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Abstract
Directional Changes (DC) is a recent technique that summarises physical
time data (e.g. daily closing prices, hourly data) into events, offer-
ing traders a unique perspective of the market to create novel trading
strategies. This paper proposes the use of a genetic algorithm (GA)
to optimize the recommendations of multiple DC-based trading strate-
gies. Each trading strategy uses a novel framework that combines
classification and regression techniques to predict when a trend will
reverse. We evaluate the performance of the proposed multiple DC-
strategy GA algorithm against nine benchmarks: five single DC-based
trading strategies, three technical analysis indicators, as well as buy-and-
hold, which is a popular financial benchmark. We perform experiments
using 200 monthly physical time datasets from 20 foreign exchange
markets—these datasets were created from snapshots of 10 minutes
intervals. Experimental results show that our proposed algorithm is
able to statistically significantly outperform all DC and non-DC bench-
marks in terms of both return and risk, and establish multi-threshold
directional changes as an effective algorithmic trading technique.

Keywords: Genetic algorithms, Directional changes, Algorithmic trading,
Financial forecasting
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1 Introduction
Predicting foreign exchange (Forex) rate is an important step in understand-
ing the relationship among global currencies to evaluate the benefits and risks
attached to cross-border trading. The prediction of foreign exchange (Forex)
rate was relatively straightforward up to the early 1970s (Chang and Huang,
2014). It was mostly determined by the balance of payments of countries and
their level of importation and exportation of goods and services. In 1973,
the floating exchange rate was adopted by the world major currencies and
in recent times, Forex trading is primarily done electronically (Cheung and
Chinn, 2001). These changes in currency policy and trading location opened
the market to more participants, which led to an increase in market activi-
ties. The higher number of participants coupled with local and international
supply-demand factors, such as economic, political and psychological, makes
Forex forecasting a challenging task (Spero and Hart, 2009; Nassirtoussi et al,
2011; Frieden, 2014; Bilgin et al, 2020; Pascual-Ezama et al, 2014; Petropou-
los et al, 2017). These challenges include: (i) short-term pronounced price
fluctuation; (ii) a high trading volume of over 6.6 trillion USD per day as of
2019 (Wooldridge, 2019) in a market open 24 hours/day from Sunday 20:15
GMT to Friday 22:00 GMT across the globe (Sobol and Szmelter, 2020); (iii)
low profit margin in comparison to fixed income trading (Petropoulos et al,
2017); and (iv) noisy and chaotic signals, making separation of uninteresting
features from trends difficult (Abu-Mostafa and Atiya, 1996; Kamruzzaman
et al, 2003).

Majority of approaches to predict Forex rates use historic market data
captured using a physical time scale (Brabazon et al, 2020). A drawback of
using a physical time scale is that it makes the flow of physical time discontin-
uous, exposing market participants to some degree of risks due to ignorance
of market activities between discrete time points. An alternative approach is
to utilise intrinsic time scale which summarises data by capturing significant
activities in the market. In this work, we use directional changes – a form
of intrinsic time scale to summarise significant market movement. Directional
changes (DC) presents an alternative way of sampling data. Instead of taking
snapshots of historical data in constant intervals, snapshots are taken when
there is a change in price by a predetermined threshold θ. The threshold value
is decided in advance by a trader according to their belief of what a signifi-
cant price change is, either upwards or downwards. Price summaries are thus
divided into alternate upward and downward trends. Each of these trends con-
sists of a DC event, which is usually followed by an overshoot (OS) event.
Using different threshold values allows the detection of different events and, as
a consequence, the creation of different trend summaries. Therefore, the DC
framework focuses on the size of a price change as time varies, while under
physical time, the time interval is fixed (e.g. daily closing prices). This con-
cept provides traders with new perspectives for price movements analysis and
allows them to focus on key price movements, blurring out other price details
which could be considered irrelevant. Furthermore, directional changes have
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enabled researchers to discover new regularities in markets, which could have
been ignored by the interval-based summaries (Glattfelder et al, 2011). There-
fore, these new regularities give rise to opportunities for traders and open a
whole novel area for research.

As a result, an increasing number of works have been using the DC con-
cept for trading purposes (e.g., Aloud (2020, 2021)). Furthermore, Gypteau
et al (2015) proposed a genetic programming (GP) based multi-threshold DC
strategy, where the terminal nodes of the GP trees were composed of the
trading actions (buy/sell/hold) recommended by each DC threshold, and the
inner nodes were logical operators for combining the above recommendations.
Bakhach et al (2016) proposed a classification algorithm that uses informa-
tion from event series sampled using smaller threshold to forecasts DC events
in DC summary sampled with a larger threshold. Ye et al (2017) proposed
a mathematical equation for anticipating the magnitude of OS events. Their
result shows that trading based on DC trend reversal forecasting techniques
yields profitable positive returns at comparatively low risk. Alkhamees and
Fasli (2017a) highlighted a problem with summarising price movements based
on single fixed threshold over a long physical time period. They argued that if
a threshold of 0.01% is used in summarising events and over time significant
events level drops to 0.009%, the new types of events will not be captured.
Based on this finding, they recommended to trade with event summary sam-
ple taken over shorter physical time frame and to recalibrate threshold size
at intervals to identify the most significant event. They proposed to gener-
ate event series daily with dynamically adjusted thresholds size according to
current and previous day price movement. Comparison results showed that
trading on event series generated in shorter time period with dynamic thresh-
old was more profitable than trading on event series generated using fixed
threshold over longer periods. A similar conclusion was reached by Alkhamees
and Fasli (2017b) having explored the same idea of generating event series
using dynamically adjusted thresholds in data stream. Salman et al (2022)
proposed several new DC-based trading strategies and optimised their recom-
mendations using a genetic algorithm. Lastly, Long et al (2022) was the first
to combine different DC indicators under a genetic programming algorithm.

A particular branch of DC trading research has been to identify the rever-
sal point of a trend. Kampouridis and Otero (2017); Kampouridis et al (2017)
attempted to do this by estimating the length of the DC trend. To achieve this,
they calculated the average length of DC trends for each dataset in the train-
ing set, and then used this value to predict when a trend would end in the test
set. Adegboye et al (2017) extended Kampouridis and Otero (2017) by using a
symbolic regression genetic programming (GP) algorithm to evolve equations
that calculated the average DC-OS event length ratio which was thus used
to predict the duration of a trend. They identified both linear and non-linear
relationships between DC and OS events, which they embedded into a trading
strategy and yielded higher returns. Adegboye and Kampouridis (2021) fur-
ther extended the above work, by observing that trends in DC datasets did
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not consistently have both DC and OS events. They observed that it was pos-
sible to have as little as 14.77% of DC events having a corresponding OS event.
Although the number of OS events in a DC summary is threshold dependent,
the maximum number of DC-OS event pair observed was 52.46%. To address
this issue, they proposed a DC trend reversal forecasting algorithm that com-
bined classification with symbolic regression. A tailored classifier distinguished
between DC trends composed of OS and DC events and others having only
DC event. They then used a tailored symbolic regression GP to estimate OS
event length of DC trends classified to have an OS event in their training set.
Their results showed their approach significantly improved DC trend rever-
sal forecasting. The model was embedded in a single threshold-based strategy
and tested on 1000 DC datasets created from a 10-minute physical time-series
from 20 major Forex markets. The trading strategy outperformed other DC
and technical analysis-based strategies including buy-and-hold. Similar results
were obtained in Adegboye et al (2021), which applied the above classification
technique to a number of different DC algorithms.

While the above classification and regression GPs were novel and effective
algorithms, they only used a single DC threshold, i.e., each trading strategy
was based on a single DC summary. Therefore, the strategy is constrained
by the information provided by that specific DC threshold—this is a major
limitation. Besides, it is not easy to know which DC threshold results return
a more informative DC summary. To overcome the above drawback, in this
paper we propose using a multi-threshold DC trading algorithm. As a result,
many thresholds will be used simultaneously, and thus at each point in time,
there will be multiple buy-sell-hold recommendations. To overcome the con-
flicting recommendations, we will use a genetic algorithm (GA) to optimise the
weights of each DC threshold. The rationale for combining predictions stems
from the fact that different kinds of events drive price volatility and a thresh-
old is capable of summarising only one type of such events. Using multiple
thresholds will enable us summarise concurrent events, thus, increasing the
total number of DC events over the profiling period, consequently providing
more opportunities to trade profitably.

We will run experiments on 200 datasets from 20 different Forex currency
pairs. The proposed multi-threshold DC strategy will be compared against a
total of nine benchmarks: five single-threshold DC strategies; three technical
analysis indicators under physical time; and a buy-and-hold strategy. The rest
of this paper is organised as follows. Section 2 presents a brief overview of the
concept directional changes, and Section 3 presents our proposed GA-based
multi-threshold trading strategy. Section 4 presents the experimental setup,
and Section 5 presents and discusses the results. Lastly, Section 6 concludes
this article and discusses future work.
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2 DC Background
A DC event is identified by price changes defined by a user-specified threshold
value. DC events are divided into upturn and downturn events. Once a DC
event is confirmed, the price series usually continue moving towards the same
direction (upwards or downwards, depending on what the current DC trend
is), and they form an overshoot (OS) event. An OS event finishes once a DC
event in the opposite direction is confirmed. A DC trend (DCT), upward or
downward, consists of the combination of a DC and an OS events. Different
thresholds generate different event series. Smaller thresholds create higher
number of DC events than larger thresholds, which produce fewer events.

Let us now look at Figure 1, where we present how we can summarise a
physical-time price series into DC and OS events. In this example, we sum-
marise price movements with two different thresholds, namely θ = 0.01% (lines
in red) and θ = 0.018% (lines in blue). Price changes below θ are not con-
sidered a significant event. Price changes above θ are considered significant
events, and divide the market into uptrends and downtrends. Solid lines rep-
resent DC events, and dashed lines represent OS events. For example, under
θ = 0.01%, between Points A and B we have a downturn DC event followed
by a downward OS event from Point B to C; when a trend reversal occurs, an
upturn DC event starts from Point C to D. Lastly, between Point D and E it
is an upward OS event. The price point where a DC trend begins or ends is
called DC extreme point (DCE); under θ = 0.01%, Points A, C, and E are DC
extreme points.

Under θ = 0.018% (lines in blue), we obtain a different set of events: from
A to B′: a downturn event; from B′ to C: a downward OS; from C to E: an
upturn DC event; lastly, from Point E to E′ we have an upward OS trend.

Note that we can only confirm a DC event in hindsight, i.e., after there has
been a price change of θ. For instance, under θ = 0.01% we would not know
we are in an upward trend until we have reached Point D. This point is called
a DC Confirmation point (DCC). Before Point D, one would consider that the
market has been in a downward trend since Point A. Similarly, we would not
know the trend has reversed from upward to downward until we have reached
the DCC Point F. It is therefore crucial to be ablel to accurately predict when
a trend reversal will take place. Algorithm1 presents the pseudocode for the
transformation of physical time series to event-based (DC) series.

3 Methodology
Our proposed method, which we refer to as Multi-Threshold DC (MTDC), is
a new algorithm for trading under the DC paradigm. This novel algorithm will
overcome the limitations from Adegboye and Kampouridis (2021); Adegboye
et al (2021), which were constrained in using a single threshold to generate
DC summaries. MTDC allows for multiple DC thresholds and DC summaries
to be used. This allows for multiple view of the data. Thus combines the use
of different threshold values in an attempt to take advantage of the different
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Fig. 1: Directional changes for the GBP/JPY FX currency pair. The red lines rep-
resent events created by a threshold θ = 0.01% , and the blue lines events created
by a threshold θ = 0.018% . DC events are denoted by solid lines, and OS events
by dashed lines. Under θ = 0.01%, we summarise data as follows: Downturn DC
event: Point A 7→ B; Downward OS event: Point B 7→ C; Upturn DC event: Point
C 7→ D; Upward OS event: Point D 7→ E; Downturn DC event: Point E 7→ F . Under
θ = 0.018% , we summarise data as follows: Downturn DC event: Point A 7→ B

′
;

Downward OS event: Point B
′
7→ C; Upturn DC event: Point C 7→ E; Upward OS

event: Point E 7→ E
′
. DC Extreme points (DCE): Points A, C, E, and E

′
. DC Con-

firmation points (DCC): Points B, B
′
, D, E, and F.

characteristics of smaller and larger event kinds that cause price movement.
Furthermore, since there are multiple thresholds, there can be multiple rec-
ommendations (buy/sell/hold) at any point in time. To resolve the conflicting
recommendations, we use a genetic algorithm to decide how much weight we
should assign to each DC threshold.

Our trading algorithm can be broken into two main parts: a single-
threshold DC algorithm (STDC) and MTDC, which essentially optimises the
recommendations from the multiple STDC algorithms. STDC was first pre-
sented in Adegboye and Kampouridis (2021), and its main components are
summarised in Section 3.1. Afterwards, in Section 3.2, we discuss the main
contribution of this article, namely the MTDC algorithm.

3.1 Singe threshold-based DC strategy
The aim of the single threshold-based DC strategy (STDC) is to predict when
the current trend will reverse (trend reversal point) and subsequently use this
information during trading. The trend reversal point can be predicted via
regression algorithms, where the relationship between the DC and OS lengths
is estimated. However, early work in Adegboye et al (2017) showed that simply
regressing the above relationship has a major drawback: the resulted function
f that describes this relationship does not take into account that many DC
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Algorithm 1 Pseudocode for generating directional changes events given
threshold θ.
Require: Initialise variables (event is Upturn event, ph = pl = p(t0),

∆xdc(F ixed) ≥ 0, tdc
0 = tdc

1 = tos
0 = tos

1 = t0 )

1: if event is Upturn Event then
2: if p(t) ≤ ph × (1− θ) then
3: event← Downturn Event
4: P l ← p(t) //Price at end time for a Downturn Event
5: tdc

1 ← t //End time for a Downturn Event
6: tos

0 ← t + 1 //Start time for a Downward Overshoot Event
7: else
8: if ph < p(t) then
9: ph ← p(t) //Price at start of Downturn event

10: tdc
0 ← t //Start time for Downturn event

11: tos
1 ← t− 1 //End time for an Upturn Overshoot Event

12: end if
13: end if
14: else
15: if p(t) ≥ pl × (1 + θ) then
16: event← Upturn Event
17: P h ← p(t) //Price at end time for upturn event
18: tdc

1 ← t //End time for an Upturn Event
19: tos

0 ← t + 1 //Start time for an Upturn Overshoot Event
20: else
21: if pl > p(t) then
22: pl ← p(t) //Price at start time for upturn event
23: tdc

0 ← t //Start time for an Upturn Event
24: tos

1 ← t− 1 //End time for a Downturn Overshoot Event
25: end if
26: end if
27: end if

events are not followed by an OS event, as they can often be followed by
another DC event of the opposite direction. Thus any regression algorithm will
learn a DC-OS length relationship by using inaccurate data. To overcome this
issue, we first use a classification step, which predicts whether a DC event is
followed by an OS event. Introducing this classification step allows us to only
perform regression on data that contain consecutive DC and OS events, thus
creating more accurate regression models, which itself enables us to predict
the end of a trend. This information is then used by a trading strategy.

Thus, STDC has three main steps: a classification step; a regression step;
and a trading step. The process flowchart is illustrated in Figure 2. Next we
briefly present each step. For a more detailed description, the reader is referred
to Adegboye and Kampouridis (2021).

3.1.1 The classification step
As there are numerous classification algorithms that can be used for the clas-
sification task, STDC uses Auto-WEKA (Thornton et al, 2013), an automated
machine learning (AutoML) framework1. Using Auto-WEKA allows for a tai-
lored classification algorithm and tailored hyperparameters for each dataset.
The model classifies a DC trend as either composed of DC and OS events

1Auto-WEKA is a framework with 39 classification algorithms uses high-dimensional stochastic
optimisation to fully automate the creation and tuning of tailored classification models
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Fig. 2: Predicting trend reversal in DC. A DC trend classified to compose of only
DC event is expected to reverse at DCC, while DC trend classified to compose of
DC and OS events is expected to reverse at estimated DCE, which is the sum of
DC event length at DCC and the OS event length predicted by the SRGP. Once the
trend reversal point has been determined, we embed it into a trading strategy and
perform trading.

(αDC) or only DC event (βDC). If a trend is classified as βDC, then the trad-
ing action will be taken at the DCC point (more about this in Section 3.1.3.
Conversely, if a trend is classified as αDC, the trend is expected to reverse at
the end of a sum of the DC event length, known at the DCC point and the
OS event length, estimated with a regression model, which is presented in the
next section (Section 3.1.2.

Lastly, the attributes used for classification are DC-related features,
namely:
• DC event price, which is the price difference between the upturn/downturn

point and the directional change confirmation point
• DC event time, which is the time difference between the upturn/downturn

point and the directional change confirmation point
• Speed, which is the speed at which price change from the start of a trend to

the directional change confirmation point
• Previous DC event price, which is the price at the previous confirmation

point
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• Previous OS, which is a boolean variable that indicates whether the
immediately previous DC trend has an OS event

• Flash event, which is a boolean variable indicating whether the DC event
start and end times are equal

3.1.2 The regression step
Once the classification step is complete, STDC aims to learn the relationship
between the DC and OS lengths for each dataset. This is actually a symbolic
regression step, which aims to find both the shape of the solution/equation,
as well as the value of its parameters. The target solution can be expressed
by the generic Equation 1, which essentially tells us that the length of an OS
event is a function of the length of the DC event.

OSl = f(DCl) (1)where :

OSl = the length of an OS event
DCl = the length of a DC event

To find the form of the equation, Algorithm 2, a tree-based symbolic regres-
sion genetic programming algorithm2 (SRGP) proposed by Adegboye et al
(2017) is used. SRGP is able to evolve scale variant linear and non-linear
equations that best express the relationship between DC and OS events lengths
in a DC event summary.

To evolve the equation, SRGP is configured to use 2-arity functions
{addition, subtraction, division, multiplication, power} and 1-arity functions
{sine, cosine, power, logarithm, exponential} as the function set. The termi-
nal nodes are composed of attribute that represented DC event length and
ephemeral random constants (ERC)3. SRGP is initialised using the ramped
half-and-half method. During evolution the fittest 10% of the tree popula-
tion are copied to the next generation and the rest are evolved with subtree
crossover and mutation operators. The fitness of the trees in the population
is measured using Equation 2. It calculates the regression error ε between
actual OS length (OSl) and SRGP estimated OS length. After evolution, the
tree with the least regression error in the final generation is selected as the
regression model.

ε =

√∑N
i=1(OSl − ÔSl)2

N
(2)

where :

N = The sample size
ε = The root mean squared error

2SRGP searches a space of mathematical expressions to create a symbolic regression model that
best expresses the relationship between DC and OS event lengths in an event series.

3ERC is a set of randomly generated terminals that retain their values across the population
at initialisation and during evolution
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Algorithm 2 Pseudocode for evolving SRGP i.e., equation to estimate OS
event length after the DC event length is known.
Require: Initialise variables (PopulationSize= 500; GenerationSize= 35; Tourna-

menteSize = 3; CrossoverRate = 0.98; MutationRate = 0.02; MaximumDepth =
3; ElitismRatio = 0.1; Prune = True )

1: Initialise population: P ← Generate PopulationSize individuals (Candidate
programs) using ramped half-and-half

2: Evaluate: for each p in P , calculate Fitness with Equation 2
3: while termination condition not satisfied do
4: Pg ← Initialise new population for generation g
5: Get elite individuals in P : ER[1,. . . ,( ElitismRatio × PopulationSize)]
6: Add elite individuals to Pg

7: for i = ER + 1 to Pg do
8: if RandomNumber < CrossoverRate then
9: Select parent1: probabilistically select TournamenteSize individuals

from P
10: Select parent2: probabilistically select TournamenteSize individuals

from P
11: Pgi : ← Perform crossover between parent1 and parent2
12: end if
13: if RandomNumber < MutationRate then
14: Pgi : ← Perform mutation on Pgi

15: end if
16: end for
17: Update: P ← Pg

18: Evaluate: for each p in P , calculate Fitness with Equation 2
19: end while
20: Return the individual (i.e., equation) with the highest fitness from P

A concurrent step with the creation of the regression model is the selection
of appropriate thresholds. A pool of 100 thresholds is created with real value
numbers from 0.005 with a step size of 0.0025. The SRGP model described
above is created for each threshold in the pool. The regression errors of the 100
thresholds’ best SRGPs are then measured. The SRGP with the least error
with the associated threshold is selected for backtesting.4

For backtesting, Adegboye et al (2021) selected the best five thresholds
and their SRGPs and traded with them independently. A characteristic of a
single threshold-based trading strategy is its obliviousness to slight changes to
price movement that are lower than the specified threshold even though the
change could also be relevant. For example, if a trader considers a price change
of 0.1 to be significant, price changes of 0.0999 are ignored. This inherent
limitation of single threshold-based strategy can be addressed by combining
information from multiple thresholds (Fernald et al, 2021). In Section 3.2,
we present a multi-threshold trading strategy that combined and optimised
information from multiple thresholds using genetic algorithm (Holland, 1992),
a well-known technique for solving optimisation problems.

4This idea of dynamically selecting thresholds has also been explored by Alkhamees and Fasli
(2017a,b), where a dynamic DC threshold was calculated on a daily basis. In our framework, we
do not do this on a daily basis, but instead we simultaneously consider 100 different thresholds
and select the one that returns the lowest regression error.
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3.1.3 The trading step
As explained earlier, the classification step predicts if a trend is composed of
DC and OS events (αDC) or only a DC event (βDC). In the former case, the
trend reversal point is predicted to be the end of the OS event as predicted
by the SRGP algorithm, while in the former case it is the DCC point.

In order to decide how to trade, we differentiate between opening (sell
the base currency and buy the quoted currency) and closing a position (buy
the base currency and sell the quoted currency). In order to open a position,
there are two requirements: (i) there is not an already open position, and (ii)
the return from opening the position would be positive, after accounting for
transaction costs. If the above requirements hold, we open a position at the
extreme point of an upward DC trend. Similarly, to close a position, there are
two requirements: (i) there is an existing open position, and (ii) the return
from closing the position would be positive after accounting for transaction
costs. If these conditions hold, we close the position at the extreme point of a
downward DC trend.

The extreme point in both of the above cases can be either at a αDC or
βDC, depending on the prediction of the classification model. When the above
requirements are not met, no trading takes place. All transactions take place
by using the entire capital. Transaction cost is 0.025% per transaction.

3.2 Multi-threshold DC strategies using a Genetic
Algorithm

3.2.1 Overview
This strategy builds on the single-threshold strategy by combining market
trends and predictions from multiple thresholds. As discussed in Section 2, a
DC event is identified by a change in the price by a given threshold value.
Each DC threshold summarises the data in a unique way: smaller thresholds
allow the detection of more events and, as a result, actions can be taken
promptly; larger thresholds detect fewer events, but provide the opportunity
of taking actions when bigger price variations are observed. This proposed
trading strategy combines the use of different threshold values in an attempt to
take advantage of the different characteristics of smaller and larger thresholds.

Thus, at one point in time the trading strategy under one threshold could
be recommending a buy action, while a different threshold recommending a sell
action. In addition, even if all strategies are recommending the same trading
action, there might not be consensus on where the trend reversal point is,
as each DC summary uses its own SRGP algorithm and thus has different
predicted reversal points.

To deal with the above issues, we assign a weight for each DC threshold.
Thus, if there are Nθ thresholds, there will be Nθ directional changes sum-
maries and as a result Nθ recommendations. Each threshold makes the two
following recommendations: (i) what action to take, and (ii) where is the trend
reversal point, i.e. when to take the recommended action.
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What action to take.
A majority vote is performed, based on the thresholds’ weights: the weights of
the same actions (e.g., buy, buy, ...) are summed up and the action with the
largest weight is followed. For example, if Nθ = 5 and the sum of weights for
the buy actions is 0.65, while the sum of weights for the sell action is 0.35, the
action to be taken will be buy. It is worth noting here that the deciding factor
is the sum of weights, rather than the number of thresholds recommending an
action.

Overall, there are three possible actions that can be recommended by each
threshold: buy, sell, and hold. If the action to be taken is a buy, we buy all
available base currency in exchange for the quoted currency. If the action to
be taken is a sell, we sell all available base currency in exchange for the quoted
currency. Therefore, there is no situation where we have both base currency
and quoted currency in our portfolio. With regards to a hold action, this can
happen in three specific situations: (1) when the action is “sell” and there isn’t
enough base currency available to sell, (2) when the action is “buy” and there
isn’t enough base currency to buy and, (3) when the return is negative after
deducting transaction costs.

When to act.
As each DC summary (each derived by a different DC threshold) can predict
a different trend reversal point, there is no consensus as to what point to take
a buy/sell/hold action. To alleviate this, we act at the weighted average of the
predicted reversal points of the recommended action. To better understand
this, let us go back to the previous example of Nθ = 5, where the sum of
weights for buy was greater than the sum of weights for sell, and as a result
the action to be taken is buy. Let us assume that it was only two thresholds
recommending the buy action, with weights w1 = 0.3 and w2 = 0.35, respec-
tively. Let us also assume that the first threshold predicts that the trend will
reverse at point t = 10, and that the second threshold predicts point t = 20.
Thus, the buy action will be taken according to Equation 3:

W =
∑n

i=1 witi∑n
i=1 wi

(3)

where wi is each weight value, and ti is each predicted trend reversal point.
Plugging in the above values would give (0.3×10)+(0.35×20)

(0.3+0.35) ≈ 15. Thus the buy
trading action will take place at point t = 15. By following the above method
we take into account the threshold weights both in terms of what action to
take and when to act.

The above is a brief introduction of the multi-threshold strategies. Apart
from what has been discussed above, everything else is similar to the single-
threshold strategy. Thus, the MTDC framework consists of four steps: (1)
classification step; (2) symbolic regression step; (3) optimised strategy by a
GA; and (4) trading step. Steps (1), (2), and (4) follow the same approach as in
STDC described in Section 3.1. The differentiating step in MTDC is step (3),
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which is what we have discussed above and is necessary for dealing with the
multiple trend reversal points that are returned by each individual threshold’s
process. Thus, after predicting the trend reversal point per threshold, we assign
weights to represent each threshold. Figure 3 presents a high-level overview of
the MTDC strategy.

The only part we have not discussed yet is how the weights are decided.
This is an important step, because we do not know how much weight we should
give to each threshold. Simply assigning an equal weight of 1 to all of the
thresholds might be a naive approach. Some thresholds might be more useful
than others, hence we should give them more weight. Thus we use a genetic
algorithm (GA) to evolve real values for the weight of each DC threshold. We
present the GA next.

Physical time-series

DC Event
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Is αDC?
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model 1
OSl regres-

sion model 1

Trend reversal point
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Fig. 3: Our proposed multi-threshold strategy framework. It uses a majority vote
system to sum similar trade action recommendations from thresholds and it follows
the action with the highest sum. The action is taken after calculating the weighted
average of the forecasted trend reversal point of thresholds that recommended the
winning action.

3.2.2 Genetic Algorithm
Genetic algorithms (GAs) are well-known evolutionary algorithms to find
solutions to hard optimization problems (Goldberg, 1989; Michalewicz, 2002;
Mitchell, 1996). GAs use a population of individuals (candidate solutions) and
subject them to an evolutionary process: individuals are evaluated according
to how well they solve the problem and combined to generate individuals using
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Chromosome 1
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Chromosome 6

0.2 0.5 0.6 0.9 0.3

Chromosome 7
• • • 0.8 0.7 0.3 0.9 0.0

Chromosome K
Fig. 4: Illustration of GA population initialisation for Nθ = 5 thresholds.

genetic operators. In this process, individuals are selected based on their qual-
ity, where individuals with a higher quality have a higher chance to be selected
and their genetic material to contribute to the creation of the next population.

Representation.
Each GA chromosome consists of Nθ genes, where Nθ is the number of thresh-
olds used in the multi-threshold strategy. Each gene is assigned a weight value
during population initialisation. The weight is a measure of the importance of
a threshold’s recommendation in the trading decisions. The weights are real
values where the maximum weight value is 1 and the minimum value is 0.
We initialise the first gene in the first chromosome with the maximum weight
value and initialise the rest of the genes with minimum weight value. We ini-
tialise the second gene in the second chromosome with the maximum weight
value and initialise the rest of the genes with minimum weight value. We ini-
tialise the third gene in the third chromosome with the maximum weight value
and initialise the rest of the genes with minimum weight value. We repeat
this initialisation of weights for the first Nθ chromosomes in our GA pop-
ulation. The idea is to ensure that in the worst case scenario, the trading
result of our strategy is as good as the result of the best performing single
threshold. The genes of the rest of the chromosome in our GA population are
randomly assigned real values between the minimum and maximum weights
inclusive. The pseudocode presented in Algorithm 3 summarises this proce-
dure and Figure 4 illustrates the initialisation step. The GA then evolves real
value weights for each threshold over a number of generations. At the end of
the evolution process our optimisation model is created.

Genetic Operators.
We use three operators namely elitism, uniform crossover and uniform muta-
tion. For elitism, we copy the chromosome with the best fitness value into
the next generation. For uniform crossover and uniform mutation, individuals
from the population are selected into a mating pool. From the pool, through
tournament selection, individuals that best favour the optimisation goal are
selected as parents of individuals for the next generation. In this work we select
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Algorithm 3 Pseudocode for initialising chromosome weight in GA popula-
tion

for i = 0; i < numberOfThresholds; i++ do
for j = 0; j < chromosomeInPopulation[i]; j++ do

if index i is threshold position in chromosome then
wi ← 1.0

else
wi ← 0.0

end if
end for

end for
for i = numberOfThresholds; i < chromosomeInPopulation; i++ do

for j = 0; j < chromosomeInPopulation[i]; j++ do
wi ← RandomNumberFunction(0.0, 1.0)

end for
end for

0.1 0.1 0.2 0.3 0.4

0.5 0.8 0.9 0.4 0.2

parent

0.1 0.8 0.2 0.4 0.4

0.5 0.1 0.9 0.3 0.2

child
Fig. 5: A sample uniform crossover operation by our GA. Either of the children is
randomly selected for the next generation

0.2 0.1 0.8 0.3 0.4

parent

0.2 0.5 0.8 0.7 0.4

child
Fig. 6: A sample uniform mutation operation by the GA .

as parent, individual in the pool with highest fitness. In uniform crossover
both parents contribute their genes where each gene has a fixed probability
of 0.5 of being swapped. In uniform mutation operation, the selected parent’s
gene have a fixed probability of 0.5 of being swapped as well. Figures 5 and 6
illustrate uniform crossover and uniform mutation, respectively.

GA model evaluation.
We measure the quality of our GA individual using Sharpe ratio presented
in Equation 6 where R is the return, Q is the quantity traded , TC is the
transaction cost discounted from a transaction, FXrate is the FX rate of the
relevant currency pair RFR the risk-free rate which we assume to be zero for
Forex trading and σR the standard deviation of the return over the trading
period. We choose Sharpe ratio because it is an aggregate metric of risk-
adjusted return, as it measures how well the return compensates an investor
for the risk of following the trades strategy.
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TC = Q ∗ 0.025
100 (4)

R = (Q− TC) ∗ FXrate (5)

SharpeRatio = R−RFR

σR
(6)

Algorithm 4 summarises the procedure of optimising trading actions
and trend reversal points. Algorithms 5 and 6 summarise the trading rules
applied at optimised trend reversal point at optimal trade action buy and sell
respectively.

Algorithm 4 Pseudocode for Multi-threshold Optimisation
Require: Initialise base quantity = budget, quote quantity = 0.0
Require: current price = 0.0, LastUpPrice = 0.0
Require: Initialise weight values W1, W2, W3 ... WNθ

according to Algorithm
3

Require: Get forecast model F1, F2, F3 ... FNθ
for each threshold

for i = 0; i < dataset length ; i++ do
Initialise forecast and action dictionary: Dict = empty
Initialise weights for buy and sell: WB = Ws = 0
Initialise buy and sell trend reversal list: ListB = ListS = empty
for j = 0; j < Nθ; j++ do

Initialise trend reversal point: TRP = 0.0
if event is upturn && DCC point then

TRP ← Fj

Insert TRP into ListS

WS ← WS + Wj

else if event is downward trend && DCC point then
TRP ← Fj

Insert TRP into ListB

WB ← WB + Wj

end if
end for
if WS > WB then

TRPoptimali ← optimise ListS according to Equation 3
Insert TRPoptimali and Sell into Dict at position i

else
TRPoptimali ← optimise ListB according to Equation 3
Insert TRPoptimali and Buy into Dict at position i

end if
if Dict[i] is not empty then

if Dict[i] == Sell then
current price← dataset lengthi[ask]
Trade with Sell Rule [See Algorithm 5]

else if Dict[i] == Buy then
current price← dataset lengthi[bid]
Trade with Buy Rule [See Algorithm 6]

end if
end if

end for
Wealth← base quantity − budget
Return← 100× W ealth

budget
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Algorithm 5 Trading rules used for selling the base currency
Require: Sell rule

if base quantity > 0 then
base quantity ← base quantity - transaction Cost
quote quantity ← base quantity × current price
base quantity ← 0.0
LastUpPrice← current price

else Hold
end if

Algorithm 6 Trading rules used for buying the base currency
Require: Buy rule

if quote quantity > 0 && current price < LastUpPrice then
quote quantity ← quote quantity - transaction Cost
base quantity ← quote quantity

current price
quote quantity ← 0.0

else Hold
end if

4 Experimental Setup
4.1 Data
We use 10-minute interval high frequency data from March 2016 to February
2017 for 16 currency pairs and from June 2013 to May 2014 for 4 currency
pairs.5 These pairs are presented in Table 1.

We consider each month as a separate physical-time dataset. In the tuning
phase, we use 40 physical-time datasets (i.e., 20 currency pairs × first two
months of our physical-time data) to create 200 DC datasets (40 physical-
time datasets × 5 thresholds). In the non-tuning phase, 200 datasets (i.e., 20
currency pairs × last 10 months of our physical-time data) are used in creating
1000 DC datasets s (i.e., five6 thresholds × 20 currency pairs × remaining 10
months of our physical time datasets). In both tuning and non-tuning phases,
the DC datasets are split in 70:30 ratio for training and testing respectively.

4.2 Parameter tuning
For the classification step, the only parameter of Auto-WEKA that required
tuning was its execution time. This is because Auto-WEKA requires to be
given enough time to search its algorithms and hyperparameter space for a
classification model that is best in predicting our two class labels (αDC, βDC).
We experimented with different runtime configurations namely 15 minutes, 30
minutes, 45 minutes 60 minutes, 75 minutes. We chose a runtime of 60 minutes

5Data was purchased by OANDA (http://www.oanda.com). Thus the datasets analysed during
the current study are not publicly available, but are available from the corresponding author on
reasonable request.

6We have experimented in aprevious work (Kampouridis and Otero, 2017) with the number of
thresholds and found that five thresholds is optimal. Higher number of thresholds do not appear
to make significant impact on trading performance, while at the same time they significantly affect
the computational cost of running the algorithm.
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Table 1: FX currency pairs used in our experiments.

Currency pairs

March 2016 to February 2017

AUD/JPY Australian $ / Japan. Yen
AUD/NZD Australian $ / N. Zeal. $
AUD/USD Australian $ / US $
CAD/JPY Canadian $ / Japan. Yen
EUR/AUD Euro / Australian $
EUR/GBP Euro / British Pound
EUR/CAD Euro / Canadian $
EUR/CSK Euro / Czech Krona
EUR/NOK Euro / Norwegian Krona
GBP/AUD British Pound / Australian $
NZD/USD New Zealand $ / US $
USD/CAD US $ / Canadian $
USD/NOK US $ / Norwegian Krona
USD/JPY US $ / Japan. Yen
USD/SGD US $ / Singaporean Dollar
USD/ZAR US $ / South African Rand

June 2013 to May 2014
EUR/USD Euro / US $
EUR/JPY Euro / Japan. Yen
GBP/CHF British Pound / Swiss Franc
GBP/ USD British Pound / US $

based on average f −measure, which we observed to diminish at a runtime
of 75 minutes. Depending on the number of CPU cores available, it is possible
to execute Auto-WEKA in serial or parallel mode. For our experiment we
executed Auto-WEKA in serial mode, using 1 CPU core.

With regards to the regression step, we tuned the GP parameters using
the I/F-Race package (López-Ibánez et al, 2011). I/F-Race package is based
on an iterated racing procedure, which is an extension of the Iterated F-
race procedure. It implements racing methods for the selection of the best
configuration for an optimisation algorithm by empirically selecting the most
appropriate settings from a set of instances of an optimisation problem. Table
2 presents the GP configuration to evolve the five symbolic regression models
for estimating the OS event length.

Table 2: Regression GP experimental parameters for detecting DC-OS relationship,
determined using I/F-Race.

Parameter

Population 500
Generation 37
Tournament size 3
Crossover probability 0.98
Mutation probability 0.02
Maximum depth 3
Elitism 0.10
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With regards to the optimisation part of the DC weights, we again used the
I/F-Race package to determine the optimal GA parameters. Table 3 presents
the value of the tuned parameters.

Table 3: GA experimental parameters for multi-threshold trading strategy deter-
mined using I/F-Race.

Parameter

Population size 500
Generation size 50
Tournament size 7
Crossover probability 0.90
Mutation probability 0.10
Elitism 0.1

4.3 Trading Experimental Setup
4.3.1 DC-related benchmarks
As a reminder, the aim of this study is to demonstrate that by optimising rec-
ommendations from multiple thresholds using machine learning techniques we
can improve profitability and risk, statistically outperforming single threshold-
based strategies. To do this, we compare the trading performance from a
trading strategy that draws recommendations under a five-threshold DC setup,
against five individual strategies, where each strategy draws recommendations
from a single DC threshold setup. Each single threshold DC strategy will
from now on be denoted as STDC; since we are testing five individual thresh-
olds, we thus have STDC1 (single threshold DC trading strategy 1), STDC2,
STDC3, STDC4, and STDC5. It is worth re-iterating that the five individual
thresholds can be different per dataset, as they are dynamically chosen. The
multi-threshold DC strategy will be referred to as MTDC and consists of the
same five individual thresholds in a given dataset.

4.3.2 Financial (Non-DC) benchmarks
Technical analysis trading strategy
Technical analysis is a very popular approach in trading. It uses technical
indicators, for insight into when to make trading decisions. We experiment
with three trading strategies that utilise the relative strength index (RSI)
indicator, the exponential moving average indicator (EMA), and the moving
average convergence divergence (MACD).

Buy and hold
Buy and hold (BandH) is a well-known benchmark for trading algorithms.
Under this trading strategy we buy the quoted currency in the first month of
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the non-tuning data, and then sell it in exchange for the base currency after
the 10 month period.

5 Trading Results
This section presents experimental results for our proposed MTDC algorithm7.
We first compare MTDC’s performance against five single-threshold DC
strategies (Section 5.1), and afterwards to financial benchmarks (Section 5.2).
Then, in Section 5.3 we discuss computational times. Lastly, we summarise
the main findings of our results in Section 5.4.

5.1 Summary statistics
Table 4 presents returns of single-threshold and multi-threshold trading strate-
gies calculated monthly. In this table, cases where 0.00 is reported as return
indicates that the strategy is passive (i.e., hold action). Trading return results
show that the multi-threshold strategy has the highest return (1.15%), which
is over 100% better than the best single threshold-based strategy that recorded
return of 0.53%. The result of the multi-threshold strategy was also the best
per currency pair. Table 5 presents the non-parametric Friedman test with the
Hommel post-hoc test to determine if the differences in performance are sta-
tistically significant. The null hypothesis is that the strategies come from the
same continuous distribution. As we can observe, the best ranking strategy is
the multi-threshold strategy, and it statistically outranks the 5 single-threshold
strategies at the 5% significance level in all pairs.

We also evaluated the risk adjusted return (Sharpe ratio) over the trans-
actions that occurred in the 10-minutes monthly dataset. Table 6 presents
the result, and it shows that multi-threshold strategy outperformed single
threshold-based strategy in all 20 currency pairs. The Sharpe ratio of 0.78 is
over 200% better than the Sharpe ratio of the best single threshold-based strat-
egy. We also tested the statistical significance of the Sharpe ratio result using
Friedman non-parametric test. The null hypothesis is that the strategies come
from the same continuous distribution. We reject the null hypothesis because
the statistical test results presented in Table 7 shows that multi-threshold
strategy outperformed the 5 single-threshold strategies.

We also performed risk analysis, measuring maximum drawdown and stan-
dard deviation of our daily return. Table 8 presents the maximum drawdown
results, where the lower the drawdown the better the result. Our multi-
threshold strategy recorded the lowest overall average maximum drawdown
(0.02). On average, the risk was 10 times lower than trading using single-
threshold strategies. We also perform Friedman test and Table 9 shows
that multi-threshold strategy statistically outperforms all single-threshold
strategies at the 5% significance level.

7As the focus of this paper is the effectiveness of the proposed MTDC algorithm, we do not
present results of its individual components, i.e. the classification and the regression steps. These
components have been thoroughly examined in the past, over a total of 1,000 datasets by Adegboye
and Kampouridis (2021) and Adegboye et al (2021)
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Table 4: Average return result (%) for trading strategies of individual single-
threshold strategies and multi-threshold strategy. 10-minute interval out-of-sample
data. 20 different currency pairs and 10 calendar months each representing the
physical dataset. Five DC dataset were generated using five dynamically generated
thresholds tailored to each DC dataset. Best value for each row (currency pair) is
shown in boldface.

Dataset STDC1 STDC2 STDC3 STDC4 STDC5 MTDC

AUD/JPY 0.9032 1.1177 1.0361 1.0132 1.2644 1.4018
AUD/NZD 0.4716 0.4831 0.3926 0.3365 0.2377 1.1877
AUD/USD 0.3970 0.5281 0.5813 0.7310 0.7253 0.8701
CAD/JPY 0.8736 0.8969 0.8264 0.7082 0.7935 1.3208
EUR/AUD 0.6808 0.5261 0.3586 0.3850 0.3508 1.0787
EUR/CAD 0.4677 0.3900 0.3471 0.4886 0.4250 0.9773
EUR/CSK 0.0232 0.0372 0.0025 0.0474 0.0432 0.3955
EUR/GBP 0.2132 0.2712 0.0583 0.2139 0.2121 0.8233
EUR/JPY 0.5475 0.5171 0.4380 0.5985 0.5385 0.8509
EUR/NOK 0.2632 0.4388 0.3222 0.6373 0.2553 0.8889
EUR/USD 0.2139 0.2427 0.1494 0.1022 0.0777 1.0474
GBP/AUD 0.5770 0.3854 0.5816 0.7964 0.6471 1.4298
GBP/CHF 0.2575 0.0779 0.6074 0.1904 0.3013 0.5371
GBP/USD 0.1141 0.1997 0.0648 0.2228 0.1140 0.8567
NZD/USD 0.5130 0.5937 0.7069 0.7858 0.5984 0.9422
USD/CAD 0.2078 0.1658 0.4274 0.3773 0.4194 0.8522
USD/JPY 0.4411 0.6448 0.3829 0.3914 0.3428 1.2062
USD/NOK 0.3836 0.4253 1.0093 0.4595 0.4502 1.5360
USD/SGD 0.1525 0.1325 0.2305 0.2991 0.3777 0.7704
USD/ZAR 1.5811 1.4437 1.8097 1.7583 1.4155 4.1808
Average 0.4641 0.4759 0.5167 0.5271 0.4795 1.1577

Table 5: Statistical test results for average returns according to the non-parametric
Friedman test with the Hommel post-hoc test of multi-threshold (c) vs other single-
threshold based trading strategies. 10-minute interval out-of-sample date. Significant
differences between the control algorithm (denoted with (c) and the algorithms rep-
resented by a row at the α = 5% level are shown in boldface indicating that the
adjusted p value is lower than 0.05.

Trading strategies Average Rank AdjustpHomm

MTDC (c) 1.0000 -
STDC4 3.3000 1.4284E-4
STDC2 3.9999 1.2302E-6
STDC3 4.1000 7.5910E-7
STDC1 4.2500 2.5353E-7
STDC5 4.3000 1.5846E-7

Finally, Table 10 presents the standard deviation results. The results are
not as homogenous as in the previous tables, where the multi-threshold strat-
egy is ranking first across all datasets. Nevertheless, MTDC strategy ranked
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Table 6: Average Sharpe ratio result for trading strategies of individual single-
threshold strategies and multi-threshold strategy. 10-minute interval out-of-sample
data. 20 different currency pairs and 10 calendar months each representing the phys-
ical dataset. 5 DC dataset were generated using 5 dynamically generated thresholds
tailored to each DC dataset. Best value for each row (currency pair) is shown in
boldface.

Dataset STDC1 STDC2 STDC3 STDC4 STDC5 MTDC

AUD/JPY 0.3469 0.2082 0.2335 0.2245 0.2451 0.7026
AUD/NZD 0.2565 0.2129 0.2289 0.1246 0.3348 0.7912
AUD/USD 0.2749 0.2183 0.3149 0.3396 0.3702 0.8014
CAD/JPY 0.2614 0.1879 0.3268 0.1664 0.2708 0.6804
EUR/AUD 0.2812 0.2310 0.2358 0.2855 0.2961 0.9101
EUR/CAD 0.3972 0.1807 0.2865 0.3229 0.2964 0.7496
EUR/CSK 0.0970 0.1190 0.0370 0.1893 -0.0555 1.2658
EUR/GBP 0.0845 0.0035 0.1589 0.1077 0.2287 0.7330
EUR/JPY 0.3539 0.3183 0.3371 0.4049 0.2846 1.0389
EUR/NOK 0.1292 0.2177 0.2578 0.2430 0.2778 0.5835
EUR/USD 0.2370 0.1381 0.1073 0.1328 0.1258 0.5673
GBP/AUD 0.2579 0.2179 0.2326 0.2619 0.3402 0.9387
GBP/CHF 0.2793 0.0216 0.3019 0.2840 0.2367 0.7413
GBP/USD 0.0779 0.2178 0.1344 0.2539 0.1855 0.6961
NZD/USD 0.1753 0.2463 0.2388 0.3418 0.2365 0.6223
USD/CAD 0.1780 0.3044 0.3232 0.3508 0.2181 0.6328
USD/JPY 0.2140 0.2205 0.0582 0.2940 0.2303 0.6499
USD/NOK 0.2614 0.2526 0.3395 0.1712 0.2156 0.7604
USD/SGD 0.0434 0.1260 0.1219 0.1236 0.1910 0.7305
USD/ZAR 0.2555 0.2741 0.2420 0.2576 0.2401 0.9430
Average 0.2231 0.1958 0.2259 0.2440 0.2384 0.7769

the highest for the number of currency pairs (7 currency pairs), it had the
lowest average standard deviation (0.1638). We also performed Friedman sta-
tistical test, presented in Table 11 and the multi-threshold strategy ranks first
overall. The performance was not statistically significant against any of the
single-threshold strategies. Nonetheless, the volatility risk was slightly lowered
when trading with MTDC which is noteworthy considering that the average
return (see Table 4) more than doubled.

5.2 Financial benchmarks
Since MTDC was found to be the best algorithm in the above tests with other
DC-based strategies, we now proceed to compare it to financial benchmarks,
namely the RSI, EMA and MACD technical indicators, as well as the well-
known buy-and-hold (BandH) benchmark. Under BandH, we buy on the first
day of the first month and sell on the last day of the tenth month.

Table 12 compares the mean returns of MTDC and the other strategies.
MTDC outperforms the four benchmarks in 13 currency pairs with an overall
average return of 1.1577% against a negative average return of -0.128% under
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Table 7: Statistical test results for average Sharpe ratio according to the non-
parametric Friedman test with the Hommel post-hoc test of multi-threshold (c)
vs other single-threshold based trading strategies. 10-minute interval out-of-sample
date. Significant differences between the control algorithm (denoted with (c) and the
algorithms represented by a row at the α = 5% level are shown in boldface indicat-
ing that the adjusted p value is lower than 0.05.

Trading strategies Average Rank AdjustpHomm

MTDC (c) 1.0000 -
STDC4 3.4500 3.4541E-5
STDC5 3.7000 1.0046E-5
STDC3 4.1000 4.8184E-7
STDC1 4.2000 2.5353E-7
STDC2 4.5500 9.8300E-9

BandH, -0.0378% for RSI, 0.1117% for EMA, and -0.1879% for MACD. In
addition, MTDC’s variance is 0.76; BandH’s is 6.91; RSI’s is 0.09; EMA’s is
0.14; and MACD’s is 0.16. This indicates that MTDC is not only more prof-
itable, but also less risky than BandH. It is riskier to the technical indicators,
but given the significantly higher returns, it can be argued that MTDC’s per-
formance is worth the increased risk. These results were also confirmed by a
Friedman statistical test (Table 13), where MTDC ranks first with 1.35 and
statistically outperforms all four benchmarks at the 5% level.

5.3 Computational times
Table 14 presents the average computational time for multi-threshold strategy
in comparison to the single-threshold strategies. The results show an increase
in computation time taken by multi-threshold strategy. This is expected since
it includes the time required to train multiple classification models. Additional
time is also used in training the GA-based strategy. The computation time
was measured on a non-dedicated8 Red Hat Enterprise Linux (Maipo) with a
24 core, 2.53 GHz processor and 24 Gigabit memory. Although auto-WEKA,
the tool for our classification step can be executed using multiple threads of
concurrent execution, we chose to run in serial mode using a single CPU core
due to limitation on hardware resources. Besides the classification step, we
acknowledge that improvements can be made in computation time through
parallelisation of the different steps that make up the trading strategy frame-
work (Brookhouse et al, 2014; Ong and Schroder, 2020). We do not consider
the additional time to be a significant drawback as the framework is used off-
line. As a result, training would not be happening at the same time as trading.
Instead, one would train the algorithm separately from the live trading pro-
cess, and then when a best model is chosen, this would be used during live
trading. Therefore, we believe that the significant improvements observed in

8There were other processes unrelated to the experiment running on the server at the time the
experiments were performed
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Table 8: Average Maximum drawdown (% ) result for trading strategies of individual
single-threshold strategies and multi-threshold strategy. 10-minute interval out-of-
sample data. 20 different currency pairs and 10 calendar months each representing
the physical dataset. 5 DC dataset were generated using 5 dynamically generated
thresholds tailored to each DC dataset. Best value for each row (currency pair) is
shown in boldface.

Dataset STDC1 STDC2 STDC3 STDC4 STDC5 MTDC

AUD/JPY 0.7447 0.2441 0.2796 0.2773 0.5053 0.0262
AUD/NZD 0.3235 0.2914 0.2642 0.2910 0.1143 0.0177
AUD/USD 0.2810 0.1617 0.2001 0.3173 0.2748 0.0261
CAD/JPY 0.1864 0.2537 0.2720 0.1687 0.3897 0.0124
EUR/AUD 0.5627 0.4365 0.0977 0.2828 0.2400 0.0087
EUR/CAD 0.2956 0.3051 0.0928 0.0964 0.1094 0.0293
EUR/CSK 0.0007 0.0302 0.0076 0.0383 0.0706 0.0000
EUR/GBP 0.1635 0.2833 0.0445 0.1823 0.1492 0.0077
EUR/JPY 0.2932 0.3777 0.2856 0.3772 0.3927 0.0391
EUR/NOK 0.1774 0.2326 0.1978 0.4144 0.0894 0.0112
EUR/USD 0.1499 0.2006 0.0973 0.0832 0.0487 0.0303
GBP/AUD 0.3190 0.2690 0.4058 0.4627 0.3772 0.0074
GBP/CHF 0.1020 0.1239 0.4167 0.1069 0.0923 0.0035
GBP/USD 0.1311 0.1223 0.0753 0.1477 0.0598 0.0057
NZD/USD 0.1884 0.1971 0.2058 0.2131 0.1720 0.0342
USD/CAD 0.1451 0.0469 0.2685 0.1434 0.3030 0.0353
USD/JPY 0.2563 0.3516 0.2688 0.3132 0.1097 0.0160
USD/NOK 0.2655 0.3375 0.6848 0.3467 0.3476 0.0243
USD/SGD 0.0383 0.0354 0.1351 0.1351 0.1890 0.0071
USD/ZAR 1.1300 1.0217 1.3708 1.3680 1.0740 0.0196
Average 0.2877 0.2661 0.2835 0.2883 0.2554 0.0181

Table 9: Statistical test results for average maximum drawdown according to the
non-parametric Friedman test with the Hommel post-hoc test of multi-threshold (c)
vs other single-threshold based trading strategies. 10-minute interval out-of-sample
date. Significant differences between the control algorithm (denoted with (c) and the
algorithms represented by a row at the α = 5% level are shown in boldface indicating
that the adjusted p value is lower than 0.05.

Trading strategies Average Rank AdjustpHomm

MTDC (c) 1.0000 -
STDC5 3.7500 3.3460E-6
STDC3 3.9000 1.8983E-6
STDC1 3.9000 1.8983E-6
STDC2 4.0000 1.2655E-6
STDC4 4.4500 2.7455E-8

trading results would likely outweigh the extra computational time needed,
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Table 10: % Average Standard Deviation (SD) result for trading strategies of indi-
vidual single-threshold strategies and multi-threshold strategy. 10-minute interval
out-of-sample data. 20 different currency pairs and 10 calendar months each rep-
resenting the physical dataset. 5 DC dataset were generated using 5 dynamically
generated thresholds tailored to each DC dataset. Best value for each row (currency
pair) is shown in boldface.

Dataset STDC1 STDC2 STDC3 STDC4 STDC5 MTDC

AUD/JPY 0.4511 0.5528 0.5686 0.5502 0.4419 0.5334
AUD/NZD 0.2481 0.1745 0.1339 0.0882 0.0939 0.1048
AUD/USD 0.2142 0.2355 0.2512 0.2939 0.3751 0.1945
CAD/JPY 0.3759 0.3256 0.3656 0.2963 0.2130 0.3167
EUR/AUD 0.2798 0.2698 0.1849 0.1667 0.1491 0.1571
EUR/CAD 0.2184 0.1827 0.1910 0.2509 0.1993 0.2714
EUR/CSK 0.0144 0.0247 0.0087 0.0301 0.0380 0.0418
EUR/GBP 0.0898 0.1465 0.0250 0.0846 0.0802 0.0812
EUR/JPY 0.2309 0.2323 0.2104 0.2762 0.2718 0.1408
EUR/NOK 0.1155 0.1676 0.0993 0.1956 0.1349 0.0863
EUR/USD 0.0898 0.1326 0.0859 0.0577 0.0311 0.0884
GBP/AUD 0.2618 0.1671 0.2520 0.3044 0.2601 0.1867
GBP/CHF 0.1021 0.1575 0.2216 0.1277 0.1421 0.1647
GBP/USD 0.1104 0.1164 0.0841 0.1188 0.0993 0.1073
NZD/USD 0.2209 0.2201 0.2944 0.3090 0.2113 0.1483
USD/CAD 0.1218 0.0676 0.2414 0.1647 0.2023 0.1356
USD/JPY 0.2053 0.2749 0.2051 0.1725 0.1658 0.1186
USD/NOK 0.1543 0.1999 0.4327 0.1649 0.2033 0.1299
USD/SGD 0.0651 0.0721 0.0868 0.1636 0.1629 0.0925
USD/ZAR 0.4146 0.4244 0.5034 0.6268 0.3746 0.1764
Average SD 0.1992 0.2072 0.2223 0.2221 0.1925 0.1638

Table 11: Statistical test results for average Standard deviation according to the
non-parametric Friedman test with the Hommel post-hoc test of MTDC (c) vs other
single-threshold based trading strategies. 10-minute interval out-of-sample date.
Significant differences between the control algorithm (denoted with (c) and the algo-
rithms represented by a row at the α = 5% level are shown in boldface indicating
that the adjusted p value is lower than 0.05.

Trading strategies Average Rank AdjustpHomm

MTDC (c) 2.6999 -
STDC5 3.0500 0.5541
STDC1 3.5500 0.3016
STDC3 3.6500 0.2262
STDC2 3.8500 0.2010
STDC4 4.2000 0.0561

and the final say would be for the user/trader to decide what is the impact of
the computational times of the MTDC algorithm.
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Table 12: Comparison of MTDC to RSI, EMA, MACD and buy-and-hold in terms
of average return (%).

Trading strategies MTDC BandH RSI EMA MACD

AUD/JPY 1.4018 -6.278 0.0000 0.0000 0.0000
AUD/NZD 1.1877 -0.516 0.0558 0.0017 0.0047
AUD/USD 0.8701 -5.728 0.0464 -0.1452 -0.1473
CAD/JPY 1.3208 -4.109 0.0000 0.0000 0.0000
EUR/AUD 1.0787 -2.672 -0.0596 0.0566 -0.0916
EUR/CAD 0.9773 18.555 -0.0127 -0.2260 -0.3459
EUR/CSK 0.3955 7.770 -0.1382 -0.2327 -0.2812
EUR/GBP 0.8233 -0.292 -0.0275 -0.1347 -0.2398
EUR/JPY 0.8509 -6.211 -0.0222 0.0154 0.0135
EUR/NOK 0.8889 2.046 -0.0429 -0.1181 -0.2333
EUR/USD 1.0474 8.801 -0.1057 -0.4923 -0.4094
GBP/AUD 1.4298 3.936 -0.1595 -0.3021 -0.0606
GBP/CHF 0.5371 -2.395 0.0355 -0.2677 -0.3305
GBP/USD 0.8567 8.464 0.0080 -0.0755 -0.3612
NZD/USD 0.9422 -6.443 0.1238 -0.2339 -0.3662
USD/CAD 0.8522 2.345 -0.2991 -0.3056 -0.5711
USD/JPY 1.2062 -9.430 0.0000 0.0000 0.0000
USD/NOK 1.5360 -6.102 -0.1440 -0.0754 -0.1541
USD/SGD 0.7704 0.207 -0.0574 -0.0436 -0.2949
USD/ZAR 4.1808 -4.505 0.0439 -0.1118 -0.1879
Mean 1.1577 -0.128 -0.0378 0.1117 -0.1879

Table 13: Statistical test results for average return according to the non-parametric
Friedman test with the Hommel post-hoc test of MTDC (c) vs RSI, EMA, MACD,
and BandH. 10-minute interval out-of-sample date. Significant differences between
the control algorithm (denoted with (c) and the algorithms represented by a row at
the α = 5% level are shown in boldface indicating that the adjusted p value is lower
than 0.05.

Trading strategies Average Rank AdjustpHomm

MTDC (c) 1.3500 -
RSI 2.8499 0.0027
EMA 3.3499 1.2668E-4
BandH 3.4499 8.0074E-5
MACD 4.0000 4.6321E-7

5.4 Summary
We can summarise our findings as follows.

DC-based trading strategies embedded with an optimised multi-threshold
trend reversal forecasting algorithm improves profit at reduced risk. As we
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Table 14: Average computational times per trend for single threshold-based strategy
and multi-threshold strategy

Trading strategies Single threshold Multi-threshold

Classification ∼ 65 mins ∼ 330 mins
Estimation ∼ 5.45 mins ∼ 5.45 mins
GA optimisation — ∼ 7 mins
Trading ∼ 3 secs ∼ 9 secs

observed in Tables 4 and 6, profit obtained trading using an optimised multi-
threshold strategy outperformed single-threshold based strategies two and four
folds respectively. The statistical tests performed show that that the increase
in profit is statistically significant. In addition, having better insight into price
movement enables traders make better decisions without increasing risk. We
were able to achieve the aforementioned profit without increasing risk. As we
discussed in Table 11, multi-threshold strategy was unable to statistically out-
perform single thresholds in standard deviation risk measure; however, it was
ranked first, and we consider this a positive result.

Optimisation of individual threshold trading recommendation is beneficial.
Optimising trade action recommendations from multiple thresholds using a
genetic algorithm is an effective way of determining the best action to take.

The paradigm of directional changes has a lot of potential. Although this is
not a paper that discusses and thoroughly compares DC to physical-time trad-
ing strategies, we can make two general comments about DC-based trading
strategies: (i) they can be profitable and low risk, and (ii) they can outper-
form technical analysis indicators. In this paper we only compared the DC
performance to three popular indicators, so in future work we could further
benchmark the MTDC to more technical indicators.

6 Conclusion
To conclude, this paper presented an investigation of 200 monthly datasets
from 20 different Forex currency pairs to demonstrate that trading with a
strategy that combines information from multiple DC thresholds leads to sig-
nificant improvements in profit and risk. We benchmarked the results against
single threshold DC strategies, as well as financial benchmarks, such as tech-
nical analysis indicators and buy-and-hold. Our results confirmed that the
optimal combination of recommendations from multiple thresholds leads to a
very strong performance across the majority of metrics, which was further sup-
ported by strong statistical significance results. These are significant results,
because they indicate that the paradigm of directional changes is able to be
competitive to the physical time paradigm. Lastly, the fact that we run exten-
sive experiments over 200 datasets leads us to believe that our results are not
only significant, but also widely applicable.
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It is yet to be confirmed whether similar performance can be achieved in
other markets (i.e., commodities, bond, indices and stocks, cryptocurrency).
It will therefore be relevant to experiment our approach in other markets.
In this work we experimented with data sampled at 10 minutes interval. It
will also be worth experimenting with data of higher frequency like 1-minute
physical time data and tick-data to further evaluate the robustness of the
approach. Furthermore, it would be interesting to experiment with the number
of thresholds of the MTDC algorithm. Currently, we use five thresholds, but
it would be worth allowing the algorithm to dynamically select the number of
thresholds for each dataset, similarly to what is already happening with the
threshold values, which are dynamically selected from a given pool of thresh-
olds. Finally, it would be valuable performing classification features’ analysis,
to better understand the contribution of each feature to the classification task.
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