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This paper formalizes observations made under agent-based artificial stock market mod-
els into a concrete hypothesis, which is called the Dinosaur Hypothesis. This hypothesis
states that the behavior of financial markets constantly changes and that the trading

strategies in a market need to continuously co-evolve with it in order to remain effec-
tive. After formalizing the hypothesis, we suggest a testing methodology and run tests
under 10 international financial markets. Our tests are based on a framework that we
recently developed, which used Genetic Programming as a rule inference engine, and

Self-Organizing Maps as a clustering machine for the above rules. However, an important
assumption of that study was that maps among different periods were directly compara-
ble with each other. In order to allow this to happen, we had to keep the same clusters
throughout the different time periods of our experiments. Nevertheless, this assumption

could be considered as strict or even unrealistic. In this paper, we relax this assumption.
This makes our model more realistic. In addition, this allows us to investigate in depth
the dynamics of market behavior and test for the plausibility of the Dinosaur Hypothesis.

The results show that indeed markets’ behavior constantly changes. As a consequence,
strategies need to continuously co-evolve with the market; if they do not, they become
obsolete or dinosaurs.

Keywords: Genetic Programming; Self-Organizing Feature Map, Market Microstructure;

Market Behavior Dynamics; Dinosaur Hypothesis

1



November 1, 2011 11:30 WSPC/INSTRUCTION FILE
ACS˙KampChenTsang˙CR

2 M. Kampouridis, S.-H. Chen and E. Tsang

1. Introduction

From a mesoscopic viewpoint, the market dynamics can be regarded as the collective
interacting behavior of a number of types (clusters) of agents. The question is
whether these types or clusters remain fixed, and what will change over time is
simply the fraction of these types, or, alternatively, both the types and fraction are
also subject to change. This issue is motivated by the recent literature on agent-
based financial markets, specifically, the co-existence of the two classes of models;
one is the H-type modelsa and the other is the SFIb or SFI-like models [2].

For the former class, a typical model is the fundamentalist-chartist model. In
this model, there are only two types of agents, fundamentalists and chartists, in
the market, and only the fractions of these two types of agents change over time.
On the other hand, their behavioral specification remains unchanged. For the latter
case, the models are not built upon this constancy: types are not given. Instead, the
evolutionary force works down to each individual and all the way up to their types
and clusters. Similar in vein to Alfred Marshall’s famous quotation, these models
deal with the agents whose nature and constituents as well as the outer form are
constantly changing. [16]

Brian Arthur, a pioneer of the SFI artificial markets, used dinosaurs as a
metaphor to describe this constantly-changing property [1]. More specifically,
Arthur stated:

“We find no evidence that the market behavior ever settles down; the population
of predictors continually co-evolves. One way to test this is to take agents out of
the system and inject them in again later on. If market behavior is stationary they
should be able to do as well in the future as they are doing today. But we find that
when we “freeze” a successful agent’s predictors early on and inject the agent into the
system much later, the formerly successful agent is now a dinosaur. His predictions
are unadapted and perform poorly. The system has changed” (Ibid, p.24).

Similar observations were also made by Chen and Yeh in their artificial stock
market framework [4]. In addition, Chen and Yeh found that a dinosaur’s perfor-
mance decreases monotonically. Lastly, Raberto et al. [19] also showed that within
their artificial financial market framework, the dominance of a particular trading
strategy is not fixed, but depends on the particular condition of the market.

The above motivates us to investigate whether these observations can also hold
in the ‘real’ world, under empirical datasets.c In order to do this, we use the frame-
work from a previous work [3], where we developed an approach to empirically
examine the dynamics of market fractions of different types of agents. That study
used Genetic Programming (GP) [13, 17] as a rule-inference engine to find out the
behavioral rules of agents, and then used Self-Organizing Maps (SOM) [12] to clus-

aH-type models refer to the models that have H types of fixed, and pre-specified types of agents.

For instance, in a 2-type model, there would be 2 types of agents, like fundamentals and chartists.
bSanta Fe Institute
cBoth Arthur’s and Chen and Yeh’s works were under an artificial stock market framework.
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ter these agents into types of trading strategies. Once after the clusters and the
associated map were obtained from period to period, the dynamics of market frac-
tions were studied based on a time series of these maps. For example, we studied two
main properties motivated by the Market Fraction Hypothesis [3]: the short-term
horizon and the long-term frequency.

However, that study rested upon an important assumption, i.e., the maps derived
from each period were comparable with each other. This comparability assumption
itself required that the types (clusters), as well as their operational specification,
would not change over time. If this were not the case, then the subsequent study
would be questioned. This was mainly due to one technical step in our analysis
called translation. The purpose of translation was to place the behavior of agents
observed in one period in a different period and to recluster it for the further cross-
period comparison. We could not meaningfully have done this without something
like topological equivalence, which could not be sustained without the constancy
of the types. However, this assumption can be considered as strict and unrealistic.
Strategy types do not necessarily remain the same over time. For instance, if a
chartist strategy type exists in time t, it is not certain it will also exist in t + 1.
If market conditions change dramatically, the agents might consider other strategy
types as more effective and choose them. The chartist strategy would then stop
existing.

In this paper, we are interested in extending our previous work by investigating
the market microstructure when both the types and the fractions of strategies are
subject to change. Thus, we again employ GP as a rule inference engine and SOM
as a clustering machine, with the only difference being that we relax the above
assumption of static clusters over time. This makes our model more realistic and
allows us to test the existence of the constantly-changing property in the behavior
of financial markets that Arthur first observed [1], or in other words what we call
the Dinosaur Hypothesis (DH).

In addition, another contribution of this paper is the attempt to formalize the
DH, by presenting its main constituents and by suggesting a testing methodology.
We run tests for 10 international markets and hence provide a general examination
of the plausibility of the DH. One goal of our empirical study is to use the DH
as a benchmark and examine how well it describes the empirical results which we
observe from the various markets. More importantly, these tests will allow us to
observe the dynamics of market behavior and investigate how they change in the
long run.

The rest of this paper is organized as follows: Section 2 elaborates on the DH.
Section 3 presents the basic tools used for our tests, namely Genetic Programming
(GP) and Self-Organizing Feature Maps (SOM). Section 4 presents the experimental
designs. Section 5 addresses the methodology employed to test the DH and explains
the technical approaches needed to be taken to facilitate the tests of the DH. Section
6 presents the test results. First it presents the results over a single run for a single
dataset. Then it summarizes the results over 10 runs for this single dataset and it
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finally presents summary results for all 10 datasets. Section 7 concludes this paper
and also discusses possible directions for further research.

2. The Dinosaur Hypothesis

The following statements form the basic constituents of the DH and are based on
Arthur’s work [1]:

(1) The market behavior never settles down
(2) The population of predictors that exists in the market continuously co-evolves

with it

These two statements indicate the non-stationary nature of financial markets
and imply that strategies cannot remain effective unless they continuously co-evolve
with the market; if they do not, they become obsolete or dinosaurs.

The second statement also informs us that a population of predictors exists
in a market. According to Arthur [1], an agent’s basic problem is to profit in the
next period, and the only way to do that is by predicting the direction of the
market. Thus, predictors are models that map the patterns which are formed by
the current price set into a forecast for the next period’s price. In other words,
agents in the market use different predictors to forecast future price movements. In
our framework, we refer to predictors as ‘trading strategies’.

However, since, as we have already said, the above observations were made
under an artificial stock market framework, we are interested in testing them against
empirical data. We will first use GP to create trading rules and then SOM to cluster
them. The next section presents these two tools and also explains our motivation
for using them.

Finally, in order to make the reading of this paper more comprehensive, we
present two definitions, inspired by Arthur’s work; Dinosaur, which refers to a
training strategy that has performed well in some periods, but then ceased per-
forming well in the periods that followed. This means that this strategy may or
may not become effective again. If it does, then it is called a returning dinosaur.

3. Tools

This section presents the two main tools used in order to test the DH. These two
tools are GP and SOM. Sections 3.1 and 3.2 first present the motivation behind the
choice of these two tools, and then present the two tools, GP and SOM, respectively.

3.1. Genetic Programming (GP)

3.1.1. Motivation for using GP

In this work, we assume that traders’ behavior, including price expectations and
trading strategies, is either not observable or not available. Instead, their behavioral
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rules have to be estimated by the observable market price. Using macro data to
estimate micro behavior is not new, as many H-type empirical agent-based models
have already performed such estimations [2]. However, such estimations are based
on very strict assumptions upon which a formal econometric model can be built.
Since we no longer keep these assumptions, an alternative must be developed, and
in this paper we recommend Genetic Programming (GP).

The use of GP is motivated by considering the market as an evolutionary and
selective process.d In this process, traders with different behavioral rules participate
in the markets. Those behavioral rules which help traders gain lucrative profits will
attract more traders to imitate, and rules which result in losses will attract fewer
traders. Genetic programming is a formalization which does not rest upon any pre-
specified class of behavioral rules. Instead, in GP, a population of behavioral rules is
randomly initiated, and the survival-of-the-fittest principle drives the entire popula-
tion to become fitter and fitter in relation to the environment. In other words, given
the non-trivial financial incentive from trading, traders are aggressively searching
for the most profitable trading rules. Therefore, the rules that are outperformed will
be replaced, and only those very competitive rules will be sustained in this highly
competitive search process.e

Hence, even though we are not informed of the behavioral rules followed by
traders at any specific time horizon, GP can help us infer what these rules are
approximately by simulating the evolution of the microstructure of the market.
Without imposing tight restrictions on the inferred behavioral rules, GP enables us
to create more realistic, and possibly more complex behavioral rules.f

For the experiments in this paper, we are using a GP algorithm called ‘simple
GP’. The next subsection presents this algorithm.

3.1.2. Simple GP presentation

Our simple GP is inspired by a financial forecasting tool, EDDIE [21–23, 11], which
applies genetic programming to evolve a population of financial advisors, or, alter-
natively, a population of market-timing strategies, which guide investors on when
to buy or hold. These market-timing strategies are formulated as decision trees,
which, when combined with the use of GP, are referred to as Genetic Decision
Trees (GDTs). Our GP uses indicators commonly used in technical analysis: Mov-
ing Average (MA), Trader Break Out (TBR), Filter (FLR), Volatility (Vol), Mo-

dSee [14, 15] for his eloquent presentation of the Adaptive Market Hypothesis.
eIt does not necessarily mean that the types of traders surviving must be smart and sophisticated.

They can be dumb, naive, randomly behaved or zero-intelligent. Obviously, the notion of rationality
or bounded rationality applying here is ecological [20, 9]
f [8] provides the first illustration of using genetic programming to infer the behavioral rules of
human agents in the context of ultimatum game experiments. Similarly, [10] uses genetic algorithms

to infer behavioral rules of agents from market data
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mentum (Mom), and Momentum Moving Average (MomMA).g Each indicator has
two different periods, a short- and a long-term one, 12 and 50 days respectively.

Each of these market-timing strategies (GDTs) is syntactically (grammatically)
produced by the Backus Naur Form (BNF). Figure 1 presents the BNF grammar of
the GP. As we can see, the root of the tree is an If-Then-Else statement. Then the
first branch is a Boolean (testing whether a technical indicator is greater than/less
than/equal to a value). The ‘Then’ and ‘Else’ branches can be a new GDT, or a
decision, to buy or not-to-buy (denoted by 1 and 0). Thus, each individual in the
population is a GDT and its recommendation is to buy (1) or not-buy (0). Figure
2 presents a sample GDT generated by the GP.

<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision

<Condition> ::= <Condition> “And” <Condition> |
<Condition> “Or” <Condition> |
“Not” <Condition> |
Variable <RelationOperation> Threshold

<Variable> ::= MA 12 | MA 50 | TBR 12 | TBR 50 | FLR 12 |
FLR 50 | Vol 12 | Vol 50 | Mom 12 | Mom 50 |
MomMA 12 | MomMA 50

<RelationOperation> ::= “>” | “<” | “=”
Decision is an integer, 1 or 0 (to-buy or not-to-buy)
Threshold is a real number

Fig. 1. The Backus Normal Form of the GP

Fig. 2. Sample GDT generated by the GP.

gWe use these indicators because they have been proved to be quite useful in previous works like

[11]
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Given a recommendation made by a GDT, we can construct a confusion matrix
[18] and report whereas this recommendation was a True Positive (TP), a True
Negative (TN), a False Positive (FP), or a False Negative (FN). Based on these
classifications, we can then record the rate of correct recommendations made by
the GP, the rate of the to-buy opportunities that existed in the market but the GP
falsely identified as not-to-buy, and the rate of the to-buy recommendations that
were falsely identified as to-buy. These three rates are defined as Rate of Correct-
ness (RC), Rate of Missing Chances (RMC), and Rate of Failure (RF), respectively.
Their formulas are presented below, in Equations (1)-(3):

Rate of Correctness

RC =
TP + TN

TP + TN + FP + FN
(1)

Rate of Missing Chances

RMC =
FN

FN + TP
(2)

Rate of Failure

RF =
FP

FP + TP
(3)

The above metrics combined give the GP’s fitness function:

ff = w1 ∗ RC − w2 ∗ RMC − w3 ∗ RF (4)

where w1, w2 and w3 are the weights for RC, RMC and RF, respectively, and are
given in order to reflect the preferences of investors. For instance, a conservative
investor would want to avoid failure; thus a higher weight for RF should be used.
For our experiments, we chose to include GDTs that mainly focus on correctness
and reduced failure. Thus these weights have been set to 1, 1

6 and 1
2 respectively,

and are given in this way in order to reflect the importance of each performance
measure for our predictions.

Given a set of historical data and the fitness function, GP is then applied to
evolve these market-timing strategies in a standard way. After evolving a num-
ber of generations (50 in this paper), what stands (survives) at the end (the last
generation) is, presumably, a population of financial agents whose market-timing
strategies are financially rather successful. We therefore use these strategies to infer
what those competitive strategies may be in the period coinciding with the data
period.

Finally, we should again remind the reader that “GDTs”, in our framework, is a
term equivalent to “predictors” in Arthur’s work. However, because a GDT makes
recommendations to an agent of whether to buy or not-to-buy, they could also be
seen as trading strategies. GDTs and trading strategies are thus two terms that are
often used interchangeably in this work.
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3.2. Self-Organizing Feature Maps (SOM)

3.2.1. Motivation for using SOM

Once a population of rules is inferred from GP, it is desirable to cluster them
based on a chosen similarity criterion so as to provide a concise representation
of the microstructure. The similarity criterion which we choose is based on the
observed trading behavior.h Based on this criterion, two rules are similar if they are
observationally equivalent or similar, or, alternatively put, they are similar if they
generate the same or similar market-timing behavior.i

Given the criterion above, the behavior of each trading rule can be represented
by its series of market timing decisions over the entire trading horizon, for example,
6 months. Therefore, if, as we said earlier, we denote the decision “buy” by “1” and
“not-buy” by “0”, then the behavior of each rule is a binary vector. The dimension-
ality of these vectors is then determined by the length of the trading horizon. For
example, if the trading horizon is 125 days long, then the dimension of the market
timing vector is 125. Once each trading rule is concretized into its market timing
vector, we can then easily cluster these rules by applying Kohonen’s Self-Organizing
Maps to the associated clusters.

The main advantage of SOMs over other clustering techniques such as K-means
is that the former can present the results in a visualizable manner. In this way,
we can not only identify these types of traders, but also locate their 2-dimensional
position on a map, i.e., a distribution of traders over a map.

Let us now present SOM in detail.

3.2.2. SOM presentation

SOM is a type of artificial neural network that is trained using unsupervised learn-
ing, in order to return a low-dimensional representation of the input layer, which
in our case is the recommendations of the GDTs. Associated with each cluster is
a weight vector, which has the same dimensions as the input data. During this
procedure the centroid of each cluster (hence the membership of each instance)
is dynamically adjusted via a competitive learning process. Eventually, the whole
population of GDT recommendations is assigned to different clusters and this is
how we classify the trading strategies. Thus, the SOM output will be a number of
neurons (or clusters) in a two-dimensional lattice, presenting the input data in an
organized way, so that the similar strategies are clustered together.

hOther clustering criteria could take place, too, such as risk averseness or statistical significance
of rules’ performance in out-of-sample data. However, in this paper we are interested in focusing

on the behavioral aspects of the rules, since we are investigating the behavior of financial markets.
We leave it as a future work to examine if different clustering criteria can affect our results.
iOne might question the above similarity criterion, since very different rules might be able to
produce the same signals. However, this does not pose a problem in this work, since we are
interested in the behavior of the market (and thus the rules’ behavior). We are not interested in

the semantics aspect of the rules.
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Fig. 3. 3 by 3 Self-Organizing Feature Map of the first semester of the year 1991 for STI.

For our experiments, we use MathWorks’ Neural Network toolboxj, which is
built-in the MATLAB environment. Figure 3 presents the results after running
3 × 3 SOMk for a population of 500 individuals for the daily STI (Singapore) data
for the first semester of 1991.l As we can observe in this case, there are two strategy
types that occupy a big fraction of the population, whereas the rest of the strategy
types have significantly fewer members.

This concludes the presentation of GP and SOM, which are the two techniques
we use in our framework. Let us continue in the next section by presenting the
experimental designs.

jhttp : //www.mathworks.com/access/helpdesk/help/toolbox/nnet/self or4.html
kThe number of clusters at this point was set arbitrarily. Later in this work we examine the
sensitivity of the results if we tune this number.
lAvailable from http://finance.yahoo.com
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Fig. 4. Daily Closing Price for STI:1991-2007

4. Experimental Designs

This section summarizes the experimental designs. The experiments were conducted
for a period of 17 years (1991-2007) and the data was taken from the daily closing
prices of 10 international market indices. These 10 markets are: CAC 40 (France),
DJIA (USA), FTSE 100 (UK), HSI (Hong Kong), NASDAQ (USA), NIKEI 225
(Japan), NYSE (USA), S&P 500 (USA), STI (Singapore) and TAIEX (Taiwan).
For each of these markets, we run each experiment 10 times. To make it easier for
the reader, we first present the testing methodology and results for a single run of
the STI dataset. Figure 4 presents the daily closing price of STI. We then proceed
by presenting summary results over the 10 runs for all datasets.

Each year was split into 2 semesters (January-June, July-December), so in total,
out of the 17 years, we have 34 periods.m The GP was therefore implemented 34
times. Table 1 presents the GP parameters for our experiments. The GP parameters
for our experiments are the ones used by Koza [13]. Only the tournament size has
been lowered, because we were observing premature convergence. Other than that,
the results seem to be insensitive to these parameters.

It is also important to say that the GP was only used for creating and evolving
the trading strategies. No validation or testing took place, as is the case in the
traditional GP approach. The reason for this is because we were not using the GP

mAt this point the length of the period was chosen arbitrarily as 6 months. We leave it to a future

research to examine if and how this time horizon can affect our results.
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Table 1. GP Parameters.

GP Parameters

Max Initial Depth 6

Max Depth 17
Generations 50

Population size 500
Tournament size 2

Reproduction probability 0.1
Crossover probability 0.9
Mutation probability 0.01

{w1, w2, w3} {1, 1
6
, 1

2
}

for forecasting purposes; instead, as we have already said we were interested in
usng the GP as a rule inference engine so that it can help us to see what were the
strongest species during a certain period. To be more specific, the GP was used for
each of the 34 periods and each time created and evolved trading strategies. After
the evolution of the strategies under a specific period, these strategies (GDTs)
were not tested against another set. This approach is consistent with Andrew Lo’s
Adaptive Market Hypothesis [14, 15], as it states that the heuristics of an old
environment are not necessarily suited to the new one. Lo refers to this possible
situation as “maladaptive”. He also uses the example of the flopping of a fish for
a better understanding of behaviors under different environments: on dry land the
flopping might seem meaningless, but under water, it is the flopping that protects
the fish from its enemies. Furthermore, our no-testing approach is also consistent
with the well-tested Overreaction Hypothesis [5, 6], which essentially states that
winner portfolios are outperformed by loser portfolios during the next period.

Finally, as we mentioned earlier we used 3×3 SOM. Therefore, we obtained a
total of 34 SOMs (one per period), with 9 clusters each. In other words, in every
period the GDTs were placed in 1 of the 9 clusters (i.e., the types of the trading
strategies) of that SOM. From this point on, whenever we use the term ‘trading
strategy type’ we will be referring to 1 of the 9 clusters and the GDTs will be
members of any of these 9 clusters.

5. Testing Methodology

After having presented the necessary tools and the experimental designs, we can
now continue with presenting the testing methodology. But before we do this, let
us first present some frequently used terms:

• Base period, is the period during which we create and evolve GDTs that are
going to be used for testing the DH

• Future period(s), is a period or periods which follow the base period (in chrono-
logical order)
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Furthermore, as we said earlier, our data are divided into semesters. Thus the
first semester of a year will be denoted with an ‘a’ at the end (e.g., 1991a), and
the second semester of a year will be denoted with a ‘b’ at the end (e.g., 1991b).
Let us now present the tests and our suggested testing methodology. Each of the
following subsections presents each one of the suggested tests, followed by its testing
methodology.

5.1. Dissatisfaction test

In order to investigate whether the behavior of markets is non-stationary, we do
the following. After generating and evolving GDTs for each one of the 34 periods,
and clustering them into strategy types via SOM, we recluster the GDTs of each
base period to the maps of their future periods.n If the Dinosaur Hypothesis holds,
we should observe that GDTs (strategies) from past periods have more and more
difficulties fitting into the environments of the future periods. This is because these
strategies have remained unadapted to the new environments and have thus turned
into dinosaurs.

Let us give an example, and assume that there is a strategy type (cluster) in
time t, which represents ‘fundamentalists’; then, all GDTs which follow a funda-
mental strategy are placed in that cluster. When we then take the GDTs from that
period (base period) and recluster them to strategy types of future periods, it is
not guaranteed that there will again be a cluster that represents fundamentalists. If
market behavior constantly changes, there is a possibility that this type of strategy
does not exist any more. Thus, the GDTs find themselves unadapted to the new
environment (clusters) and have to choose another cluster, which represents them
as closely as possible. This cluster will be the one that has the centroid with the
smallest Euclidean distance from the market-timing vectors of these GDTs.o Of
course, since now the SOM of the future period is formed by different clusters, the
GDTs might not fit as well as they did in the base period. In order to measure this
‘unfitting’, we use a ‘dissatisfaction rate’, i.e., how dissatisfied these GDTs will be
when placed into a future period’s cluster that does not represent their strategy. If
the market is non-stationary, the GDTs’ dissatisfaction rate will be high, as a result
of the changes that took place in the market. The dissatisfaction rate is defined
as the Euclidean distance of a GDT’s market-timing vector to the centroid of the
cluster in which it is placed, after the reclustering procedure.

In addition, motivated by Chen and Yeh’s stricter test results [4], who found
that a dinosaur’s performance decreases monotonically, we want to investigate if
this also applies to our empirical datasets. Hence, under the Dinosaur Hypothesis

nThe process of reclustering is explained in the next section.
oOne may wonder if the choice of the Euclidean distance as a distance metric, when the vectors
of the GDTs are binary, is an appropriate one. However, this does not pose a problem, because
the vectors of the clusters’ centroids are real valued and thus calculations by using the euclidean

distance are meaningful.
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the following two statements should hold:

The average dissatisfaction rate of the population of trading strategies (GDTs) from
future periods should

(1) Not be less than or equal to the dissatisfaction of the base period (Test 1)
(2) Increase continuously, as the testing period moves further away from the base

period (Test 2)

As we can see, we have a population of GDTs and we then monitor their future
performance in terms of their dissatisfaction rate, in accordance with Arthur’s and
Chen and Yeh’s experiments. Test 1 is basically the procedure we have just described
above and is inspired by Arthur’s work [1]. Test 2 is inspired by the observation that
Chen and Yeh made [4], regarding the monotonic decrease of a GDT’s performance.
However, in our framework we do not require that changes in the dissatisfaction rate
are monotonic. The reason for this is because when Chen and Yeh tested for the
Dinosaur Hypothesis (they did not explicitly use this term), they only tested it
over a period-window of 20 days, which is relatively short, and hence makes it
easier to observe an example of monotonically decreasing behavior. Thus, requiring
that the GDTs’ dissatisfaction rate increases monotonically in the long run would
be very strict, and indeed hard to achieve. For that reason, Test 2 requires that
the dissatisfaction changes are continuous, but not monotonic. It should also be
mentioned that we are interested in qualitative results, meaning that we want to
see how close the real market behaves in comparison with what is described by the
DH.

Let us now explain the process of reclustering.

5.2. Reclustering process

Let us give an example when 1991a is the base period. Each evolved GDT would
first be moved to the next period, 1991b, and reclustered into one of the clusters
of that period. In order to ‘decide’ which cluster to choose, the GDT compares the
Euclidean distance of its market-timing vector with each cluster; it is then placed
into the cluster with the smallest Euclidean distance. The same procedure follows
for all GDTs of the population. At the end, the population of evolved GDTs from
the base period of 1991a has been reclustered into the clusters of period 1991b. We
also follow the same procedure with all future periods. This means that the GDTs
from 1991a are also reclustered in 1992a, 1992b, ..., 2007b.

The same process is followed for all other base periods (i.e., 1991b, 1992a, ...,
2007a). This means that when 1991b is the base period, the GDTs that were created
and evolved during 1991b will be reclustered into the SOMs of all future periods.
After 1991b, 1992a takes over as the base period and the same procedure takes place
again. We do this until 2007a. We obviously cannot do this for 2007b, since there
are no periods available after this year. The reader should also bear in mind that
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we only apply the evolved GDTs to the SOMs of future periods; for instance, when
the base period is 2000a, we do not apply the evolved GDTs backwards in time,
only forwards. We are not interested in looking at what would happen in the past;
we are only interested to observe how the dissatisfaction of the GDTs is affected in
the future.

Once the process of reclustering is complete, we calculate the dissatisfaction
rate of each GDT in the population. Next, we calculate the population’s average
dissatisfaction rate. We do the same for all 34 periods. Given a base period, the
population average dissatisfaction of all periods is normalized by dividing those
population average dissatisfaction rates by the population average dissatisfaction
rate in the base period. Hence, each base period has its normalized average dissatis-
faction rate equal to 1. In order to prove that the market is non-stationary, we need
to show that the normalized average dissatisfaction rate of the GDTs increases in
the future periods, and never returns to its initial value of 1, which was during the
base period. If, on the other hand, this rate reaches 1 or below, this is an indication
of a cyclic market behavior, since the GDTs have found the same conditions with
the base period, and as a result feel as ‘satisfied’ as before. In this case, we refer to
these GDTs as returning dinosaurs.

Therefore, if the DH holds, we should make the following two observations: first,
that the normalized average dissatisfaction rate in future periods does not drop to
1 or lower (Test 1). Second, we should observe that this rate increases continuously
over time (Test 2).

6. Results

This section presents the experimental results. In order to make it easier for the
reader, we first start by presenting the results of a single dataset (STI) in Section
6.1. We then continue by presenting the summary results for all 10 datasets in
Section 6.2.

6.1. Results of a single run of a single dataset

Because of the fact that this test is connected with SOM, we are also experimenting
with different numbers of clusters (i.e., different SOM dimensions). This happens
because we want to see if our results are sensitive to the number of clusters that can
exist in a market. Thus, we first begin by presenting the results for the 3x3 SOM
(9 clusters), and then present the results under different SOM dimensions.

6.1.1. Results under 3×3 SOM (9 clusters)

As Test 1 states, we want to make sure that the population dissatisfaction from
future periods will not return to the range of dissatisfaction of the base period. In
other words, we want to make sure that there are no returning dinosaurs. Then,
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Test 2 requires that we examine whether this population dissatisfaction from future
periods continues to increase, as we move further away from the base period.

Test 1 We test this statement for one period at a time. The subject period forms
our base period. As already mentioned, a returning dinosaur is observed if any
future normalized population dissatisfaction rate is less than or equal to 1. Let us
now have a look at Figure 5. The x-axis presents the 34 periods and the y-axis
presents the dissatisfaction rate for each period. Period 1991a acts here as the base
period.

Fig. 5. Average dissatisfaction rate of the population of GDTs that were evolved in 1991a, over the
future 34 periods. Period 1991a acts here as the base period, because this is the period in which

the evolved trees were initially clustered. After calculating the dissatisfaction rate of each GDT in
1991a, we calculated the average dissatisfaction rate of the population. We then reclustered these
GDTs to all future periods. In this way, we are able to observe how the average dissatisfaction
rate of the population is affected while it is moving away from the base period. The results are for

the 3×3 SOM dimension.

As we can see, the dissatisfaction rate immediately increases after we move away
from the base period 1991a. It starts from around 7.5, and never drops again to a
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range close to 1. On average, the dissatisfaction rate is 6.73, which is actually far
away from the threshold of 1. Thus no returning dinosaurs are observed.

Nevertheless, this result is when 1991a is the base period. Let us now present
what happens after we have followed the same procedure for all periods, i.e., after all
periods have acted as the base period. In order to do that, we iterate through each
base period and calculate the minimum dissatisfaction rate among its future periods.
For instance, in Figure 5, the minimum dissatisfaction rate is around 4.5 in period
2002b. This means that, for the base period of 1991a, the lowest dissatisfaction rate
that any future period managed to get was 4.5. So we extract this value. We do the
same for all 33 base periods and thus end up with a 1×33 vector, MinAvgDis, which
shows the potential returning dinosaur per base period. The plot of the MinAvgDis

vector is shown in Figure 6.

Fig. 6. Minimum average dissatisfaction rate of the population of GDTs per base period, for 3×3
SOM. After obtaining the series of the average dissatisfaction rate for each base period, over its
future periods, we calculate the minimum average dissatisfaction rate per base period. In this way,

we have an indication of whether there are any returning dinosaurs in each base period.

As we can observe, there is no base period with a minimum dissatisfaction rate of
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1 or below. There are a few periods with relatively low dissatisfaction rates (1992b,
1993a, 1999b, 2003b). However, the lowest rate any period gets is 2, in period 1998a.
In addition, the average minimum dissatisfaction rate for STI for the 3 × 3 SOM
is 5.79. We can therefore conclude that strategies from past periods are on average
not ‘satisfied’ in future years.

Test 2 Let us now move to Test 2. To show a continuous increase in the population
dissatisfaction rate, we calculate the sum of the dissatisfaction rates of all those
future periods that have distance from the base period equal to 1, then the sum of
those future periods with distance equal to 2, and so on, up to distance equal to
33. In order to do this, we first need to create a table of distances, like the one in
Table 2. Each row of this table presents the distances of the future periods from
their base period. For instance, if 91a is the base (first row), then future period
91b has a distance equal to 1, future period 92a has a distance equal to 2, and so
on. Table 3 presents an example of a series of normalized population dissatisfaction
rates for the future periods of each base period. For example, when the base period
is 91a (first row), the normalized dissatisfaction rate starts from 1 in 91a, then rises
to 7.66 (91b), then goes to 6.82 (92a), and so on, until it reaches dissatisfaction
equal to 5.94 in future period 07b. Let us now denote the sum of the dissatisfaction
rates we mentioned at the beginning of this section by

∑
|i−j|=m Dis(i, j), where

i, j are the base and future period, respectively, |i− j| is their absolute distance, as
presented in Table 2, and m is the distance from the base period that takes values
from 1 to 33. We divide this sum by the number of occurrences where |i − j| = m.
This process hence returns the average of the normalized population dissatisfaction,
and allows us to observe how it changes, as the distance m from the base period
increases. We call this metric Dm and it is presented in Equation 5.

Table 2. Distance of future periods from their base period, over
the 17 years 1991-2007. The further away we move from a period,

a single unit of distance is added.

j
91a 91b 92a 92b ... 07b

91a 0 1 2 3 ... 33

91b 1 0 1 2 ... 32
i 92a 2 1 0 1 ... 31

92b 3 2 1 0 ... 30
... ... ... ... ... ... ...

07b 33 32 31 30 ... 0

Dm =

∑
|i−j|=m

Dis(i, j)

{#(i, j), |i − j| = m}
(5)
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Table 3. Example of series of future population dissatisfaction rates
per base period. Each base period’s series is presented as a horizon-

tal line of this table. Dissatisfaction rates have been normalized,
so that the rate in the base period is always equal to 1.

j
91a 91b 92a 92b ... 07b

91a 1 7.66 6.82 7.08 ... 5.94

91b 1 3.76 5.72 ... 4.70
i 92a 1 9.74 ... 7.77

92b 1 ... 8.80
... ... ... ... ... ... ...

07b ... 1

Let us give an example: if we want to calculate D32, we need to sum up the
population dissatisfaction rates that have distance m = 32. This happens with
Dis(91a, 07a) (dissatisfaction rate of GDTs from base period 91a, when applied to
future period 07a) and Dis(91b, 07b) (dissatisfaction rate of GDTs from base period
91b, when applied to future period 07b). Therefore D32 would be equal to the sum
of these two rates over 2, as there are only 2 periods we are interested in.p By
calculating Dm for all m values, we can have a clear idea of how the average of the
population dissatisfaction changes when we move from periods that are close to the
base (low m), to periods that are further away (high m), and thus observe whether
there is a continuous increase.

Figure 7 presents the results. It is interesting that for m = 1−22, Dm experiences
a continuous increase. However this changes for higher values of m. Overall, Test 2
is not justified for STI, under 3 × 3 SOM.

To summarize, the experimental results of Test 1 for the STI dataset under
the 3x3 SOM showed that there are no returning dinosaurs. Regarding Test 2, a
continuous increase in the average dissatisfaction rate of the population of GDTs
could only be observed for some periods.

6.1.2. Experimenting with the number of clusters

Let us now examine if the above results hold under different numbers of clusters.
We experiment with the following SOM dimensions: 2×1, 3×1, 2×2, 5×1, 3×2,
7×1, 4×2, 3×3, for a range of trading strategy types 2-9. All graphs in this section
include information for all of the different dimensions.

First let us start with the average dissatisfaction rate for the base period 1991a,
which is presented in Figure 8. As we can observe, the dissatisfaction rate follows

pThe distance m = 32 can also be found in 07a91a and 07b91b. However, we do not take them
into account because, as we said earlier in Section 5, we are not interested in applying the evolved

GDTs of a base period (here 07a and 07b) backwards in time (91a and 91b, respectively).
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Fig. 7. STI Dm distance of the dissatisfaction rate for 3×3 SOM.

the exact same pattern we observed earlier: it immediately increases after we move
away from the base period. It is within a range of 3 to around 9, depending on
the SOM dimension, and never drops again to a range close to 1. On average, the
average dissatisfaction rate for 1991a varies in the range of 4.29 under 2 types of
trading strategies (clusters), to 6.73 (9 trading strategy types). Thus there are again
no returning dinosaurs observed, for any SOM dimension. In addition, we again do
not observe a continuous increase in the dissatisfaction rate. Hence, Test 1 holds for
all SOM dimensions, whereas Test 2 does not. One final observation we can make
is that the dissatisfaction rate increases as the number of clusters increases. This
is something that does not come to us as a surprise, since the increased number of
clusters has increased the sum of the dissatisfaction rates among the 500 GDTs,
and thus has increased the average rate, too. What is important to state, however,
is that the pattern of non-stationary behavior we observed earlier remains, under
all trading strategy types. The number of clusters does not affect the test’s results.

Let us now present the same results for all base periods. Figure 9 presents these
results. The horizontal line indicates when the dissatisfaction rate is equal to 1, and
is given as a reference.

As we can observe, nothing really changes when compared to the results pre-
sented earlier, for the 3×3 SOM. There is again no base period, for any SOM
dimension, reaching an average dissatisfaction rate of 1. The lowest rate we observe
is again for period 1998a, which is around 2. On average, the minimum dissatisfac-
tion rate varies in the range of 3.56 (2 clusters) to 5.79 (9 clusters). Therefore, we
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Fig. 8. Average dissatisfaction rate of the population of GDTs that were evolved in 1991a, over the

future 34 periods. Period 1991a acts here as the base period, because this is the period in which
the evolved trees were initially clustered. After calculating the dissatisfaction rate of each GDT in
1991a, we calculated the average dissatisfaction rate of the population. We then reclustered these
GDTs to all future periods. In this way, we are able to observe how the average dissatisfaction

rate of the population is affected while it is moving away from the base period. Each line in the
figure represents a different SOM dimension.

can again see that dinosaurs do not return.
Regarding Test 2, we again use the Dm metric. Figure 10 presents the results.

Once again, we observe the same pattern for all SOM dimensions, as with the ones
we saw earlier for the 3 × 3 SOM: a continuous increase up to a point, and then
upward and downward movements. In addition, we again see that as the number of
clusters increases, there is also an increase in the dissatisfaction rate.

To summarize, the experimental results of Test 1 for the STI dataset show that
there are no returning dinosaurs, under all different SOM dimensions tested. The
market seems to be constantly changing and hence strategies are not ‘satisfied’ in
their new environments. Furthermore, changing the SOM dimension (and thus the
number of strategy types in the market) does not seem to significantly affect the
results. The only difference we can observe is that the dissatisfaction rate increases
when more types of strategies exist in the market (more SOM dimensions). Finally,
there is again no continuous increase in the average dissatisfaction rate of the GDTs,
after we move away from the base period. Therefore Test 2 is not justified.

Let us now examine if the above results generalize under different international
markets.

6.2. Summary results for all datasets

So far we have presented the results for a single dataset, STI. In this section we will
present the results for all 10 datasets. As a reminder, these datasets are: CAC40,
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Fig. 9. STI Minimum average dissatisfaction rate of the population of GDTs per base period, for all
SOM dimensions. After obtaining the series of the average dissatisfaction rate of each base period,

over its future periods, we calculate the minimum average dissatisfaction rate per base period. In
this way, we have an indication of whether there are any returning dinosaurs in each base period.
The horizontal line indicates a dissatisfaction rate equal to 1, and is given as a reference.

DJIA, FTSE100, HSI, NASDAQ, NIKEI, NYSE, S&P500, STI, and TAIEX.

6.2.1. Test 1

Figures 11 and 12 present the results for Test 1. There are ten subfigures, each
one presenting the minimum average dissatisfaction rate for all SOM dimensions,
for each of the datasets. We recall that the horizontal line at each subfigure in-
dicates when the average dissatisfaction rate is equal to 1; as we already know,
whenever a period’s rate is less than or equal to 1, then this period has a returning
dinosaur. From the graphs it is clear that no dataset reaches a minimum average
dissatisfaction rate of 1. Tables 4 and 5 also present the average of the average
and minimum dissatisfaction rates, per cluster, per dataset. As we can observe, on
average all datasets have an average dissatisfaction rate of 4.78 for the 2× 1 SOM,
which climbs to 7.95 for the 3×3 SOM. There seems to be a lower boundary, which
does not allow the average dissatisfaction rate to go below it. This lower boundary
is around 4.5-5 for the 2 × 1 SOM and rises with the number of clusters, reaching
around 7-8 for the 3 × 3 SOM. However, even if we want to take into account the
outliers, Table 5 informs us that on average the minimum dissatisfaction rate does
not go below 3.40 for 2 × 1 SOM and 5.50 for 3 × 3 SOM. It is thus obvious that
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Fig. 10. STI Dm distance of the dissatisfaction rate for all SOM dimensions.

GDTs do not find a familiar environment in future periods. Hence, dinosaurs do not
return or return only as lizards. The latter refers to the exceptional cases when dis-
satisfaction becomes relatively low, for instance around 2. Market conditions have
allowed strategies from past time periods to feel ‘satisfied’ again, although this sat-
isfaction is not as high as in the base period. Thus market conditions have some
similarities to the ones of the base period, but are by no means the same nor do
they offer the same ‘satisfaction’ to the strategies.

Table 4. Average of Average Dissatisfaction Rate per Cluster per Dataset

2 × 1 3 × 1 2 × 2 5 × 1 3 × 2 7 × 1 4 × 2 3 × 3

CAC40 4.69 5.04 5.32 6.03 6.27 7.09 7.13 7.46
DJIA 4.93 5.46 5.88 6.69 7.05 7.76 7.98 8.51

FTSE100 4.77 5.12 5.55 6.37 6.62 7.43 7.52 8.05
HIS 5.06 5.49 5.79 6.68 6.90 7.75 7.87 8.32

NASDAQ 4.42 4.84 5.21 5.94 6.16 6.91 6.93 7.50
NIKEI 4.88 5.26 5.50 6.54 6.69 7.68 7.64 8.28
NYSE 4.44 4.90 5.22 5.92 6.17 6.88 6.96 7.27

S&P500 4.36 4.61 4.93 5.53 5.79 6.45 6.56 6.86

STI 5.17 5.65 6.11 6.98 7.19 8.30 8.33 8.88
TAIEX 5.04 5.48 5.74 6.54 6.96 7.76 7.78 8.40

Mean 4.78 5.19 5.53 6.32 6.58 7.40 7.47 7.95
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Fig. 11. Test 1: Minimum average dissatisfaction rate of the population of GDTs per base period,
for all SOM dimensions, for all datasets. Each subfigure represents a single dataset. From left to
right, top to bottom: CAC40, DJIA, FTSE100, HSI, NASDAQ, NIKEI.

Table 5. Average of Minimum Dissatisfaction Rate per Cluster per Dataset

2 × 1 3 × 1 2 × 2 5 × 1 3 × 2 7 × 1 4 × 2 3 × 3

CAC40 3.51 3.77 4.01 4.53 4.68 5.10 5.13 5.51
DJIA 3.60 4.00 4.37 4.85 5.14 5.58 5.77 6.14

FTSE100 3.35 3.56 3.88 4.34 4.50 5.01 5.11 5.54

HSI 3.38 3.58 3.77 4.15 4.30 4.80 4.83 5.15
NASDAQ 3.16 3.51 3.74 4.20 4.35 4.89 4.84 5.25
NIKEI225 3.36 3.74 3.88 4.40 4.53 5.13 5.18 5.57

NYSE 3.52 3.94 4.14 4.69 4.98 5.33 5.53 5.56

SP&500 3.28 3.48 3.77 4.18 4.31 4.78 4.80 5.07
STI 3.56 3.83 4.09 4.61 4.79 5.34 5.41 5.79

TAIEX 3.29 3.64 3.83 4.25 4.44 4.88 5.00 5.43

Mean 3.40 3.71 3.95 4.42 4.60 5.09 5.16 5.50

6.2.2. Test 2

Let us now move to Test 2, which is presented in Figure 13. Each subfigure presents
the results under a different market. DJIA, FTSE 100 and NIKEI seem to expe-
rience a continuous increase in the Dm metric. On the other hand, evidence for a
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Fig. 12. Test 1: Minimum average dissatisfaction rate of the population of GDTs per base period,
for all SOM dimensions, for all datasets. Each subfigure represents a single dataset. From left to
right, top to bottom: NYSE, S&P500, STI, TAIEX

continuous increase in the other markets seems weak.
In order to confirm this eye-browsing observation, we run a linear trend regres-

sion for each dataset. Our goal is to examine if the slope of the trend is positive; if
this happens, then it denotes a continuous increase in the metric. One more thing
we should say is that we only run the linear regression for a single SOM dimension,
the 3×3 one. The reason for this is because for each dataset, the Dm metric experi-
ences the same patterns, under all SOM dimensions. Thus it would not make a big
difference if we took another dimension and applied linear regression. It should also
be mentioned that because the variance of the Dm observations seems relatively
high, we apply variance stabilizing transformation, and use the logarithmic values
instead of the raw values of the metric. Figure 14 presents the results of the linear
regression. From the graphs we can clearly see that HSI and NYSE experience a
continuous decrease in the metric. The majority of the remaining datasets’ met-
ric seems to remain stable over time, with the exception of DJIA, FTSE 100 and
NIKEI.

Table 6 presents the coefficients, which denote the slope of the trend. In order to
see whether the coefficients are statistically significant, we run a t-test and present
the respective p-values. As we can observe, the p-value is below 5% (significance
level) for the following datasets: DJIA, FTSE 100, HSI, NIKEI and NYSE. This
means that DJIA, FTSE 100 and NIKEI ’s positive slope is statistically significant.
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Fig. 13. Test 2: Dm distance of the dissatisfaction rate for all SOM dimensions for all datasets.
Each subfigure represents a single dataset.

Thus these markets experience a continuous increase in their Dm metric. The re-
maining markets have either a statistically significant negative coefficient, thus a
continuous decrease (HSI, NYSE), or no statistically significant positive/negative
coefficient, thus no evidence for continuous increase (CAC 40, NASDAQ, S&P 500,
STI, TAIEX).

Table 6. Slope of the trend and p-

values per dataset

Coefficient p-value
CAC 40 0.000256 0.8905560
DJIA 0.006977 0.0027034

FTSE 100 0.003843 0.0154329

HSI -0.009849 0.0000024
NASDAQ 0.001508 0.4836810

NIKEI 0.011413 0.0000053
NYSE -0.006919 0.0000004

S&P 500 -0.000095 0.9468793
STI 0.003035 0.2231986

TAIEX 0.000558 0.7977585

The above result thus does not support Test 2, for the majority of the datasets
tested in this paper (7 out of 10). However, as we saw there are 3 markets where we
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(a) CAC 40 (b) DJIA (c) FTSE 100 (d) HSI (e) NASDAQ

(f) NIKEI (g) NYSE (h) S&P 500 (i) STI (j) TAIEX

Fig. 14. Linear Regression for the 3 × 3 SOM observations for the Dm metric.

actually observe statistically significant continuous increase in the Dm metric. This
is very interesting, because it implies that over the period of 17 years that were
examined in this work, the market behavior was changing continuously in such way
that dinosaurs were having increased difficulties fitting in their respective market.

Lastly, it is also interesting that this behavior could only be observed in 3
markets only. What are the differences between these 3 markets and the other 7
remains a question, which we leave for future work. More research should take
place in the statistical properties of these markets; this could lead us to a better
understanding of the differences between DJIA, FTSE 100 and NIKEI with the rest
of the markets.

7. Conclusion

To summarize, this paper presented the Dinosaur Hypothesis (DH) and suggested
a testing methodology for it. This hypothesis says that the behavior of a market
never settles down and that the strategies in this market continuously co-evolve with
it. This observation was first made by [1] and later by [4]. However, these models
made this observation based on simulations under artificial stock markets. In our
current work, we were interested in examining whether these observations could
hold as well in the real world and thus tested the hypothesis with empirical data. In
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order to do this, we extended a framework from a previous work [3], where we had
empirically examined the dynamics of market fractions of different types of agents.
In that study, we used Genetic Programming (GP) as a rule-inference engine to
find out the behavioral rules of agents, and Self-Organizing Maps (SOM) to cluster
these agents. However, because of an important assumption in that work, we had to
require that SOM clusters, as well as their operational specification, would remain
the same over time. In this paper, we relaxed that assumption. This offered more
realism to our model and allowed us to investigate market behavior dynamics and
test for the Dinosaur Hypothesis.

We used two tests, which were inspired by the works of Arthur [1], and Chen and
Yeh [4]. The first test investigated whether strategies from the past can successfully
be re-applied to the future. The results showed that this is not possible and thus
verified this test. Strategies that have not co-evolved with the market become di-
nosaurs and cannot fit new environments. The second test investigated whether the
dissatisfaction rate of such strategies, which are being applied to new environments,
can follow a continuous increase. This was verified only by 3 out of the 10 datasets
tested. Strategies are dissatisfied, or in other words do not fit their environments if
they do not adapt to the changes that have taken place; however, this dissatisfaction
does not necessarily increase continuously with time. Nevertheless, it is quite inter-
esting that results regarding the continuous increase of the dissatisfaction rate are
not homogeneous. This certainly deserves further investigation and we thus leave it
as a future work.

What we can safely conclude from our experimental results is that trading
strategies always need to follow changes that take place in the markets, and co-
evolve with them. The implications of our results are very important. If strategies
do not co-evolve with the market, they eventually become ineffective, even if they
were very successful in the past. Markets constantly change and we need to follow
and adapt to these changes if we want to remain successful.

Future research will include some changes in our model. At the moment, we
have used GP and SOM as our two main tools. A question that arises is whether
our results can be affected by different choices of GP and SOM algorithms, or even
by different settings of these algorithms. In addition, it would be interesting to in-
vestigate whether our results would stand under a different framework, where differ-
ent rule-inference machines and clustering techniques would be used. For example,
Genetic Algorithms could be used instead of GP. Moreover, standard hierarchical
clustering [24] or growing hierarchical self-organizing maps [7] could be used instead
of SOM and provide us more details of the hierarchical structure of the market par-
ticipants. Finally, another possible direction is to extend our testing methodology
to other types of markets, like the Foreign Exchange Market (FOREX); this would
allow us further generalization of our results.
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