP variants in Sharpe ratio results, while
it has the highest rate of return and similar low risk to GP-TA
and GP-SA. Furthermore, it has the highest median and maximum
values, while it produces the lowest minimum value.

• On the other hand, the simple combination algorithm GP-SATA
comes second after STGP-SATA in Sharpe ratio and rate of return,
while it is being statistically outperformed for the first financial
metric. Also, although GP-SATA has a similarly low risk to the
other algorithms, it comes last.

• The algorithm that uses only technical analysis indicators in its
terminal set, GP-TA, is being outperformed by STGP-SATA in
Sharpe ratio and rate of return, while it outperforms the other
algorithms in terms of risk.

• GP-SA, the GP algorithm with sentiment analysis data in its
terminal set, has the lowest Sharpe ratio and rate of return, while
its risk is similar to STGP-SATA and GP-TA. The median values of
GP-SA come second, denoting its financial advantages in the data
types combinations.

• Concluding, STGP-SATA is the most robust of the four GP vari-
ants. It is essential to stress that combining the TA and SA
indicators under a strongly-typed GP, which ensures that effective
search takes place in both the TA and SA search space, is essential
in creating financially more advantageous trading strategies; in
contrast with the simple combination of the two data types under
GP-SATA.

Regarding the comparison of STGP-SATA to the non-GP bench-
arks, we observe the following:

• STGP-SATA performs better than the four algorithmic bench-
marks. Although the algorithms have similar rate of returns, the
produced risk of STGP-SATA is significantly less than that of MLP,
SVM, XGBoost, and LSTM. The higher risk of the four algorithmic
benchmarks is also reflected by their low Sharpe ratio values,
which fall below 0.45.

• Algorithm STGP-SATA is more financially advantageous com-
pared to the trading strategies BnH and TS𝑑 ,𝑟, and it is able to
statistically outperform the former in terms of cumulative returns,
and the later in terms of Share ratio and rate of return.

6. Conclusion

In conclusion, the aim of our research was to investigate and
ompare the performance of trading strategies created by different GP

algorithms that combine technical and sentiment analysis indicators. To
achieve that, a novel strongly-typed GP was introduced, which ensured
he produced trees utilise both analysis types in different tree branches.

Our algorithm is compared to three other GP algorithms and other non-
GP benchmarks against three different metrics, i.e. Sharpe ratio, returns

and risk. As observed from the results, our proposed GP is competitive

14 
and statistically outperforms the other algorithms in many cases.
The importance of combining technical and sentiment indicators,

which is not usually occurring in the previous studies, is evident
from our findings. Combining the indicators can enhance the models’
nowledge and create financially more advantageous trading strategies.
owever, it is essential to note that the way the two indicators’ types
re combined is, also, important. Based on our analysis, it is not
rofitable enough to simply combine the different types of indicators,

as GP-SATA does, and a strongly-typed architecture is essential towards
achieving an improved performance. Due to its design, STGP-SATA
an create more diverse and efficient trading strategies, leading to

better financial performance. This is because it ensures a balanced
and integrated use of both technical and sentiment indicators, thus,
balancing and taking advantage of both indicator types’ advantages.
Technical indicators can identify price trends and patterns, while sen-
timent indicators can capture market reactions to news and events.
Furthermore, by enforcing type constraints, STGP ensures semantically
valid and interpretable solutions, it improves trading performance but
also enhances the practical applicability of the generated strategies. By
combining the two, we can create more comprehensive models that are
better in complex/extreme market conditions (as seen from Table 15).
urthermore, the algorithm is allowed a wider variety of combinations

within each type and a greater diversity of trading strategies, as the
algorithm is not constrained to focus on one indicator type.

While our current methodology shows promising results, we recog-
nise the importance of continuous improvement. By incorporating more
retrained language models, such as BERT [75], we believe we can

further enhance the robustness of our approach. Meanwhile, we plan
to expand our data sources to include articles from financial forums
and columns, to offer a more diverse and abundant information. While
this study focused on price-based technical indicators due to their
popularity in the literature, we acknowledge the importance of includ-
ing volume and liquidity-based indicators such as Volume Weighted
Average Price (VWAP), On-Balance Volume (OBV), and Money Flow
Index (MFI). These indicators will allow for a more comprehensive
analysis of market trends and trading behaviour, which matches with
our plans for future expansion of sentiment and technical indicators.

Running the algorithm live introduces complexities such as execu-
ion speed, slippage, and interactions with other market participants’

algorithms, which can unpredictably impact performance. Addressing
hese challenges could involve solutions like co-location, dynamic order
outing, and robustness testing. Moreover, an adaptive algorithm capa-
le of dynamic retraining in response to changing market conditions
resents a promising direction. The algorithm will be able to periodi-
ally update its models based on more indicators that will be available
o it if each strategy fails to produce solutions that meet/exceed prede-
ined performance thresholds, such as achieving a Sharpe ratio above
or a minimum annual return of 0.10, while maintaining low levels of

risk. Furthermore, further research will include extracting more infor-
mation from the individual indicator types by utilising the individual
best models of each data type and creating a brand new tree which
will be added in the population, again. Moreover, future research will
nclude data derived from fundamental analysis, to incorporate more
nformation in the models. The above are meant to extend the abilities
f the STGP-SATA algorithm to create more practical, scalable, and
xplainable solutions in algorithmic trading.
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