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Abstract

The primary goal of investors who include Real Estate Investment Trusts
(REITs) in their portfolios is to achieve better returns while reducing the overall
risk of their investments. REITs are entities responsible for owning and managing
real estate properties. To achieve greater returns while reducing risk, it is essen-
tial to accurately predict future REIT prices. This study explores the predictive
capability of five different machine learning algorithms used to predict REIT
prices. These algorithms include Ordinary Least Squares Linear Regression, Sup-
port Vector Regression, k-Nearest Neighbours Regression, Extreme Gradient
Boosting, and Long/Short-Term Memory Neural Networks. Additionally, histor-
ical REIT prices are supplemented with Technical Analysis indicators (TAIs) to
aid in price predictions. While TA indicators are commonly used in stock mar-
ket forecasting, their application in the context of REITs has remained relatively
unexplored. The study applied these algorithms to predict future prices for 30
REITs from the United States, United Kingdom, and Australia, along with 30
stocks and 30 bonds. After obtaining our price predictions, we employ a Genetic
Algorithm (GA) to optimise weights of a diversified portfolio. Our results reveal
several key findings: (i) all machine learning algorithms demonstrated low average
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and standard deviation values in the error rate distributions, outperforming com-
monly used statistical benchmarks such as Holt’s Linear Trend Method (HLTM),
Trigonometric Box-Cox Autoregressive Time Series (TBATS), and Autoregres-
sive Integrated Moving Average (ARIMA); (ii) incorporating Technical Analysis
indicators in the ML algorithms resulted in a significant reduction in prediction
errors, up to 60% in some cases; and (iii) a multi-asset portfolio constructed
using predictions that incorporated Technical Analysis indicators outperformed
a portfolio based solely on predictions derived from past prices. Furthermore, this
study employed Shapley Value-based techniques, specifically SHAP and SAGE,
to analyse the importance of the features used in the analysis. These techniques
provided additional evidence of the value added by Technical Analysis indicators
in this context.

Keywords: machine learning, REITs, financial time-series, technical analysis

1 Introduction

The optimisation of a portfolio that includes real estate is an important area of research
in finance [1]. Real estate has gained significant interest from investors globally due to
its potential to enhance returns and reduce risks in mixed-asset portfolios [2]. Empirical
evidence suggests that including real estate assets in a portfolio can improve risk-
adjusted returns. For example, research studies have demonstrated that real estate
investments tend to have low correlation with other asset classes such as stocks and
bonds, providing diversification benefits [3]. Furthermore, real estate investments have
been shown to be an effective hedge against inflation, as they tend to maintain their
value or even appreciate during inflationary periods [4].

Previous studies have recommended allocating a portion of the portfolio to real
estate between 10% and 15%, with longer holding periods potentially increasing this
allocation [5, 6]. However, in order to produce the requisite models for estimating
asset returns and volatility in real estate investments, such studies have traditionally
depended on appropriate historical data being available; this creates a challenge, as
the nature of real estate markets, which are less liquid and exhibit much less frequent
transactions when compared to other asset types, makes it challenging to obtain accu-
rate and up-to-date data for performing such optimisation tasks. Additionally, real
estate valuations can be subjective and influenced by factors such as market sentiment
and local economic conditions, further complicating the optimisation process [7].

To address this limitation, a two-step approach has recently been proposed for
optimising mixed-asset portfolios that include real estate [8]. First, a model is con-
structed to predict future security prices using historical data. Then, the portfolio is
optimised using these predicted prices. This methodology has been successfully applied
to stock portfolios [9–11] and recently extended to real estate portfolios [2, 12], which
showed that incorporating price predictions into the optimisation process can lead to
significant improvements in portfolio performance.

REITs, or Real Estate Investment Trusts, can be viewed as a distinct form of real
estate investment that offers the opportunity of investing in real estate without the
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need to possess the actual properties in question. Accurate prediction of Real Estate
Investment Trust (REIT) prices is crucial for optimising a mixed-asset portfolio that
includes real estate [7, 13]. In addition to utilising past REIT prices, incorporating
Technical Analysis (TA) indicators (TAIs) as features in the prediction process can
further improve prediction accuracy. While such indicators have been very popular
in tasks like algorithmic trading [14], their application to predicting REIT prices is
limited. An example of a study that used TA for REITs is [15], which used TAIs as
part of the feature set of five different machine learning algorithms, and demonstrated
that the introduction of these indicators led to a reduction in regression error of up
to 50%.

Previous works adopted TAIs to predict financial instrument data, including
[16, 17]. However, they focused on stock market data. In this work, we aim to incorpo-
rate TA to predict REIT prices as well, to explore the potential improvement that can
be made in the case of real estate investments. Moreover, previous studies that opti-
mised investment portfolios including real estate as well as other asset classes [18, 19]
relied on historical data. In contrast, we use predictions of future prices to optimise
a multi-asset portfolio. Another limitation of the current literature is that most stud-
ies tend to analyse the predictive performance of at most one or two (mainly deep
learning) algorithms by averaging the considered metric (such as RMSE) over a single
testing period in the context of REITs data [20, 21]. By contrast, this study examines
the predictive performance of five algorithms over different testing periods (i.e., 30-,
60-, 90-, 120-, and 150-day), adopts two prediction methods (i.e., out-of-sample one-
day-ahead and N-day ahead) and considers the volatility of results in addition to the
mean.

The primary novelty of this paper lies in its comprehensive and empirical approach
to predicting REITs time-series data. It involves the inclusion of Technical Analysis
Indicators (TAIs) in the set of features used for prediction. This approach builds
upon [15]. Given how underused TAIs have been in this domain, it is important to
demonstrate the advantages that TA can bring in price predictions, and subsequently,
to portfolios that use REITs as one of their asset classes. The algorithms used to
achieve this purpose are Ordinary Least Squares Linear Regression (LR), Support
Vector Regression, K-Nearest Neighbours, eXtreme Gradient Boosting (XGBoost),
and Long Short Term Memory (LSTM) Neural Networks, and extend our previous
work in six key ways: (i) we incorporate a larger number of datasets (i.e., assets),
expanding from 27 to 90; (ii) we add two more benchmarks, namely Holt’s Linear Trend
Method (HLTM) and Trigonometric Box-Cox Autoregressive Time Series (TBATS)
bringing the total number to three; (iii) we consider five (instead of one) prediction
periods, namely, 30-, 60-, 90-, 120-, and 150-days; (iv) we analyse two prediction
methods, i.e., out-of-sample period-ahead prediction, and one-day-ahead prediction;
(v) we use the price predictions as input into a portfolio that contains three asset
classes, namely stocks, bonds, and REITs, and discuss in detail the positive effects
that the use of the TAIs brings in the context of portfolio optimisation when using
a Genetic Algorithm, and subsequently compare the portfolio’s results against four
benchmarks; and (vi) we conduct an in-depth analysis using Shapley Value-based
metrics, namely SHAP [22], and SAGE [23], providing further insight into the nature
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of the contribution of TAs with respect to individual predictions, and model quality
more generally.

The remainder of this paper is structured as follows: Section 2 offers a con-
cise overview of REITs, the Modern Portfolio Theory (MPT), and discusses related
research in this area; Section 3 outlines the methodology used in this study; Section
4 presents the details of our experimental setup; Section 5 provides a comprehensive
analysis of the experimental results achieved by applying ML techniques and the pro-
posed benchmarks to our dataset; lastly, Section 6 provides a summary of the key
findings and brings the paper to a conclusion.

2 Background

This section provides background information on the key topics of this study. We will
first introduce real estate investments, and then present the Modern Portfolio Theory
(MPT), on which our portfolio optimisation strategy is based. Lastly, we will discuss
Technical Analysis Indicators (TAIs), which will form part of the machine learning
algorithms’ feature set.

2.1 Real estate investments

Real estate investments refer to the acquisition, ownership, management, and sale of
real property with the primary goal of generating income and/or capital appreciation
[24]. Real property includes land, buildings, and any improvements made to them. Real
estate investments can take various forms, such as residential properties, commercial
buildings, industrial facilities, and undeveloped land.

Investing in real estate markets confers great advantages. First, when managing
portfolio risk, real estate investments are an excellent choice of asset to include in
a diversification strategy making use of asset allocation. Historically, real estate has
demonstrated relative stability and lower volatility compared to other investment
classes, such as stocks or bonds [24]. The tangible nature of real estate assets and the
underlying demand for housing and commercial spaces contribute to this stability.

Furthermore, one of the main attractions of real estate investments is the poten-
tial for property value appreciation over time. Studies have shown that, on average,
real estate tends to appreciate in value over the long term [25]. Factors such as loca-
tion, economic growth, supply and demand dynamics, and property improvements can
influence the rate of appreciation.

A further benefit of investing in real estate is that it can generate regular cash flow
through rental income. Rental properties, such as residential apartments or commercial
spaces, can provide a steady stream of income that can be used for expenses, debt
service, or reinvestment [26]. The positive cash flows that can result from real estate
investments in this manner can contribute greatly to achieving financial goals and the
building of long-term wealth.

An investor can gain exposure to real estate markets in two main ways: direct
and indirect investments. Direct real estate investments involve acquiring and owning
physical properties directly. In this case, investors directly own the properties and have
control over their management, operations, and decision-making. Direct investments
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offer the potential for higher returns, direct cash flow from rental income, tax benefits,
and more control over the investment. However, they also involve more hands-on
management, higher transaction costs, and risk exposure concentrated on individual
properties [26].

Indirect real estate investments involve investing in real estate through financial
instruments or intermediaries, such as real estate investment trusts (REITs), real
estate mutual funds, real estate exchange-traded funds (ETFs), or real estate lim-
ited partnerships. Investors own shares or units of these investment vehicles rather
than owning physical properties directly. Indirect investments are managed by profes-
sional fund managers who oversee the portfolio, property acquisition, and management
activities. In this way, indirect investments provide access to real estate markets and
opportunities that might otherwise have been difficult for individual investors to access
directly [24].

The remainder of this section is structured as follows. Section 2.1.1 presents an
overview of the current sectors existing in the real estate market, while Section 2.1.2
describes a specific kind of publicly traded real estate investment entities known as
Real Estate Investment Trusts (REITs), since they represent the primary focus of this
article.

2.1.1 Real estate markets

Real estate markets are a vital component of the global economy, and they include
various sectors that serve diverse purposes. The main real estate sectors include the
following: (a) residential real estate; (b) commercial real estate; (c) industrial real
estate; and (d) raw land.

The residential real estate sector involves properties used for residential purposes,
such as single-family homes, condominiums, apartments, and townhouses. Residential
real estate is usually characterised by factors such as location, size, and style, which
reflect the needs of homeowners, renters, and real estate investors. Factors like popu-
lation growth, employment rates, and mortgage interest rates significantly impact the
demand for residential real estate.

Commercial real estate includes properties used for business activities, such as
offices, retail spaces, hotels, and warehouses. It is divided into sub-sectors like office,
retail, industrial, and hospitality, each with its own unique characteristics and chal-
lenges. The performance of the commercial real estate sector is closely tied to economic
indicators, including consumer spending, corporate expansion, and business sentiment.

Industrial real estate is dedicated to facilities used for manufacturing, warehousing,
and distribution of goods. It includes factories, distribution centres, and logistics hubs.
The growth of e-commerce and changes in supply chain dynamics have significantly
influenced the industrial real estate sector, leading to increased demand for modern
distribution centres and last-mile delivery facilities.

Finally, raw land is undeveloped, vacant land that has not been improved or built
upon. It represents a potential opportunity for future development. Investors, devel-
opers, and speculators often buy raw land with the intention of holding it until market
conditions are favourable for development, or they may develop it themselves. The
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value of raw land can vary significantly based on its location, zoning regulations, and
its potential for development.

2.1.2 Real Estate Investment Trusts

Real Estate Investment Trusts (REITs) are entities that manage, fund, or possess
income-producing real estate assets. Well-known REITs include Realty Income Corpo-
ration (O), Digital Realty Trust, Inc (DLR), and Simon Property Group, Inc (SPG),
among others. Through investing in REITs, regular investors can participate in real
estate investments and exploit the benefits of competitive returns and dividend-based
income without the large capital expenditure that direct real estate investment requires
[27].

Investing in REITs is similar to investing in other financial markets, and there
are various ways investors can do so. Some options include purchasing individual
company stocks, mutual funds, or exchange-traded funds (ETFs). To identify suitable
REIT investments, investors may consult with a broker, financial adviser, or planner
to establish their financial objectives. A 2020 study conducted in the US by Chatham
Partners1 showed that approximately 80% of financial advisers recommend REITs to
their clients. Additionally, investors can consider investing in private REITs or public
non-listed REITs.

The ownership of some properties is transferred to investors who hold shares in
REITs, allowing them to earn a share of the income generated without needing to
purchase, manage, or finance the property. Optimal portfolio allocation for REITs has
been studied extensively, with studies such as those conducted by [28], [29], and [30]
suggesting that REIT investment should typically make up between 5% and 15% of an
investment portfolio. This weighting may vary depending on the investment horizon,
with research by [31] and [32] highlighting that the diversification potential of REITs
increases over longer holding periods.

REITs typically invest in a variety of real estate properties, including but not lim-
ited to, offices, apartments, warehouses, retail centres, medical facilities, data centres,
cell towers, infrastructures, and hotels. While some REITs focus on a particular type
of property, others may have portfolios that comprise multiple property types.

REITs primarily generate income by leasing properties and receiving rent pay-
ments, which are then distributed to shareholders in the form of dividends. In the US,
REITs are required to pay at least 90% of their taxable income to shareholders, who
are then responsible for paying taxes on those dividends.

Investors find REITs an appealing investment choice because of their competitive
returns, which come from a mix of steady income and long-term capital appreciation,
as well as their low correlation with other asset classes. This attribute provides an
opportunity for portfolio diversification, making portfolios that include REITs less
risky than those without, as illustrated in Section 5.

There are several REIT types, including Equity REITs (e-REITs), Mortgage
REITs (m-REITs), Public Non-Listed REITs, and Private REITs. The most common
type of REITs on the market are Equity REITs, which own or operate income-
producing real estate. Mortgage REITs (mREITs) finance income-producing real

1https://www.reit.com/investing/why-invest-reits
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estate by purchasing or creating mortgages and mortgage-backed securities, earning
interest-based income from these investments. For example, in the US, public non-
listed REITs are registered with the U.S. Securities and Exchange Commission (SEC)
but do not trade on national exchanges, whereas private REITs are not traded on
national exchanges and are exempt from SEC registration.

Like other financial markets, REIT share prices fluctuate throughout the trading
day. The value of REIT shares is influenced by various factors such as expected earn-
ings growth, expected total returns, dividend yields compared to other yield-oriented
investments like bonds or utility stocks, dividend payout ratios, management quality,
corporate structure, and the underlying asset values of the real estate and mort-
gages. REIT market values are represented by different indices, including the FTSE
EPRA/Nareit US Real Estate Index, which contains specific REIT companies oper-
ating in the US. This study focuses on publicly listed equity REITs (e-REITs) like
American Tower Corporation (AMT), Prologis (PLD), Crown Castle (CCI), Public
Storage (PSA), andWelltower (WELL) that hold various types of real estate properties
such as infrastructure, offices, shopping malls, and others.

2.2 Modern Portfolio Theory

Modern portfolio theory (MPT) is a framework for constructing and managing invest-
ment portfolios, based on the idea that investors can minimise risk for a given level of
expected return through ‘asset allocation’ i.e., the act of diversifying their investments
across a range of asset classes [33]. The theory suggests that an investor can minimise
risk by spreading their investments across different asset classes, such as stocks, bonds,
and real estate, rather than investing in a single asset class. MPT uses mean-variance
analysis to measure risk and return [34].

MPT assumes that investors are rational and risk-averse, meaning that they prefer
less risk for a given level of return [35]. The theory has been widely used in the
investment industry for portfolio construction and management, but it has also been
criticised for its assumptions, such as the assumption that returns follow a normal
distribution and that investors are rational and risk-averse [36].

Despite its criticisms, MPT has had a significant impact on the investment industry
and remains a widely used framework for portfolio management [37].

In MPT, the two key factors used for making investment decisions are the expected
portfolio return and the expected portfolio risk. The expected return of an asset is the
average return that an investor expects to receive from that asset over a specific period
of time. The expected return of a portfolio is calculated by weighing the potential
return of each asset in the portfolio by the percentage of the portfolio invested in each
asset [33].

The formula for calculating the expected return of a portfolio can be represented
as:

E[Rp] =

n∑
i=1

wiE[Ri] (1)
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where: E[Rp] is the expected return of the portfolio; wi = the weight of the ith

asset in the portfolio; and E[Ri] = the expected return of the ith asset (out of a total
of n assets).

Risk in MPT is typically measured using standard deviation, which is a statistical
measure that indicates the degree of variation of returns around the expected return
[33]. The expected risk of a portfolio is calculated as follows:

σp =

√√√√ n∑
i=1

n∑
j=1

wiwjσiσjρi,j (2)

where: σp is the expected risk (standard deviation) of the entire portfolio; wi is
the weight of the ith asset in the portfolio; σi is the standard deviation of the ith asset
and ρi,j is the Pearson correlation coefficient between two assets in the portfolio.

In MPT, correlations between assets are important in determining the optimal
portfolio for an investor. Correlation is a measure of the strength and direction of
the linear relationship between two variables, and in MPT, it is used to measure the
degree to which the returns of two assets move together [33].

The formula for calculating the correlation between two assets can be represented
as:

ρi,j =
cov(Ri, Rj)

σiσj
(3)

where: ρi,j is the correlation between assets i and j; cov(Ri, Rj) is the covariance
between the returns of assets i and j; σi is the standard deviation of the returns of
asset i; and σj is the standard deviation of the returns of asset j.

A high correlation between two assets indicates that their returns tend to move in
the same direction, while a low correlation indicates that their returns tend to move
independently of each other.

In MPT, diversification is used to reduce risk by investing in assets that are not
perfectly correlated with each other. By investing in a diverse portfolio of assets with
low correlations, investors can reduce the overall risk of their portfolio.

In conclusion, MPT assumes that an optimal portfolio can be built using infor-
mation gleaned from the expected return, risk, and correlations between assets. An
investor is primarily concerned about maximising the expected return for a given level
of risk, or minimising the expected risk for a given level of return. The overall level of
correlation between assets included in a portfolio determines the level of diversification,
and thus the level of risk of an investment portfolio.

2.3 Technical Analysis

Technical analysis (TA) is a method used in the financial markets to evaluate and
forecast the future price movements of various assets, such as stocks, currencies, and
commodities. Traders and investors rely on this methodology to gain insights for
informed decision-making regarding the buying, selling, or holding of various financial
assets, including stocks, currencies, and commodities [38].
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(TA) is a commonly employed method that entails the analysis of past price and
volume information in financial markets to forecast future price fluctuations.

One of the key principles of TA is the belief that market prices follow trends and
patterns, and that these trends can be identified and utilised for predictive purposes.
Technical analysts utilise a wide range of tools and techniques to analyse market data,
including chart patterns, statistical models, and technical analysis indicators — the
latter of which constitutes the focus for this work.

Chart patterns are visual representations of historical price movements that can
provide insights into future price direction. Examples of commonly used chart patterns
include the Head and Shoulder, Double Top, and Triangle patterns [39]. These patterns
are often believed to indicate potential reversals or continuations in price trends.

Statistical models can be used to forecast future price movements. These models
often involve the use of regression analysis, time-series analysis, and other statistical
techniques to identify relationships and trends in the data.

Technical analysis indicators (TAIs) are mathematical calculations based on his-
torical price and volume data. They are used to generate trading signals and identify
potential buying or selling opportunities. Some of the most popular TAIs, including
Moving Averages, Moving Average Convergence Divergence (MACD), Bollinger Bands
(BB), and Momentum [40–43], are used in this study.

While technical analysis is widely employed in financial markets, it is not without
its critics. Some argue that it is based on subjective interpretations and lacks a solid
theoretical foundation [44]. Others contend that it is a self-fulfilling prophecy, as the
actions of market participants following TA patterns can create the predicted price
movements. Nevertheless, technical analysis continues to be popular among traders
and investors, and numerous studies have explored its effectiveness; e.g. [45] used
TAIs in combination with sentiment analysis to produce effective trading strategies;
[46] used technical analysis alongside indicators derived from an event-based system,
in the context of a multi-objective optimisation approach; [47] incorporated technical
analysis into a portfolio strategy where optimal weights were directly parameterised
as a function of multiple trend-following signals.

In summary, technical analysis is a well-established approach in financial markets,
which implies examining historical price and volume data to anticipate future price
changes. It utilises chart patterns, statistical models, and technical analysis indicators
to detect trends and patterns within the data. Despite criticism, research has demon-
strated its potential effectiveness under specific market conditions. Notably, prior to
this study, there has been no investigation into the application of Technical Analy-
sis Indicators (TAIs) for predicting REIT prices. Thus, this research seeks to assess
their potential utility in enhancing the precision of price predictions in this particular
domain.

3 Methodology

The methodology of this study relies on two main stages: (i) price prediction, where we
use different machine learning algorithms that include Technical Analysis Indicators
(TAIs) in their feature set; and (ii) portfolio optimisation, where the predicted prices
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from the above step are used as input to a portfolio, whose weights are optimised by
means of a Genetic Algorithm.

This section will provide a comprehensive explanation of the two steps mentioned
above. Section 3.1 describes the nature of the data in general terms; Section 3.2 dis-
cusses the pre-processing steps that were necessary for deriving the feature set; Section
3.3 presents the features used in our experiments; Section 3.4 presents the machine
learning algorithms used in our experiments; Section 3.5 discusses the loss function
chosen; and lastly Section 3.6 explains the setup of the Genetic Algorithm, which was
used for the portfolio optimisation task. Sections 3.2 - 3.5 correspond to the first step
(price prediction) of our methodology, whereas Section 3.6 corresponds to the second
step of our methodology (portfolio optimisation via a Genetic Algorithm).

3.1 Data

In this study, we consider a number of datasets2 from financial instruments in relation
to three asset classes — namely: stocks, bonds, and REITs; and three different markets
— namely: United States (US), United Kingdom (UK), and Australia (AU). To avoid
currency risk, all data is obtained as US dollars (USD). For more details regarding
the exact number and specifics of the actual data used in our experimental setting,
see Section 4.1 later on.

Each dataset is then further subdivided into three subsets, contiguous in time: a
training set, which serves as the portion of the data that will be used to train the
machine learning model; a validation set, which is used to select optimal hyperparam-
eters for the model; and a testing set, which serves as the unseen part of data that is
used for the final evaluation step, after the model has tuned and trained.

3.2 Data preprocessing

Data coming from an asset’s daily-price time-series cannot be plugged directly into the
algorithms (see under ARIMA in section 4.3.1 for an explanation as to why this is the
case). Therefore, we perform a process of differencing and scaling on the time-series
data associated with each asset. Differencing, a significant technique in time-series
analysis, involves calculating the difference between successive observations within a
time-series. This step proves valuable in eliminating trend and seasonality components
inherent in time-series data, which can complicate modelling and analysis. First-order
differencing involves subtracting the value of the previous timepoint from the current
timepoint; this is represented mathematically as:

Dt = Pt − Pt−1 (4)

where Pt is the value of the time-series at time t, and Dt is the differenced time-
series at time t. In cases where trend and seasonality components remain after initial
differencing, it is possible to employ higher-order differencing. The selection of the
differencing order is related to the unique attributes of the analysed time-series. For
the scope of this paper, we exclusively focus on first-order differencing.

2In the context of this study, the word ‘dataset’ is used to refer to a single time-series of daily prices for
a given asset
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Table 1: Example of time-series differencing
and scaling.

t Pt Pt−1 Dt Nt Nt−1 Nt−2

t1 3.77 - - - - -
t2 3.69 3.77 -0.08 0.30 - -
t3 3.7 3.69 0.01 0.70 0.30 -
t4 3.6 3.7 -0.1 0.22 0.70 0.30
t5 3.68 3.6 0.08 1 0.22 0.70
t6 3.53 3.68 -0.15 0 1 0.22
t7 3.54 3.53 0.01 0.70 0 1

Legend : t represents the time steps; Pt represents the security’s price at time t;
Pt−1 represents the one-lag value of Pt;Dt represents the differenced value at time t;
Nt represents the value of Dt following standardisation, Nt−1 the value of
Dt−1 following standardisation, etc.

After obtaining Dt, the values are further standardised to the range [0, 1], by using
the following scaling transformation:

Nt =
(Dt −Dmin)

(Dmax −Dmin)
(5)

where Nt is the standardised value of each variable (in this case the differenced price
Dt), and Dmin and Dmax are the minimum and maximum values respectively, that
result from the differencing of the relevant asset’s time-series. We note that under
this transformation, price analysis is equivalent to a holding-period-returns analysis,
since the latter time-series is simply a linear transformation of the former, and thus
differencing and then normalising either yields the same dataset of normalised values.

In Table 1, we present an illustration of the differencing and scaling processes using
sample data for the SPG time-series spanning from January 1, 2021, to January 15,
2021.

3.3 Features

The two features that we use to tackle our regression problem are: (i) historical obser-
vations (i.e., ‘lags’) of the time-series variableNt; and (ii) Technical Analysis Indicators
(TAIs). Thus, the feature vector (i.e. inputs) for all ML models consists of the TAIs
values obtained from the original time series, concatenated with the historical values.

3.3.1 Past observations (lags)

For the first type of features, we incorporate n past observations ofNt, i.e.,Nt−1,Nt−2,
Nt−3, ...,Nt−n, where the number of lags n is determined using the Akaike Information
Criterion (AIC). The optimal value for n corresponds to the optimal parameter p
in the ARIMA model, while AIC is commonly employed for model selection [48–50].
In other words, the number of lags n is obtained as a result of the hyperparameter
optimisation process for the ARIMA model, which is then applied identically to all
algorithms in our study; this varies for each dataset, and thus determines the overall
number of features in each case. This process is further explained in Section 4.3.1.
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Table 2: Example of feature selection (lagged
observations).

t Nt Nt−1 Nt−2 Nt−3 Nt−4 Nt−5

t2 0.30 - - - - -
t3 0.70 0.30 - - - -
t4 0.22 0.70 0.30 - - -
t5 1 0.22 0.70 0.30 - -
t6 0 1 0.22 0.70 0.30 -
t7 0.70 0 1 0.22 0.70 0.30

Table 2 provides an illustration of lagged observations for a selected number of lags
(n = 5).

3.3.2 Technical Analysis Indicators (TAIs)

In addition to historical data points, we incorporate five Technical Analysis Indicators
(TAIs) at each timepoint — Simple Moving Average (SMA), Exponential Moving
Average (EMA), Moving Average Convergence/Divergence (MACD), Bollinger Bands,
and Momentum — as recommended in previous studies such as [16, 50, 51]. These
indicators play a crucial role in identifying both short-term and long-term trends
within a time-series, making them valuable tools for the prediction of prices.

Simple Moving Average:

The Simple Moving Average (SMA) is commonly employed to predict future data
points by providing an estimate of a time-series’ level [52]. Mathematically, the SMA
can be expressed as the weighted average of the past T prices, and it is represented as:

SMA(t) =

t∑
i=t−(T−1)

[
Ni

]
T

, (6)

where Nt is the normalised price at time i, and T is the number of timepoints consid-
ered. In Python, we calculate the SMA using the rolling method3. It is important
to note that the period of interest T used for window-averaging is independent of
the number of lags n, which determines the number of historical timepoints used for
training purposes.

Exponential Moving Average:

The Exponential Moving Average (EMA) is a similar technique to the SMA, but
with the key difference being that it considers all past observations, with weights that
decay exponentially as a function of the distance in time between each observation
and the current timepoint. More recent observations are given greater weight than
older observations. The EMA is typically expressed through the following difference
equation:

3https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html Last
accessed: June 2023.
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EMA(t) = αNt + (1− α) EMA(t− 1), (7)

where α is a parameter representing the amount of weight decay applied at each
timestep. α is calculated as α = 2/(T + 1), where T is the period of interest. It can
take any real value between 0 and 1, with lower values assigning more importance to
past information, and higher values indicating less importance given to past prices. In
Python, we calculate the EMA using the ewm method4.

Moving Average Convergence/Divergence:

The Moving Average Convergence/Divergence (MACD) indicator is a measure of the
difference between a short-term and a long-term Exponential Moving Average (EMA).
It is useful for identifying bullish moments (i.e. periods characterised by notable market
price increase relative to historically lower or more stable prices), or bearish moments
(i.e. periods characterised by notable market price decrease compared to historically
higher or more stable prices). To calculate the MACD, we select an H-day denoting
the start of a longer, ‘historical’ period (lasting until the present day), and an R-
day (closer in time to the present day compared to the H-day), denoting the start of
a shorter, more ‘recent’ period. The ‘recent’ period typically represents a period of
interest, whose trend one wishes to compare against the longer, ‘historical’ period, in
order to identify a change in market trend as compared to historical levels. This is
done by first obtaining EMAs for both periods; the MACD is then obtained as the
difference between the ‘recent’ EMA compared to the ‘historical’ one [53]:

MACD(t) = EMAR(t)− EMAH(t) (8)

Bollinger Bands:

Bollinger Bands (BB) are defined as a price range around the Simple Moving Average
(SMA) price at time t, obtained as follows: first, we compute the standard deviation
of all observations (i.e. with respect to the SMA), within a period of interest T , where
T is typically the same period used to calculate the SMA. This is then multiplied by a
modifier D, which determines the number of standard deviations away from the mean
we want to set our range to. This is represented mathematically as follows:

BB(t) = SMA(t)±D

√√√√(
1

T

) t∑
i=t−(T−1)

[
Ni − SMA(t)

]2
(9)

Bollinger Bands are a useful tool for assessing whether the current price of a
security shows a substantial deviation, indicated by a measurement of D standard
deviations, from its mean. Additionally, they can assist in recognising whether the
price is likely to either increase or return to its average level.

4https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ewm.html Last
accessed: June 2023.
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Table 3: Example of feature selection (TAIs).

t SMA EMA MACD
Upper
band

Lower
band

Momentum

t2 - 0.15 - - - -
t3 - 0.43 - - - -
t4 - 0.32 0.19 0.53 0.28 -
t5 0.41 0.66 0.15 0.80 0.48 0.70
t6 0.64 0.33 0.18 0.59 0.23 0.70
t7 0.41 0.52 0 0.78 0.35 0.48

Momentum:

The Momentum indicator [43] is determined by taking the difference between the price
at time t and the price from T periods ago, as illustrated below.

Momentum = Nt −Nt−T (10)

This metric serves as a reliable indicator of the strength of a price trend, enabling
the estimation of the future direction of a time-series.

Table 3 shows the TAIs computed for the preprocessed data described in Table 1.
Specifically, we compute the 3-day Simple Moving Average (SMA), the Exponential
Moving Average (EMA) with α = 0.5, the Moving Average Convergence/Divergence
(MACD) as the difference between the 3-day EMA and the 6-day EMA, the upper
and lower Bollinger Bands using the 3-day SMA and the standard deviation of the 3-
day SMA multiplied by 0.5, and the Momentum as the difference between the current
price Nt and the price Nt−T that was observed T = 5 timepoints before t.

In total, we use these six TA-based features together with the lag-based features,
resulting in n+ 6 features for our regression task.

3.4 Machine learning algorithms

Once the relevant features have been extracted from all datasets, we feed them to our
‘bag’ of machine learning models5 in order to solve our price prediction problem. For
each model, we obtain two variants: one that incorporates TAIs in its feature set and
one that does not. This allows us to compare the performance between the two variants
for each dataset and assess the importance of including TAIs in the feature set.

Our ‘bag’ of machine learning models comprises a diverse set of regression algo-
rithms selected from the Machine Learning (ML) literature, including: Ordinary
Least Squares Linear Regression (LR) [54], Support Vector Regression (SVR) [55],
eXtreme Gradient Boosting (XGBoost) [56], Long/Short-Term Memory Neural Net-
works (LSTM) [57], and k-Nearest Neighbours Regression (KNN) [58]. The following
python libraries/functions were used for this purpose:

• sklearn.linear model.LinearRegression
• sklearn.svm.SVR
• xgboost.XGBRegressor

5For the purposes of this study, our operational definition of a ‘machine-learning’ (ML) model is any
optimisation algorithm from the machine-learning or statistics literature, that can accept arbitrary features
(such as TAIs) for training, as opposed to statistical methods that operate on lagged values exclusively.
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• keras.models.Sequential
• sklearn.neighbors.KNeighborsRegressor

In all cases, optimal model hyperparameters are determined through ‘grid search’
(see Section 4.2 for details). Once optimal hyperparameters are established, a model
is trained one last time on the expanded set of training + validation data combined
and then used to make predictions on the test set.

3.5 Evaluation metrics

All of the above algorithms use the root mean square error (RMSE) as the loss
function, defined as follows:

RMSE =

√∑|j|
i=1(Pi − P̂i)2

|j|
, (11)

where Pt refers to the actual price value, P̂t is its predicted value, and |j| denotes the
number of observations in each dataset j (i.e., in other words, we obtain one RMSE
value per dataset). Note that the RMSE here expresses the prediction error in terms
of US dollars, and thus needs to be calculated on the basis of the original price data
(i.e., Pt), rather than the scaled data (i.e., Nt); therefore, it was necessary to reverse
the scaled values to their original price values to compute the RMSE in a meaningful
manner (cf. Section 3.2). We primarily express RMSE in terms of US dollars here to
make the numbers involved more intuitive; however, we note that there is a linear
relationship between this RMSE and one calculated with respect to scaled values, and
therefore the latter evaluation would have been equivalent.

We evaluate all algorithms using two out-of-sample prediction methods—one
relying on long-term prediction on the basis of fixed information and intermediate
predictions, and one relying on consecutive short-term predictions on the basis of con-
tinuously updated information. Both methods are evaluated over the same range of
time periods, namely 30, 60, 90, 120, and 150 days.

Long-term out-of-sample prediction:

In this method, the known closing prices from all historical time points up until our
starting point of interest, t0 (with closing price N0 respectively), are used to train a
model, which is then used to predict the closing price for the next day (i.e., price N̂1,
corresponding to time point t1). Once this is obtained, the model is retrained, with
N̂1 incorporated into the training dataset, as if it were the ‘known’ price at time t1;
this model is then used to predict the price for the next time point (i.e., price N̂2

corresponding to time point t2). N̂2 is then used to predict N̂3 in the same manner,
and so forth, until the final time point in the evaluation period of interest is reached.
We will refer to this evaluation method simply as out-of-sample prediction henceforth
in the text.

Consecutive one-day-ahead predictions:

In this case, when it comes to predicting the closing price N̂1 corresponding to time
point t1, we use the known closing prices from all historical time points up until
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t0, just as we did before. However, when it then comes to predicting the next item
(i.e., the closing price N̂2 corresponding to time point t2), instead of incorporating
the predicted price, N̂1 to our training set at position t1, we simply incorporate the
true, known closing price, N1, to the training dataset at that position instead; the
updated model is then used to predict the price for the next time point (i.e., N̂2 for
position t2), much like before. The known N2 is then used to predict N̂3 in the same
manner, and so forth, until the final time point in the evaluation period of interest is
reached. We will refer to this evaluation method simply as one-day-ahead prediction
henceforth in the text.

Our expectation is to achieve higher prediction accuracy by adopting the second
technique. However, it is a suitable technique to evaluate the performance, which is
meaningful in the context of portfolios that follow a short-term trading strategy that
needs to be adjusted according to the current market conditions. Conversely, the first
approach is more suitable as an evaluation strategy in the context of investors with
long investment horizons, who might thus only rebalance their portfolios periodically
or adjust their investment strategies based on evolving market conditions.

3.6 Portfolio optimisation using a Genetic Algorithm

Once we have solved our price prediction problem, the subsequent stage involves incor-
porating the obtained prices into a portfolio. As previously indicated, our portfolio
includes three different asset classes, namely REITs, stocks, and bonds. Our primary
goal is to demonstrate that, in the case of portfolio optimisation, the use of predictive
models that consider both historical prices and TAIs as part of their feature set yields
portfolios with better performance, compared to when using models that rely on past
prices only.

For the optimisation of each asset’s weight within the portfolio, we employ a
Genetic Algorithm (GA). GAs, a subset of Evolutionary Algorithms, draw inspiration
from the field of Genetics and the principle of natural selection. They are designed
to emulate the way living organisms evolve and adapt over time, mirroring the pro-
cesses that enable genes to evolve across generations, resulting in the development of
increasingly ‘fit’ organisms. When provided with appropriate definitions that extend
the concepts of ‘genes’ and ‘fitness’ to a specific problem domain, GAs prove effective
in tackling challenging optimisation tasks [59]. One of the prominent advantages of
Genetic Algorithms is their capacity to handle complex, high-dimensional optimisa-
tion problems that may pose challenges for traditional optimisation techniques [60].
They have been successfully applied in diverse domains, including algorithmic trading
[61], engineering design [62], financial portfolio optimisation [63], and image recogni-
tion [64]. In the following discussion, we explore the standard components of a Genetic
Algorithm and how they were adapted and applied to our particular problem domain.

Representation:

The first step in our GA implementation is to create an initial set of solutions tai-
lored to the specific problem, which is known as ‘initialisation’. During this stage, we
create an initial population, and each individual in this population is represented as
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a ‘chromosome’. In the case of portfolio optimisation, each chromosome is composed
of N ‘genes’ which correspond to N weights given to the assets that form our port-
folio. Each of these weights is represented as a real number within the range of 0 to
1 and must collectively sum to 1, reflecting the entire 100% of the total capital that
an investor intends to invest in the complete portfolio. For instance, let’s consider a
chromosome with N = 4 and genes [0.5, 0.2, 0.1, 0.2]. This configuration implies a
portfolio composed of four assets, with the first asset receiving 50% of the total capi-
tal, the second asset allocated 20%, the third assigned 10%, and the final asset given
the remaining 20%. In the initial configuration, each gene is assigned an equal weight
(i.e.,Wi = 1/N for each asset i). Subsequently, such weights are adjusted using specific
operators during the evolutionary process.

Operators:

In our method, we make use of three well-established GA operators to produce fresh
individuals as part of the evolutionary process: elitism, one-point crossover, and one-
point mutation. Elitism is employed to safeguard the top-performing individuals, while
crossover and mutations serve to introduce new genetic material. By combining these
operators, we create diverse populations that may contain optimal solutions. Following
the application of crossover and mutation operators, we perform a renormalisation of
each GA individual. This step ensures that the sum of the weights assigned to assets
within each individual continues to equal 1, reflecting the total capital to be invested
in the portfolio.

Fitness function:

In the training phase, we evaluate the performance of GA individuals using a fitness
function. In the current literature, different metrics have been utilised as fitness func-
tions to address portfolio optimisation problems. In our research, we utilise the Sharpe
Ratio as our fitness function. The Sharpe Ratio is determined as the ratio of the dif-
ference between the mean return and the risk-free rate to the standard deviation of
returns. Specifically, the Sharpe Ratio is calculated using the following formula:

S =
r − rf
σr

, (12)

where: r represents the average return on the investment. rf is the risk-free rate, which
denotes the minimum return expected from an investment with zero risk of default,
such as government bonds. σr signifies the standard deviation of returns. The average
return for each asset is computed as the simple average of its returns over time, using
the following formula:

r =

∑N
i ri
N

. (13)
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Here, ri represents the return observed at each time point i, and N is the total num-
ber of observations during the training period. Additionally, the standard deviation
of returns is determined as the square root of the average of the squared differ-
ences between the average return and each observed return, as shown in the following
formula:

σr =

√∑N
i (r − ri)2

N
. (14)

We defer the discussion about which algorithms and benchmarks were considered
and compared during the optimisation process, the specific time periods, and the range
of metrics used for evaluating and comparing their performance to Sections 4.3.2 and
5.2.

4 Experimental setup

The primary objective of this study is to showcase the advantages of incorporating
TAIs into the feature set of ML algorithms used for predicting REIT prices. To achieve
this, we have broken down the above goal into two sub-goals: (i) to demonstrate
that the use of TAIs leads to a significant reduction in the regression error, and (ii)
to illustrate that the incorporation of TAIs results in a notable enhancement in the
financial performance of an investment portfolio that includes REITs.

The following sections outline our experiments in detail: Section 4.1 presents the
data used in our study; Section 4.2 discusses how hyperparameter tuning was per-
formed in the ML algorithms; and Section 4.3 provides a comprehensive analysis of
the benchmark models used in our experiments.

4.1 Data

We gathered the daily closing price data for our experiments from the Eikon Refini-
tiv database6, corresponding to financial instruments across three countries (US, UK,
and Australia), and three asset classes (stocks, bonds, and real estate), spanning the
period from January 2019 to July 2021. The selection of the US, UK, and Australia
was justified by their well-developed and highly liquid financial markets. Additionally,
these countries represent different geographical regions and economic environments,
allowing for a comprehensive examination of the predictive capabilities of our mod-
els across varied market conditions. The diversity of those markets also allows for
lower correlation among the selected markets, representing an advantage for investors
seeking to diversify their portfolios and reduce risk.

The consideration of three asset classes (stocks, bonds, and real estate) is justified
by their different characteristics and roles within an investment portfolio. Stocks are
typically associated with higher returns but also higher volatility, while bonds provide
more stable returns with lower risk. Real estate, through Real Estate Investment

6https://eikon.refinitiv.com — Last access: July 2023.
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Trusts (REITs), often offers the benefit of diversification due to its historically lower
correlation to stocks and bonds. This combination allows for a more comprehensive
analysis of the predictive performance of the machine learning algorithms and an
enhanced performance of the portfolio built from those assets.

For each of the resulting nine ‘country/asset-class’ pairs above, we obtained asset-
price data from 10 different assets within that category (in other words: 10 stocks,
10 bonds, and 10 REITs from each country), resulting in a dataset pool consisting
of a total of 90 datasets (refer to Table 4). The selection of the ten assets in each
category was based on market capitalisation (as assessed on 1st January 2019), to
ensure that the chosen assets are among the largest and most liquid (i.e. in terms of
trading volume) in their respective markets and provide a representative sample for
our analysis. The reason for considering only ten assets within each category in the
first place relates to the limited availability of suitable data for study: while data for
stocks were available for the 2017-2021 period, there was a more limited number of
datasets available for the same time frame regarding REITs and bonds. Therefore, the
fact that in some markets (especially the UK and Australia), there were few companies
with enough data for our period of study (i.e. from 2019 to 2021) naturally forced a
constraint on the number of datasets to ten for each market and each asset class.

The datasets have been split in the following way: the training period is between
January 2019 and July 2020, i.e. for 19 months (corresponding to 218 data points); the
validation period is between July 2020 and January 2021, i.e. for 5 months (resulting
in 110 data points); and the testing period is between January 2021 and July 2021, i.e.
for 7 months (resulting in 154 data points). While the number of data points resulting
from the above timeline may seem somewhat limited, this choice was motivated by
the need to ensure consistency across the asset classes (REITs, stocks, and bonds),
given the limited availability of data simultaneously present across all three of them.
It is worth noting that some REITs, such as AEWU and AGRP in the UK and CHC
in Australia, entered the market relatively recently (2019), which constrained the
available data to that year onwards. Similarly, some bonds ETFs also began trading
recently, including AFIF, HOLD, KORP, and NFLT in the US; AGPH and DTLE
in the UK; and HBRD and VBND in Australia. Given that price predictions are
subsequently used for portfolio optimisation, it is crucial that all datasets cover the
same time period. Since some REITs only began trading in 2019, we needed all asset
classes’ data to start from that year.

We remind the reader that in the context of this study the word ‘dataset’ is used to
refer to a single time-series of daily prices for a given asset. To mitigate currency risk,
we obtained all data denominated in USD. The currency conversion for each dataset
was based on daily exchange rates provided by Eikon Refinitiv for the considered
period (2017-2021).

It is worth recognising that numerous price series datasets can exhibit substantial
fluctuations, especially in the case of stocks and REITs. As an example, refer to Figure
1, illustrating the time-series US REIT closing prices for the period spanning from
1st January 2021 to 1st July 2021. This figure clearly illustrates significant downward
variations in the trend. These fluctuations have the potential to affect the performance
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Table 4: Eikon Refinitiv tickers used.

US UK Australia

Stocks

AAPL, AMZN, BRKb,
GOOGL, JNJ, META,
MSFT, NVDA, TSLA, UNH

AZN, BATS, BP, DGE,
GLEN, GSK, HSBA, RIO,
SHEL, ULVR

ANZ, BHP, CBA, CSL,
FMG, MQG, NAB, WBC,
WES, WOW

Bonds

AFIF, HOLD, IBMN,
IUWAA, JNK, KORP, LQD,
LQDI, NFLT, RIGS

AGPH, CCBO, DTLE,
EMDD, EMES, ERNA,
ERNS, FLOS, IHYG, SDHY

CRED, HBRD, IAF, QPON,
RCB, RINCINAV, VACF,
VAF, VBND, VGB

Real Estate

AMT, AVB, CCI, DLR,
EQIX, PLD, PSA, SBAC,
SPG, WELL

AEWU, AGRP, BLND,
BYG, CAL, CREI, CSH,
CTPT, DLN, EPICE

BWP, CHC, DXS, GMG,
GOZ, GPT, MGR, SCG,
SGP, VCX

Fig. 1: US REIT time-series. The x-axis represents time in days; the y-axis refers to
the price value in USD.

of certain algorithms, particularly ARIMA (one of our benchmark models), which
heavily relies on assumptions of stationarity.

Table 5 shows summary statistics referring to the daily return distributions cate-
gorised by each of the nine asset classes we have taken into account. The term ‘return’
in this context is used specifically to refer to the quantity (Nt −Nt−1)/Nt−1, i.e. the
relative rate of returns, which is the difference between an asset’s normalised price dif-
ference on a particular day compared to the day before, expressed as a percentage of
the latter. For each asset class, we computed the mean, median, standard deviation,
interquartile range, and maximum-minimum range to summarise the return distribu-
tions. Each asset within an asset class was given an equal weight, and the summary
statistics were calculated based on the training period.
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Table 5: Summary statistics for different asset classes. Values in bold denote
the best values for each column.

Average Median Std Dev IQR Max-Min
AU bonds 1.97 × 10−4 3.15 × 10−4 5.70 ×10−3 3.00 ×10−3 9.54 ×10−2

AU REITs 7.35 × 10−4 1.20 × 10−3 2.44 × 10−2 1.87 × 10−2 2.95 × 10−1

AU stocks 2.00 ×10−3 1.80 ×10−3 2.44 × 10−2 2.14 × 10−2 2.59 × 10−1

UK bonds 2.38 × 10−4 3.86 × 10−4 7.90 × 10−3 5.70 × 10−3 1.12 × 10−1

UK REITs 7.11 × 10−5 4.35 × 10−4 2.56 × 10−2 2.14 × 10−2 3.51 × 10−1

UK stocks 1.88 × 10−4 3.83 × 10−5 2.14 × 10−2 1.93 × 10−2 2.61 × 10−1

US bonds 3.11 × 10−4 2.74 × 10−4 8.50 × 10−3 7.70 × 10−3 1.07 × 10−1

US REITs 6.99 × 10−4 7.25 × 10−4 2.59 × 10−2 1.95 × 10−2 3.49 × 10−1

US stocks 1.10 × 10−3 1.20 × 10−3 2.25 × 10−2 1.86 × 10−2 2.40 × 10−1

The first column shows the average daily return for each asset class. Australian
stocks present the highest daily average return at 2.00 × 10−3, followed by US stocks
at 1.10 × 10−3, and Australian REITs at 7.35 × 10−4. The highest median value is
observed for Australian stocks at 1.80 × 10−3, followed by Australian REITs and US
stocks at 1.20 × 10−3, and US REITs at 7.25 × 10−4. Stocks tend to have higher rates
of return compared to other asset classes such as REITs and bonds.

As for the standard deviation of returns, Australian bonds exhibit the lowest
volatility value at 5.70 × 10−3, followed by UK bonds at 7.90 × 10−3, and US bonds at
8.50 × 10−3. Similarly, the lowest interquartile range is observed for Australian bonds
at 3.00 × 10−3, followed by UK bonds at 5.70 × 10−3, and US bonds at 7.70 × 10−3. The
maximum-minimum ranges show the lowest value for Australian bonds at 9.54 × 10−2,
followed by US bonds at 1.07 × 10−1, and UK bonds at 1.12 × 10−1. This is expected
since bond rates of return tend to be less volatile than those of other asset classes.

In summary, our findings indicate that bond rates of return exhibit lower volatility
and lower average values compared to other asset classes. In contrast, stock markets
tend to be more volatile but also offer higher potential profitability than other asset
classes. Real estate returns fall in between in terms of expected return and volatility.
This observation explains why portfolios that include real estate tend to demonstrate
a balance of higher returns and lower risks when compared to portfolios composed
uniquely of stocks and bonds [2].

Furthermore, it is important to highlight that the correlation between real estate
asset classes and the other asset classes tends to be low, particularly when investing
internationally, which provides diversification benefits and consequently reduces the
overall risk level of a mixed-asset portfolio (refer to Figure 2). For example, the corre-
lation between UK REITs and Australian stocks is -0.23, the correlation between UK
REITs and US bonds is 6.66 × 10−4, and the correlation between US REITs and Aus-
tralian stocks is 0.12. In contrast, the correlation between US stocks and Australian
bonds is 0.89, the correlation between UK stocks and UK bonds is 0.81, and the cor-
relation between Australian stocks and US stocks is 0.78. These values illustrate why
adding international REIT investments to a portfolio can help to mitigate risk, as per
the MPT.
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Fig. 2: Correlation matrix between asset classes.

4.2 Experimental tuning of hyperparameters

Before employing our machine learning algorithms to make predictions on the selected
datasets, we conducted a process of hyperparameter tuning for each machine learning
algorithm. Such tuning was carried out to ensure that each dataset was equipped with
a tailored set of hyperparameters. To find the optimal hyperparameters, we adopted
the ‘Grid Search’ method, a recognised technique in the field of machine learning.
The selection of hyperparameter value ranges was guided by the specific attributes
and requirements of the datasets under consideration. It is worth noting that hyper-
parameter tuning was not performed for the LR model, as it lacks hyperparameters
that require tuning.

We also conducted a ‘Grid Search’ tuning procedure for each dataset to optimise
hyperparameters related to the TAIs discussed in Section 3.3. In particular, we deter-
mined the best value for α in the Exponential Moving Average (EMA) calculation
from the set 0.01, 0.05, 0.1, as suggested in previous research [65]. For the remain-
ing hyperparameter values of the TAIs, we referred to established practices outlined
in prior works [66, 67]. The candidate values for α and the selected values for the
remaining TAI hyperparameters are shown in Table 6.

Hyperparameter values for the GA were fine-tuned using the identical validation
dataset. The optimised hyperparameter values obtained from this tuning process are
detailed in Table 7.

4.3 Benchmarks

As mentioned at the beginning of Section 4, our two sub-goals are to demonstrate
the effectiveness of the use of TAIs in the price prediction task, and in the portfolio
optimisation task. In order to investigate the benefits of using TAIs in the feature set,
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Table 6: TA hyperparameters.

Parameter Indicator Values
α EMA 0.01, 0.05, 0.1
Short-day MACD 20
Long-day MACD 50
D Bollinger bands 2

Table 7: GA hyperparameters.

Parameter Values
Population size 500
Tournament size 3
Mutation rate 0.1
Number of generations 25

we employ and compare against several benchmarks, in accordance with the above two
sub-goals. Section 4.3.1 presents the benchmarks chosen in relation to the regression
task (four in total), and Section 4.3.2 presents the benchmarks chosen for the portfolio
optimisation task (four in total).

4.3.1 Regression task benchmarks

Autoregression with ML

In Section 3.3, we outlined the various features adopted to solve our regression prob-
lem. To evaluate the potential enhancement in the predictive power of the adopted
ML algorithms from incorporating TAIs together with lagged values for predicting
our time-series data, we conducted a comparative analysis. In particular, we assessed
the performance of five ML algorithms that incorporated both lagged prices and TAIs
(that is, our proposed approach). Such an assessment was done in comparison to the
performance of five ML algorithms that relied uniquely on lagged prices (i.e., excluding
TAIs), which is a common practice in the REIT literature. In our analysis, the depen-
dent variable under consideration is denoted as Nt, while the independent variables
are drawn from past observations, specifically Nt−1, Nt−2, ..., Nt−T , excluding TAIs.

Holt’s Linear Trend Method

Holt’s Linear Trend Method (HLTM; also known as ‘Double-Exponential Smoothing’
due to the involvement of two exponentially weighted moving average processes in
its formulation) is a forecasting method that makes a prediction on the basis of a
predicted baseline at the last known data point, and a linear trend extending from
that point into the future. It is an extension of Simple Exponential Smoothing that
adds a trend component to the model, and where that trend itself is also the result of
a Simple Exponential Smoothing process over past trends.

HLTM has two smoothing parameters, α and β, which control the weight given
to the most recent observation and the trend, respectively. The forecast equation for
HLTM is as follows:
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N̂t+h|t = ℓt + hbt, (15)

where ℓt is the level estimate at time t, bt is the trend estimate at time t, and h is
the number of periods ahead to forecast. The level and trend estimates are updated
at each time step as follows:

ℓt = αNt + (1− α)(ℓt−1 + bt−1) (16)

bt = β(ℓt − ℓt−1) + (1− β)bt−1, (17)

where Nt is the observed value at time t, and 0 < α < 1 and 0 < β < 1.
The HLTM method has been widely used in forecasting and has been shown to

perform well in many different applications [68]. Given that it uses a weighted average
of past observations to make its predictions, it is not able to also use TAIs in its
feature set. Nevertheless, it forms a valuable benchmark, as it allows us to compare
the performance of our proposed approach with a well-known time-series prediction
benchmark.

TBATS

Trigonometric Box-Cox Autoregressive Time Series (TBATS) is a state-of-the-art fore-
casting model that extends the traditional exponential smoothing framework to handle
complex time-series with multiple seasonal patterns and non-linear trends. TBATS
was proposed by [69].

The TBATS model involves the decomposition of a time-series into multiple
components: a non-seasonal component, seasonal components, and an autoregressive
component. The non-seasonal component captures the overall trend of the time-series
and is modelled using a Box-Cox transformation and an exponential smoothing model.
The seasonal components capture the periodic patterns in the time-series and are
modelled using a set of trigonometric functions. Finally, the autoregressive compo-
nent captures the temporal dependencies in the time-series and is modelled using an
Autoregressive Moving Average (ARMA) model.

The TBATS model can be written as:

Nt = µt +

J∑
j=1

γjst,j +

p∑
i=1

ϕiNt−i +

q∑
i=1

θiet−i + et (18)

where Nt is the observed value of the time-series at time t, µt is the non-seasonal
component at time t, st,j is the seasonal component for season j at time t, γj is the
coefficient for season j, p and q are the orders of the autoregressive and moving average
components, respectively, ϕi and θi are the corresponding coefficients, et is the error
term at time t, and J is the number of seasonal patterns in the data.

TBATS has been shown to outperform traditional forecasting models such as
ARIMA and exponential smoothing on time-series with multiple seasonal patterns and
non-linear trends [68]. Similarly to HLTM, TBATS is not able to use TAIs in its fea-
ture set; however, it also serves as a valuable benchmark, as yet another well-known
and widely-used time-series prediction benchmark.
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ARIMA

Autoregressive Integrated Moving Average (ARIMA) is a commonly used time-series
model for forecasting. It is a statistical model that uses past values and errors to make
predictions. ARIMA models can capture both trend and seasonality in the data and
are widely used in many fields, including economics, finance, and engineering.

The ARIMA model is denoted by ARIMA(p, d, q), where p is the order of the
autoregressive term, d is the degree of differencing required to make the series sta-
tionary, and q is the order of the moving average term. The model assumes that the
time-series is stationary, which means that its mean and variance are constant over
time.

The ARIMA model can be represented mathematically as:

Nt = c+

p∑
i=1

ϕiNt−i + ϵt +

q∑
i=0

θiϵt−1 (19)

where ϕ represents the autoregression coefficient, θ corresponds to the moving average
coefficient, and ϵ indicates the error term of the autoregression model at each time
point.

The selection process of the appropriate ARIMA model for each training dataset
was the Akaike Information Criterion (AIC), which helps determine the most suitable
values for the model’s parameters, denoted as p, d, and q.

It is worth noting that ARIMA models are designed for stationary time-series data,
where statistical properties like mean and variance remain constant over time. How-
ever, many financial time-series do not exhibit this stationary behaviour. To make
these datasets suitable for ARIMA modelling, various transformations, such as differ-
encing, logarithmic transformation, and Box-Cox transformation, are often applied.
These transformations help make the data more amenable to the assumptions of the
ARIMA model, improving the model’s effectiveness in predicting future values.

ARIMA has been widely applied in various fields. For example, it has been used
to forecast stock prices [70], electricity demand [71], and weather variables [72]. As
with HLTM and TBATS, it is not able to also use TAIs in its feature set, but again
enjoys wide use in the financial forecasting literature, and therefore forms a valuable
benchmark.

4.3.2 Portfolio optimisation benchmarks

Portfolio optimisation involves running a Genetic Algorithm on the price data pre-
dicted by our TAI-enhanced ML algorithms, in order to obtain appropriate weights
for the different asset classes for each of the 90 assets that make up a portfolio. The
quality of the resulting portfolios is then assessed on the basis of financial metrics
calculated from the observed prices for that period. Furthermore, in order to assess
the usefulness of TAIs in producing better portfolios, we compare the performance of
the above with portfolios that have been optimised with respect to price predictions
obtained from the non-TAI-enhanced ML algorithm variants, as in Section 4.3.1.

For completeness, we also benchmark our proposed approach against portfolios
obtained on the basis of predictions made using the HLTM, TBATS, and ARIMA
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algorithms respectively, as these are well-known prediction algorithms that are widely
used in the financial literature. In all cases, we evaluate the results in the test set using
three financial metrics: expected return, expected risk, and the Sharpe Ratio.

5 Results

In Section 5.1, we assess and compare the performance of the five ML algorithms
mentioned in Section 3.4 when making use of TAIs in their feature set, against a) the
same set of ML algorithms when using only lagged values but no TAIs as features, and
b) the three conventional techniques outlined in Section 4.3.1 (i.e. HLTM, TBATS,
and ARIMA), which also rely on lagged values exclusively for their function. In Section
5.2, we examine the implications of using TAIs in this manner, in the context of using
the obtained algorithmic predictions to perform optimisation of a multi-asset portfolio
using a Genetic Algorithm approach, and the extent to which this affects expected
return, risk, and Sharpe Ratio values in the resulting portfolios. In Section 5.3, we
further analyse the importance of each feature in two distinct ways, by using the SHAP
and SAGE algorithms, which are metrics of feature quality that build on the concept
of Shapley values [73]. Finally, Section 5.4 examines the computational times involved
for the algorithms used, and Section 5.5 offers a short discussion on the insights gained
from the experimental results.

5.1 Performance

We evaluate and compare the performance of the proposed approaches and bench-
marks, by reporting the RMSE mean and standard deviation per asset class for each
algorithm across all markets, where the RMSE for each dataset is obtained as per
Section 3.5. It is worth noting that although ML predictions are made on the price
returns, RMSE data is expressed in terms of US dollars to reflect the actual deviation
of predicted prices from the actual prices.

Table 8 shows RMSE descriptive statistics for REITs in the case of out-of-sample
and one-day-ahead prediction over a 30-, 60-, 90-, 120-, and 150-day period. We note
that, in the case of out-of-sample prediction, the average RMSE is consistently lower
for algorithms that use TAIs when compared to the algorithms that use lagged prices
only. This is the case across all periods (30, 60, 90, 120, and 150 days). It is also
worth noting that the improvements in RMSE means tend to be large. For exam-
ple, in the 30-day period, we note a reduction from an ‘RMSE means’ average of 5.6
(i.e. when averaging the individual RMSE means of each non-TAI model) to an average
of 4.0 when TAIs are added into the feature set. We also note even larger improve-
ments in other isolated instances; for example, the 90-day LR features a reduction
from 9.70 to 5.94 (i.e. an error reduction of ≈39%), and the 120-day LSTM features
a reduction from 10.99 to 5.87 (i.e. an error reduction of ≈ 46%). Furthermore, the
ML algorithms using TAIs in their feature set also experience lower average standard
deviations when compared to the ML algorithms that do not use TA. In addition,
it is worth noting that the performance of the conventional time-series benchmarks
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(HLTM, TBATS, ARIMA)7 is generally poor by comparison and consistently outper-
formed by the machine learning algorithms, regardless of whether TAIs are included
in the feature set or not.

A similar picture can be observed with the one-day-ahead prediction results. The
performance of the algorithms that use TAIs tends to be better than the ones without
TAIs, with the only exception being the 30-day SVR and XGBoost, and the 120-day
XGBoost entries. However, it is worth noting that, while for the out-of-sample results,
the introduction of TAIs led to large reductions in error, this reduction is not as
impressive in the case of one-day-ahead predictions. This is to be expected, since this
method predicts the next day’s value using only real —rather than predicted— values
in the test period, and therefore the errors are always going to be much smaller. In
fact, this is the case regardless of whether we use TAIs or not. As a result, the margin
for improvements is also small. Nevertheless, the fact remains that when using TAIs,
we still observe consistent average RMSE improvements.

We can observe a similar pattern in the results for stocks (Table 9). Machine
learning algorithms that incorporate TAIs in their feature set consistently show better
results in terms of mean RMSE and standard deviation for both out-of-sample and
one-day-ahead predictions, across all periods (30, 60, 90, 120, and 150 days). It is also
worth noting that both the means and standard deviations of the RMSE values here
tend to be higher than the respective values in Table 8; this can be explained by the
more volatile nature of stock data, which makes it much harder to predict accurately.

Finally, Table 10 shows the RMSE distribution statistics for bonds. One noticeable
difference here compared to the previous two tables is the very low mean and standard
deviation values observed across all algorithms and methodologies. This is due to the
nature of bonds, which have very low volatility and are thus much easier to predict.
With regard to the comparison of results when using TAIs, we again observe that the
introduction of TAIs leads to consistent improvements in the out-of-sample results,
whereas in the one-day-ahead case, due to the very low error values involved, the results
are more mixed, with TAI algorithms occasionally being marginally outperformed by
their respective non-TAI counterparts.

To compare the distributions of RMSE scores resulting from the use of TAIs versus
non-TAI machine learning algorithms, we conducted Kolmogorov-Smirnov (KS) tests
at a 5% significance level for all asset classes. The null hypothesis being tested is
that the RMSE distributions being compared originate from the same continuous
distribution. Given that we are conducting five separate comparisons, one for each
considered period (i.e., 30-, 60-, 90-, 120-, and 150-day periods), we adjusted the
significance level (α) using the Bonferroni correction, resulting in α = 0.01.

For out-of-sample predictions, the KS test p-values were consistently less than
0.001 in all cases, significantly lower than the adjusted α threshold of 0.01. Specifically,
for each of the 30-, 60-, 90-, 120-, and 150-day periods, the obtained p-values were
approximately 1.02 × 10−9, 7.14 × 10−7, 5.66 × 10−8, 4.60 × 10−8, and 2.61 × 10−7,
respectively. These results strongly indicate that the inclusion of TAIs leads to a
marked reduction in RMSE.

7As mentioned in Section 3, due to the autoregressive elements of HLTM, TBATS, and ARIMA, they
cannot use TAIs in their feature set. Hence the relevant rows under the ‘With TA’ headings in Table 8,
and across all remaining tables in this paper, are empty.
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Table 8: RMSE summary statistics for REITs. Values in bold represent the
best results for each row.

Out-of-sample One-day-ahead
Without TA With TA Without TA With TA

30 days Mean SD Mean SD Mean SD Mean SD

LR 5.60 12.49 4.55 7.55 1.04 2.10 1.04 1.38
SVR 5.59 12.45 4.13 7.28 1.02 2.01 1.06 1.41
KNN 5.61 12.53 4.06 7.36 1.03 2.04 1.02 1.41
XGBOOST 5.60 12.49 3.83 6.53 1.02 2.00 1.04 1.62
LSTM 5.60 12.57 3.54 5.44 1.08 2.16 1.01 1.24
HLTM 21.77 40.15 6.47 14.23
TBATS 21.77 40.15 6.47 14.23
ARIMA 21.47 38.98 6.69 14.68

60 days

LR 7.47 14.79 6.97 14.09 2.40 5.76 2.22 4.00
SVR 7.46 14.75 5.66 10.05 2.40 5.76 2.33 4.04
KNN 7.48 14.82 5.73 11.05 2.39 5.75 2.29 4.58
XGBOOST 7.49 14.87 5.36 8.00 2.39 5.75 2.28 3.71
LSTM 7.56 14.50 5.31 7.92 2.40 5.75 2.27 2.58
HLTM 16.87 35.63 10.28 24.67
TBATS 16.87 35.63 10.28 24.67
ARIMA 17.08 35.82 10.60 25.29

90 days

LR 9.70 19.79 5.94 10.75 1.15 2.18 0.99 0.94
SVR 9.69 19.73 6.67 12.19 1.13 2.12 0.98 0.95
KNN 9.70 19.74 6.64 12.14 1.13 2.12 0.99 1.06
XGBOOST 9.70 19.78 5.81 9.72 1.13 2.13 0.97 0.91
LSTM 9.72 19.86 6.08 8.58 1.14 2.16 0.92 0.88
HLTM 20.82 35.66 9.30 17.45
TBATS 21.28 36.75 9.30 17.45
ARIMA 20.81 35.67 9.47 17.78

120 days

LR 10.96 16.75 7.19 11.43 1.16 2.22 1.14 1.23
SVR 10.95 16.73 6.63 10.10 1.14 2.16 1.11 1.22
KNN 10.97 16.79 6.55 8.55 1.14 2.16 1.14 1.23
XGBOOST 10.95 16.75 6.30 8.92 1.14 2.16 1.15 1.32
LSTM 10.99 16.81 5.87 7.39 1.17 2.23 1.15 1.25
HLTM 22.91 35.97 9.83 15.19
TBATS 22.91 35.97 9.83 15.19
ARIMA 22.88 35.95 10.01 15.51

150 days

LR 8.00 12.91 5.90 10.27 1.16 2.19 1.11 1.96
SVR 8.00 12.91 5.14 6.90 1.15 2.16 1.05 1.10
KNN 8.02 12.96 5.11 6.59 1.15 2.16 1.06 1.21
XGBOOST 8.00 12.91 4.97 7.46 1.15 2.17 1.04 1.11
LSTM 8.00 12.92 4.51 7.52 1.16 2.18 1.04 1.04
HLTM 17.32 27.37 7.91 12.70
TBATS 17.32 27.37 7.91 12.70
ARIMA 16.91 26.80 8.07 13.00

Conversely, for one-day-ahead predictions, the KS test p-values were not significant,
with values like 1.04 × 10−1, 7.37 × 10−1, 6.17 × 10−1, 3.07 × 10−1, and 1.48 × 10−1
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Table 9: RMSE summary statistics for stocks. Values in bold represent the
best results for each row.

Out-of-sample One-day-ahead
Without TA With TA Without TA With TA

30 days Mean SD Mean SD Mean SD Mean SD

LR 9.19 20.62 7.61 16.62 2.28 4.38 2.18 2.34
SVR 9.16 20.51 6.84 12.92 2.29 4.44 2.16 2.60
KNN 9.21 20.66 7.69 14.72 2.30 4.45 2.15 2.18
XGBOOST 9.19 20.58 6.25 10.31 2.30 4.48 2.17 2.29
LSTM 9.11 20.21 6.38 9.47 2.31 4.39 2.13 2.27
HLTM 41.21 100.20 11.36 26.54
TBATS 41.21 100.20 11.36 26.54
ARIMA 41.47 100.15 11.72 27.15

60 days

LR 12.34 23.85 11.00 21.10 2.77 5.64 2.72 3.05
SVR 12.32 23.75 10.48 21.89 2.77 5.64 2.65 3.10
KNN 12.30 23.80 11.31 21.99 2.76 5.63 2.54 2.76
XGBOOST 12.31 23.75 9.35 16.18 2.77 5.63 2.70 3.03
LSTM 12.29 23.67 10.03 13.88 2.77 5.63 2.55 2.23
HLTM 30.29 71.90 12.38 24.16
TBATS 30.29 71.90 12.38 24.16
ARIMA 31.30 75.72 12.73 24.77

90 days

LR 19.45 43.66 15.37 30.84 3.25 6.97 3.29 2.78
SVR 19.45 43.63 13.20 24.21 3.35 7.31 3.33 2.77
KNN 19.39 43.57 14.11 27.87 3.24 6.96 3.29 2.79
XGBOOST 19.44 43.61 11.89 18.21 3.25 7.00 3.27 2.63
LSTM 19.44 43.53 11.73 18.59 3.25 6.97 3.24 2.64
HLTM 42.37 98.42 18.72 44.32
TBATS 42.85 100.01 18.72 44.32
ARIMA 42.37 98.45 19.08 44.93

120 days

LR 28.90 85.13 21.89 62.52 3.39 7.47 3.38 2.41
SVR 28.87 84.97 18.29 52.29 3.45 7.70 3.14 2.57
KNN 28.82 84.91 17.19 29.41 3.36 7.43 3.35 2.51
XGBOOST 28.88 85.06 16.79 22.44 3.39 7.49 3.21 2.33
LSTM 28.89 85.01 16.56 16.86 3.36 7.39 3.18 2.27
HLTM 62.94 192.98 28.82 81.52
TBATS 62.94 192.98 28.82 81.52
ARIMA 62.76 193.89 29.20 82.25

150 days

LR 28.62 75.28 22.93 52.34 3.28 7.15 3.21 1.96
SVR 28.55 75.08 20.01 34.49 3.28 7.18 3.14 2.08
KNN 28.58 75.07 20.02 38.75 3.27 7.13 3.07 2.02
XGBOOST 28.62 75.24 19.09 24.23 3.27 7.15 3.16 3.13
LSTM 28.46 74.86 19.03 23.88 3.27 7.13 3.12 2.20
HLTM 71.50 190.19 29.09 75.40
TBATS 71.50 190.19 29.09 75.40
ARIMA 71.46 190.44 28.78 75.06

for the respective periods. This suggests that there is no substantial difference in the
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Table 10: RMSE summary statistics for bonds. Values in bold represent
the best results for each row.

Out-of-sample One-day-ahead
Without TA With TA Without TA With TA

30 days Mean SD Mean SD Mean SD Mean SD

LR 0.51 0.56 0.49 0.55 0.17 0.18 0.21 0.20
SVR 0.51 0.56 0.45 0.60 0.17 0.18 0.19 0.17
KNN 0.51 0.56 0.44 0.62 0.17 0.18 0.17 0.17
XGBOOST 0.51 0.56 0.43 0.41 0.17 0.18 0.18 0.21
LSTM 0.52 0.56 0.45 0.37 0.18 0.18 0.17 0.16
HLTM 1.22 1.48 0.48 0.57
TBATS 1.16 1.37 0.48 0.57
ARIMA 1.22 1.48 0.51 0.60

60 days

LR 0.58 0.73 0.58 0.55 0.17 0.17 0.16 0.15
SVR 0.58 0.73 0.55 0.58 0.17 0.17 0.17 0.15
KNN 0.58 0.73 0.52 0.56 0.17 0.17 0.18 0.17
XGBOOST 0.58 0.73 0.53 0.64 0.17 0.17 0.17 0.13
LSTM 0.59 0.74 0.56 0.31 0.18 0.18 0.18 0.13
HLTM 0.93 1.24 0.60 0.68
TBATS 0.93 1.24 0.60 0.68
ARIMA 0.96 1.29 0.62 0.69

90 days

LR 0.87 0.89 0.61 0.52 0.20 0.20 0.22 0.24
SVR 0.87 0.89 0.79 0.68 0.20 0.20 0.20 0.15
KNN 0.87 0.89 0.74 0.59 0.20 0.19 0.18 0.17
XGBOOST 0.87 0.90 0.63 0.51 0.20 0.20 0.21 0.22
LSTM 0.88 0.90 0.66 0.40 0.20 0.20 0.20 0.17
HLTM 1.74 2.05 0.85 0.86
TBATS 1.74 2.05 0.85 0.86
ARIMA 1.72 2.02 0.87 0.88

120 days

LR 0.94 1.12 0.91 0.79 0.19 0.19 0.19 0.18
SVR 0.93 1.10 0.81 0.66 0.19 0.19 0.20 0.24
KNN 0.93 1.12 0.79 0.65 0.19 0.18 0.20 0.15
XGBOOST 0.94 1.12 0.78 0.75 0.20 0.20 0.19 0.16
LSTM 0.94 1.12 0.77 0.49 0.20 0.19 0.18 0.20
HLTM 2.05 2.48 0.99 1.19
TBATS 2.05 2.48 0.99 1.19
ARIMA 2.07 2.51 1.01 1.20

150 days

LR 1.03 1.26 0.94 1.10 0.20 0.19 0.19 0.16
SVR 1.03 1.26 0.94 0.47 0.19 0.19 0.20 0.19
KNN 1.04 1.26 0.93 0.94 0.20 0.19 0.21 0.16
XGBOOST 1.03 1.26 0.95 0.89 0.20 0.19 0.18 0.14
LSTM 1.04 1.25 0.94 0.90 0.20 0.19 0.18 0.16
HLTM 1.79 2.37 1.03 1.28
TBATS 1.79 2.37 1.03 1.28
ARIMA 1.83 2.41 1.05 1.29

RMSE distributions between the TAI and non-TAI models. However, it is important
to note that in the case of one-day-ahead predictions, RMSE values tend to be very
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small, making it challenging to achieve statistically significant results, despite the
observed slight reduction in RMSE scores.

In summary, our analysis reveals that the RMSE distributions exhibit lower aver-
age values and less variability for machine learning algorithms incorporating TAIs
compared to benchmark algorithms, which is more evident in the case of out-of-sample
predictions. In general, we observed that the reduction in RMSE mean values due to
the inclusion of TAIs can be substantial, with reductions of up to 45%. Furthermore,
we noted that the lowest average RMSE values were consistently observed in bond
predictions, followed by REITs, and then stocks. This ranking aligns with the relative
volatility of these asset classes, as discussed in Section 4.1. Bonds, known for their
lower price volatility, exhibit the lowest average RMSE values. REITs, which typically
fall between bonds and stocks in terms of risk and return characteristics, show higher
average RMSE values than bonds but lower than stocks. Our findings, supported by
the Kolmogorov-Smirnov (KS) test results, emphasise that the adoption of an out-
of-sample methodology significantly reduces RMSE mean values, suggesting that the
use of TAIs in machine learning models contributes to enhanced predictive accuracy.
On the other hand, the KS test results show that the RMSE values tend to be similar
for machine learning models using TAIs and those not including those additional fea-
tures in the case of one-day-ahead predictions. Although the inclusion of TAIs does
not always lead to an enhancement in the predictive performance of ML (especially
in the case of short-term predictions), the KS tests performed highlight the signifi-
cant improvement in the ML predictive capability when including TAIs for long-term
predictions.

5.2 Portfolio optimisation

This section contains the results of the Genetic Algorithm (GA) applied to portfo-
lio allocation, which takes into account a transaction cost of 0.02%. The GA was
used to generate 100 optimised portfolios per algorithm considered. For each gen-
erated portfolio, the optimised weights were used to calculate the expected return,
expected risk, and expected Sharpe Ratio for the portfolio. These were then pooled
over all generated portfolios to create and analyse the distributions of expected returns
(Section 5.2.1), expected risks (Section 5.2.2), and expected Sharpe Ratios (Section
5.2.3) respectively. The following subsections provide a summary of key statistics for
these metrics, namely the mean and standard deviation. We compare the performance
of our proposed approaches, i.e. ML models that utilise TAIs as additional features,
to benchmarks, which consist of portfolios built using ML models, as well as HLTM,
TBATS, and ARIMA.

5.2.1 Expected portfolio returns.

Table 11 shows descriptive statistics for expected return distributions obtained from
the GA portfolio optimisation for a 30-, 60-, 90-, 120-, and 150-day holding period.
For a 30-day prediction period, we observe an increase in the average expected return
obtained from out-of-sample predictions resulting from TAI models. On the other
hand, the standard deviation values are not always lower for the proposed approaches.
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For HLTM, TBATS, and ARIMA models, the average expected return values appear
to be lower compared to the proposed approaches. In the case of the one-day-ahead pre-
dictions, the average and standard deviation of the expected return distributions also
improve when introducing TAIs. For instance, the best result is observed for the KNN
algorithm (3.78 × 10−3), which shows an improvement of almost 175% when adding
TAIs. The HLTM, TBATS, and ARIMA algorithms show lower expected return values
compared to the ML algorithms that use TAIs. We can observe similar improvements
brought by the use of the TAIs for the remaining periods (60, 90, 120, and 150 days)
across both out-of-sample and one-day-ahead methods. Standard deviation results are
more mixed, with the best performance alternating between the setups that use TAIs
and those that do not.

To compare the expected return distributions obtained via TAI models versus
non-TAI models from ML algorithms that use TAIs as additional features and those
obtained from algorithms that use lagged values only, we conducted a Kolmogorov-
Smirnov (KS) test at the 5% significance level. Here again, the null hypothesis assumes
that the compared return distributions arise from the same continuous distribution.
We performed five comparisons (one for each prediction period, i.e. 30, 60, 90, 120,
and 150 days), and to account for multiple comparisons, we again applied Bonferroni’s
correction by adjusting the alpha value to 0.05/5 = 0.01. For out-of-sample predictions,
the KS test produced p-values of 7.17 × 10−28, 3.59 × 10−27, 8.24 × 10−24, 1.12 × 10−20,
and 3.27 × 10−17 for 30-, 60-, 90-, 120-, and 150-day periods, respectively, which are
much lower than the adjusted significance level of 0.01, suggesting that the use of TAIs
leads to a significant improvement in the expected return distributions. Similarly, for
one-day-ahead predictions, the KS test produced p-values of 5.11 × 10−33, 3.71 × 10−36,
3.97 × 10−25, 3.59 × 10−27, and 5.11 × 10−33 for 30-, 60-, 90-, 120-, and 150-day periods,
respectively, leading to the same conclusion as for the out-of-sample scenario.

In conclusion, the results obtained from the Genetic Algorithm confirm that the
portfolios obtained using TAI-models can lead to improvements of up to 150% in the
case of out-of-sample predictions, and of up to 230% in the case of one-day-ahead pre-
dictions. According to the KS test results, there is a statistically significant difference in
the expected return distributions for the machine learning algorithms when introduc-
ing TAIs as additional features. The HLTM, TBATS, and ARIMA methods generally
show lower expected return average values compared to the proposed approaches. Our
results show the importance of (i) using TAIs as additional features vs using lagged
prices only; and (ii) using ML models vs traditional financial benchmarks.

5.2.2 Expected portfolio risks.

Table 12 shows descriptive statistics for the expected portfolio risks for a 30-, 60-,
90-, 120-, and 150-day testing period in the case of out-of-sample and one-day-ahead
predictions. In both cases, the average expected risk tends to increase when including
TAIs in the regression problem for all periods. As we can observe, in the case of out-
of-sample prediction, there is an average increase of around 187% when adding TAIs
for a 30-day prediction period (with a decrease in the case of LSTM of around 20%),
which drops to around 113% for a 60-day prediction period, to around 70% for a
90-day prediction period, to around 44% for a 120-day prediction period, and rises
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Table 11: Expected portfolio return summary statistics. Values in bold represent the best results
for each row.

Out-of-sample One-day-ahead
Without TA With TA Without TA With TA

30 days Mean SD Mean SD Mean SD Mean SD

LR 1.12 × 10−3 4.75 × 10−6 3.07 × 10−3 2.16 × 10−4 1.31 × 10−3 3.52 × 10−4 3.51 × 10−3 1.93 × 10−4

SVR 1.44 × 10−3 3.95 × 10−4 3.40 × 10−3 2.02 × 10−4 1.44 × 10−3 4.92 × 10−4 3.55 × 10−3 1.67 × 10−4

KNN 1.43 × 10−3 1.25 × 10−5 3.46 × 10−3 2.05 × 10−4 1.38 × 10−3 2.95 × 10−4 3.78 × 10−3 1.69 × 10−4

XGBoost 1.23 × 10−3 5.04 × 10−4 3.45 × 10−3 2.06 × 10−4 1.47 × 10−3 1.50 × 10−4 3.49 × 10−3 1.99 × 10−4

LSTM 1.44 × 10−3 1.69 × 10−4 3.36 × 10−3 1.86 × 10−4 2.72 × 10−3 2.37 × 10−4 3.70 × 10−3 1.57 × 10−4

HLTM 9.06 × 10−4 1.78 × 10−6 9.62 × 10−4 1.79 × 10−4

TBATS 1.93 × 10−4 7.73 × 10−5 9.02 × 10−4 3.79 × 10−4

ARIMA 6.73 × 10−4 2.85 × 10−5 1.25 × 10−3 4.35 × 10−4

60 days

LR 8.40 × 10−4 3.49 × 10−4 2.98 × 10−3 2.13 × 10−4 1.86 × 10−3 1.97 × 10−4 3.40 × 10−3 1.45 × 10−4

SVR 1.52 × 10−3 6.36 × 10−4 2.51 × 10−3 2.34 × 10−4 1.48 × 10−3 1.90 × 10−4 3.13 × 10−3 2.16 × 10−4

KNN 1.02 × 10−3 9.18 × 10−5 2.90 × 10−3 1.66 × 10−4 1.75 × 10−3 2.17 × 10−4 3.49 × 10−3 1.72 × 10−4

XGBoost 1.58 × 10−3 6.06 × 10−4 3.46 × 10−3 1.86 × 10−4 2.07 × 10−3 2.28 × 10−4 3.66 × 10−3 1.76 × 10−4

LSTM 1.26 × 10−3 4.09 × 10−5 2.40 × 10−3 2.45 × 10−4 1.45 × 10−3 4.50 × 10−4 3.62 × 10−3 1.80 × 10−4

HLTM 3.81 × 10−4 2.33 × 10−6 6.90 × 10−4 1.55 × 10−4

TBATS 2.40 × 10−4 2.78 × 10−5 2.84 × 10−4 1.34 × 10−4

ARIMA 6.72 × 10−4 7.48 × 10−5 2.12 × 10−3 2.16 × 10−4

90 days

LR 8.21 × 10−4 2.08 × 10−4 2.43 × 10−3 2.35 × 10−4 1.74 × 10−3 2.06 × 10−4 2.79 × 10−3 2.37 × 10−4

SVR 1.35 × 10−3 4.26 × 10−4 2.64 × 10−3 2.58 × 10−4 1.91 × 10−3 1.77 × 10−4 3.48 × 10−3 1.85 × 10−4

KNN 1.70 × 10−3 2.38 × 10−4 2.44 × 10−3 2.60 × 10−4 1.85 × 10−3 2.68 × 10−4 3.03 × 10−3 2.07 × 10−4

XGBoost 1.42 × 10−3 2.89 × 10−4 2.85 × 10−3 2.31 × 10−4 1.71 × 10−3 1.91 × 10−4 3.00 × 10−3 1.99 × 10−4

LSTM 1.40 × 10−3 4.99 × 10−4 2.32 × 10−3 2.90 × 10−4 1.73 × 10−3 1.46 × 10−4 3.06 × 10−3 2.03 × 10−4

HLTM 6.49 × 10−4 4.14 × 10−6 9.84 × 10−4 1.73 × 10−4

TBATS 1.70 × 10−4 1.39 × 10−5 9.62 × 10−4 1.48 × 10−4

ARIMA 3.92 × 10−4 6.81 × 10−5 1.91 × 10−3 1.73 × 10−4

120 days

LR 1.14 × 10−3 4.15 × 10−4 2.21 × 10−3 2.73 × 10−4 1.49 × 10−3 1.76 × 10−4 2.72 × 10−3 2.33 × 10−4

SVR 1.14 × 10−3 2.26 × 10−4 2.08 × 10−3 2.47 × 10−4 1.42 × 10−3 6.14 × 10−4 3.75 × 10−3 1.99 × 10−4

KNN 1.12 × 10−3 3.50 × 10−4 1.91 × 10−3 1.97 × 10−4 1.32 × 10−3 1.15 × 10−4 2.92 × 10−3 1.77 × 10−4

XGBoost 1.11 × 10−3 2.79 × 10−4 2.13 × 10−3 2.55 × 10−4 1.22 × 10−3 1.93 × 10−4 2.57 × 10−3 1.97 × 10−4

LSTM 1.15 × 10−3 2.72 × 10−4 2.09 × 10−3 1.98 × 10−4 1.43 × 10−3 1.77 × 10−4 2.76 × 10−3 2.26 × 10−4

HLTM 5.19 × 10−4 1.05 × 10−18 5.48 × 10−4 9.70 × 10−5

TBATS 1.85 × 10−4 1.04 × 10−5 3.75 × 10−4 1.39 × 10−4

ARIMA 3.21 × 10−4 2.92 × 10−5 8.56 × 10−4 8.18 × 10−5

150 days

LR 9.53 × 10−4 5.63 × 10−5 1.99 × 10−3 2.43 × 10−4 1.51 × 10−3 9.19 × 10−5 3.01 × 10−3 1.87 × 10−4

SVR 1.17 × 10−3 3.15 × 10−4 2.22 × 10−3 2.09 × 10−4 1.75 × 10−3 1.77 × 10−4 2.61 × 10−3 2.29 × 10−4

KNN 9.31 × 10−4 4.53 × 10−5 2.26 × 10−3 2.15 × 10−4 1.76 × 10−3 1.34 × 10−4 2.98 × 10−3 2.20 × 10−4

XGBoost 1.27 × 10−3 2.31 × 10−4 2.45 × 10−3 2.37 × 10−4 1.76 × 10−3 1.14 × 10−4 3.01 × 10−3 2.39 × 10−4

LSTM 1.03 × 10−3 3.38 × 10−4 2.41 × 10−3 1.94 × 10−4 1.78 × 10−3 1.26 × 10−4 2.73 × 10−3 1.72 × 10−4

HLTM 1.13 × 10−4 1.06 × 10−4 1.40 × 10−3 8.89 × 10−5

TBATS 1.11 × 10−4 1.05 × 10−4 1.38 × 10−3 1.15 × 10−4

ARIMA 6.94 × 10−4 1.09 × 10−4 1.65 × 10−3 1.33 × 10−4

to 72% for a 150-day prediction period. The standard deviation values are lower for
algorithms that use TAIs in most cases, indicating a higher concentration of values
around the mean. For instance, the average standard deviation is 5.18 × 10−4 when not
using TAIs and 1.44 × 10−4 when using TAIs for a 30-day period. We observe similar
values for the other periods. Lastly, it is worth noting that for the first time in our
study, the HLTM, TBATS, and ARIMA algorithms outperform the ML algorithms,
as they show relatively low average and standard deviation values. For example, the
average expected risk is 2.49 × 10−3 obtained from the TBATS algorithm for a 150-day
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period, which is the lowest observed for the considered period. On the other hand, the
lowest volatility of expected risk values is observed for HLTM at 6.94 × 10−18.

In the case of one-day-ahead predictions, the average expected portfolio risk again
tends to be lower when not using TAIs as features, while the standard deviation
appears to be lower when using TAIs. In other words, the predictions obtained from
algorithms that include TAIs lead to higher expected portfolio risk, but at the same
time, the risk values appear to be more concentrated around the mean. This might
indicate a lower presence of outliers. For instance, the addition of TAIs as features
results in an average expected risk increase from 3.54 × 10−3 to 1.11 × 10−2 for the
KNN algorithm and 60-day prediction period, while its standard deviation appears to
be reduced from 7.27 × 10−4 to 1.06 × 10−4. In the case of a 30-day prediction period,
the average expected risk appears to increase at an average rate of 532%, which drops
to 219% for a 60-day period, to 145% for a 90-day period, increases to 218% for a 120-
day period, and decreases to 90% for a 150-day period. Similarly to what is observed
in the case of out-of-sample predictions, the average expected risk values tend to be
lower for HLTM, TBATS, and ARIMA than for the algorithms that use TAIs for all
periods.

We compared the expected risk value distributions using a KS test at the 5%
significance level, similar to our comparison of the expected return distributions. Sim-
ilarly to what we discussed for the expected return distributions, the null hypothesis
was that the compared risk distributions came from the same continuous distribution.
We again conducted five comparisons, one for each period, and thus, accounted for
multiple comparisons by adjusting the alpha value to 0.01 using Bonferroni’s correc-
tion. For the out-of-sample predictions, the KS test produced p-values of 7.17 × 10−28,
1.32 × 10−38, 7.19 × 10−43, 3.97 × 10−43, and 3.88 × 10−41 for 30-, 60-, 90-, 120-, and 150-
day periods, respectively. These p-values were all below the adjusted significance level
of 0.01, indicating that using TAIs resulted in a significant increase in the expected risk
distributions. Similarly, for one-day-ahead predictions, the KS test produced p-values
of 1.23 × 10−44, 3.88 × 10−41, 3.64 × 10−41, 2.76 × 10−40, and 3.88 × 10−41 respectively,
also indicating a statistically significant difference in the expected risk distributions.

To conclude, the Genetic Algorithm results show that the introduction of the TAIs
in the feature set has led to statistically significant increases in mean risk across all
algorithms and periods. This is, of course, a non-favourable result, but we should keep
in mind that risk is just one of the metrics used to evaluate a portfolio’s performance.
In fact, it should not be considered in isolation, but in conjunction with returns, which
as we have already seen are significantly higher when using TAIs. It is thus important
to study an aggregate metric, such as the Sharpe Ratio, which adjusts returns for the
level of risk taken. By incorporating the standard deviation of returns, it provides a
measure of how much return an investment generates per unit of risk. This enables a
fair comparison of different investments or portfolios, considering their risk profiles.
We present the Sharpe Ratio results next.
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Table 12: Expected portfolio risk summary statistics. Values in bold represent the best results for
each row.

Out-of-sample One-day-ahead
Without TA With TA Without TA With TA

30 days Mean SD Mean SD Mean SD Mean SD

LR 1.86 × 10−3 3.44 × 10−5 1.07 × 10−2 1.85 × 10−4 1.80 × 10−3 6.41 × 10−4 1.12 × 10−2 1.31 × 10−4

SVR 6.16 × 10−3 1.70 × 10−3 1.11 × 10−2 1.40 × 10−4 1.79 × 10−3 9.90 × 10−4 1.11 × 10−2 1.27 × 10−4

KNN 3.13 × 10−3 7.79 × 10−5 1.12 × 10−2 1.17 × 10−4 1.90 × 10−3 1.12 × 10−3 1.13 × 10−2 1.28 × 10−4

XGBoost 4.61 × 10−3 9.17 × 10−4 1.12 × 10−2 1.31 × 10−4 1.57 × 10−3 8.05 × 10−4 1.12 × 10−2 1.32 × 10−4

LSTM 3.39 × 10−3 1.06 × 10−3 1.09 × 10−2 1.48 × 10−4 1.85 × 10−3 8.39 × 10−4 1.13 × 10−2 1.13 × 10−4

HLTM 8.24 × 10−3 3.41 × 10−5 2.66 × 10−3 6.95 × 10−4

TBATS 1.21 × 10−3 2.75 × 10−4 2.76 × 10−3 1.26 × 10−3

ARIMA 3.91 × 10−3 4.27 × 10−5 8.29 × 10−3 5.99 × 10−4

60 days

LR 4.03 × 10−3 3.89 × 10−3 1.07 × 10−2 1.65 × 10−4 4.04 × 10−3 1.38 × 10−3 1.09 × 10−2 1.18 × 10−4

SVR 6.77 × 10−3 2.05 × 10−3 1.04 × 10−2 1.73 × 10−4 3.10 × 10−3 7.58 × 10−4 1.08 × 10−2 1.64 × 10−4

KNN 3.84 × 10−3 4.49 × 10−4 1.04 × 10−2 1.47 × 10−4 3.54 × 10−3 7.27 × 10−4 1.11 × 10−2 1.06 × 10−4

XGBoost 6.00 × 10−3 1.95 × 10−3 1.10 × 10−2 1.46 × 10−4 4.13 × 10−3 8.27 × 10−4 1.12 × 10−2 1.30 × 10−4

LSTM 5.37 × 10−3 2.24 × 10−4 1.02 × 10−2 1.93 × 10−4 2.86 × 10−3 9.96 × 10−4 1.12 × 10−2 1.30 × 10−4

HLTM 4.51 × 10−3 6.24 × 10−6 4.96 × 10−3 5.93 × 10−4

TBATS 3.89 × 10−3 7.39 × 10−5 5.17 × 10−3 3.52 × 10−4

ARIMA 5.05 × 10−3 2.37 × 10−4 1.38 × 10−2 1.17 × 10−3

90 days

LR 3.71 × 10−3 3.81 × 10−4 1.04 × 10−2 1.54 × 10−4 4.29 × 10−3 7.32 × 10−4 1.06 × 10−2 1.72 × 10−4

SVR 5.78 × 10−3 1.15 × 10−3 1.07 × 10−2 1.81 × 10−4 4.57 × 10−3 5.03 × 10−4 1.11 × 10−2 1.35 × 10−4

KNN 1.00 × 10−2 1.55 × 10−3 1.07 × 10−2 1.61 × 10−4 4.82 × 10−3 1.09 × 10−3 1.08 × 10−2 1.42 × 10−4

XGBoost 8.02 × 10−3 1.97 × 10−3 1.05 × 10−2 2.14 × 10−4 4.22 × 10−3 1.37 × 10−3 1.07 × 10−2 1.50 × 10−4

LSTM 6.98 × 10−3 1.55 × 10−3 1.07 × 10−2 1.71 × 10−4 4.20 × 10−3 5.59 × 10−4 1.07 × 10−2 1.49 × 10−4

HLTM 5.89 × 10−3 2.41 × 10−5 5.92 × 10−3 1.09 × 10−3

TBATS 2.73 × 10−3 4.62 × 10−5 5.75 × 10−3 5.45 × 10−4

ARIMA 5.73 × 10−3 2.92 × 10−4 1.94 × 10−2 1.65 × 10−3

120 days

LR 7.68 × 10−3 1.39 × 10−3 1.04 × 10−2 1.94 × 10−4 3.89 × 10−3 6.04 × 10−4 1.05 × 10−2 1.74 × 10−4

SVR 7.32 × 10−3 1.81 × 10−3 1.02 × 10−2 1.65 × 10−4 2.99 × 10−3 9.70 × 10−4 1.00 × 10−2 1.55 × 10−4

KNN 7.05 × 10−3 4.35 × 10−4 9.65 × 10−3 1.57 × 10−4 3.02 × 10−3 1.33 × 10−3 1.05 × 10−2 1.44 × 10−4

XGBoost 6.52 × 10−3 9.75 × 10−4 1.00 × 10−2 2.19 × 10−4 2.86 × 10−3 9.66 × 10−4 1.02 × 10−2 1.76 × 10−4

LSTM 6.32 × 10−3 9.92 × 10−4 9.91 × 10−3 1.41 × 10−4 3.75 × 10−3 6.15 × 10−4 1.06 × 10−2 1.70 × 10−4

HLTM 3.93 × 10−3 6.94 × 10−18 4.96 × 10−3 8.69 × 10−4

TBATS 2.92 × 10−3 5.79 × 10−5 7.05 × 10−3 4.32 × 10−4

ARIMA 5.42 × 10−3 1.59 × 10−4 2.03 × 10−2 1.75 × 10−3

150 days

LR 5.49 × 10−3 2.68 × 10−4 9.92 × 10−3 1.97 × 10−4 5.02 × 10−3 6.39 × 10−4 1.06 × 10−2 1.44 × 10−4

SVR 6.81 × 10−3 1.20 × 10−3 9.97 × 10−3 1.67 × 10−4 5.72 × 10−3 5.65 × 10−4 1.04 × 10−2 1.79 × 10−4

KNN 5.04 × 10−3 2.06 × 10−4 9.99 × 10−3 1.78 × 10−4 5.66 × 10−3 6.71 × 10−4 1.06 × 10−2 1.80 × 10−4

XGBoost 7.75 × 10−3 1.34 × 10−3 1.03 × 10−2 1.81 × 10−4 5.66 × 10−3 4.83 × 10−4 1.08 × 10−2 1.73 × 10−4

LSTM 5.07 × 10−3 1.29 × 10−3 1.01 × 10−2 1.56 × 10−4 5.89 × 10−3 2.16 × 10−3 1.04 × 10−2 1.11 × 10−4

HLTM 3.93 × 10−3 6.94 × 10−18 9.34 × 10−3 8.19 × 10−4

TBATS 2.49 × 10−3 2.15 × 10−4 9.26 × 10−3 6.46 × 10−4

ARIMA 4.67 × 10−3 1.88 × 10−4 3.07 × 10−2 3.39 × 10−3

5.2.3 Expected portfolio Sharpe Ratios.

In Table 13, we report the results for the expected portfolio Sharpe Ratio distributions
over 30-, 60-, 90-, 120-, and 150-day testing periods. We observe that the proposed algo-
rithms tend to outperform the benchmarks for all periods in the case of out-of-sample
predictions. For instance, the highest average Sharpe Ratio value is observed for KNN
(3.15 × 10−2) over a 30-day period, for XGBoost (3.17 × 10−2) over a 60-day period,
for XGBoost again (2.56 × 10−2) over a 90-day period, for LSTM (1.98 × 10−2) over a
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120-day period, and for LSTM again (2.24 × 10−2) over a 150-day period. The stan-
dard deviation values appear to be lower for algorithms that use TAIs in some cases.
For instance, the volatility of Sharpe Ratio distributions decreases from 2.69 × 10−3 to
1.95 × 10−3 for SVR over a 30-day period. In the case of one-day-ahead predictions,
we observe that the Sharpe Ratio values obtained from the proposed approaches tend
to be closer on average compared to the benchmark approaches. For instance, the
average Sharpe Ratio value tends to range between 2.10 × 10−2 and 2.30 × 10−2 for
benchmarks, and between 2.38 × 10−2 and 2.80 × 10−2 for the proposed approaches.

Table 13: Expected portfolio Sharpe Ratio summary statistics. Values in bold represent the best
results for each row.

Out-of-sample One-day-ahead
Without TA With TA Without TA With TA

30 days Mean SD Mean SD Mean SD Mean SD

LR 1.88 × 10−2 1.86 × 10−4 2.78 × 10−2 2.15 × 10−3 3.12 × 10−2 7.08 × 10−3 3.21 × 10−2 1.86 × 10−3

SVR 2.55 × 10−2 2.69 × 10−3 3.10 × 10−2 1.95 × 10−3 3.43 × 10−2 6.00 × 10−3 3.28 × 10−2 1.58 × 10−3

KNN 2.49 × 10−2 1.06 × 10−4 3.15 × 10−2 1.96 × 10−3 3.29 × 10−2 6.30 × 10−3 3.45 × 10−2 1.66 × 10−3

XGBOOST 2.23 × 10−2 9.52 × 10−3 3.14 × 10−2 1.99 × 10−3 3.17 × 10−2 4.36 × 10−3 3.19 × 10−2 1.91 × 10−3

LSTM 2.29 × 10−2 1.72 × 10−3 3.08 × 10−2 1.78 × 10−3 3.42 × 10−2 5.65 × 10−3 3.40 × 10−2 1.50 × 10−3

HLTM 1.04 × 10−2 3.60 × 10−6 1.75 × 10−2 3.05 × 10−3

TBATS 4.91 × 10−3 1.12 × 10−3 1.72 × 10−2 4.72 × 10−3

ARIMA 1.05 × 10−2 4.22 × 10−4 1.35 × 10−2 4.67 × 10−3

60 days

LR 1.35 × 10−2 3.37 × 10−3 2.72 × 10−2 2.09 × 10−3 2.96 × 10−2 3.66 × 10−3 3.18 × 10−2 1.41 × 10−3

SVR 1.81 × 10−2 5.12 × 10−3 2.29 × 10−2 2.30 × 10−3 2.66 × 10−2 3.68 × 10−3 2.84 × 10−2 2.13 × 10−3

KNN 1.62 × 10−2 5.44 × 10−4 2.72 × 10−2 1.64 × 10−3 2.96 × 10−2 4.07 × 10−3 3.23 × 10−2 1.67 × 10−3

XGBOOST 2.01 × 10−2 5.06 × 10−3 3.17 × 10−2 1.79 × 10−3 3.23 × 10−2 4.21 × 10−3 3.34 × 10−2 1.67 × 10−3

LSTM 1.69 × 10−2 4.21 × 10−4 2.16 × 10−2 2.43 × 10−3 2.69 × 10−2 4.96 × 10−3 3.31 × 10−2 1.74 × 10−3

HLTM 5.11 × 10−3 3.84 × 10−5 9.99 × 10−3 1.93 × 10−3

TBATS 3.54 × 10−3 4.58 × 10−4 3.67 × 10−3 1.65 × 10−3

ARIMA 9.17 × 10−3 8.21 × 10−4 1.79 × 10−2 1.54 × 10−3

90 days

LR 1.31 × 10−2 2.66 × 10−3 2.23 × 10−2 2.29 × 10−3 2.64 × 10−2 3.10 × 10−3 2.53 × 10−2 2.33 × 10−3

SVR 1.74 × 10−2 4.71 × 10−3 2.40 × 10−2 2.46 × 10−3 2.80 × 10−2 2.64 × 10−3 3.20 × 10−2 1.75 × 10−3

KNN 1.67 × 10−2 1.17 × 10−3 2.21 × 10−2 2.48 × 10−3 2.69 × 10−2 4.65 × 10−3 2.79 × 10−2 2.01 × 10−3

XGBOOST 1.57 × 10−2 1.98 × 10−3 2.56 × 10−2 2.27 × 10−3 2.63 × 10−2 1.80 × 10−3 2.77 × 10−2 1.92 × 10−3

LSTM 1.62 × 10−2 5.58 × 10−3 2.06 × 10−2 2.82 × 10−3 2.65 × 10−2 2.40 × 10−3 2.82 × 10−2 1.98 × 10−3

HLTM 8.20 × 10−3 3.81 × 10−3 1.26 × 10−2 2.05 × 10−3

TBATS 2.89 × 10−3 2.54 × 10−4 1.25 × 10−2 1.85 × 10−3

ARIMA 4.91 × 10−3 7.47 × 10−4 1.36 × 10−2 1.12 × 10−3

120 days

LR 1.26 × 10−2 3.75 × 10−3 1.97 × 10−2 2.29 × 10−3 2.36 × 10−2 1.95 × 10−3 2.47 × 10−2 2.31 × 10−3

SVR 1.60 × 10−2 5.80 × 10−3 1.89 × 10−2 2.46 × 10−3 2.07 × 10−2 2.45 × 10−3 2.17 × 10−2 2.01 × 10−3

KNN 1.55 × 10−2 1.12 × 10−3 1.79 × 10−2 2.48 × 10−3 2.02 × 10−2 3.86 × 10−3 2.74 × 10−2 1.73 × 10−3

XGBOOST 1.49 × 10−2 1.88 × 10−3 1.90 × 10−2 2.27 × 10−3 2.04 × 10−2 2.67 × 10−3 2.39 × 10−2 1.95 × 10−3

LSTM 1.67 × 10−2 2.40 × 10−3 1.98 × 10−2 2.82 × 10−3 2.31 × 10−2 2.01 × 10−3 2.52 × 10−2 2.17 × 10−3

HLTM 7.55 × 10−3 1.42 × 10−17 7.98 × 10−3 1.26 × 10−3

TBATS 3.07 × 10−3 2.14 × 10−4 4.23 × 10−3 1.50 × 10−3

ARIMA 4.10 × 10−3 3.37 × 10−4 5.90 × 10−3 7.67 × 10−4

150 days

LR 1.26 × 10−2 4.93 × 10−4 1.78 × 10−2 2.39 × 10−3 2.12 × 10−2 1.39 × 10−3 2.80 × 10−2 1.84 × 10−3

SVR 1.38 × 10−2 2.79 × 10−3 2.22 × 10−2 2.09 × 10−4 2.30 × 10−2 2.52 × 10−3 2.38 × 10−2 2.22 × 10−3

KNN 1.28 × 10−2 3.84 × 10−4 2.05 × 10−2 2.05 × 10−3 2.32 × 10−2 1.65 × 10−3 2.71 × 10−2 2.15 × 10−3

XGBOOST 1.42 × 10−2 1.70 × 10−3 2.23 × 10−2 2.36 × 10−3 2.32 × 10−2 1.73 × 10−3 2.72 × 10−2 2.33 × 10−3

LSTM 1.40 × 10−2 3.04 × 10−3 2.25 × 10−2 1.92 × 10−3 2.32 × 10−2 1.63 × 10−3 2.58 × 10−2 1.73 × 10−3

HLTM 7.76 × 10−3 1.42 × 10−17 1.43 × 10−2 7.98 × 10−4

TBATS 3.38 × 10−3 1.97 × 10−4 1.41 × 10−2 8.73 × 10−4

ARIMA 3.88 × 10−3 1.03 × 10−3 9.32 × 10−3 5.83 × 10−4
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Similarly to what we have done for the expected return and risk distributions, we
conducted a KS test to compare the expected distributions of Sharpe Ratio values.
Since we are making multiple comparisons, we again adjusted the significance level
according to Bonferroni’s correction. For out-of-sample predictions, the KS test gener-
ated p-values of 7.17 × 10−28, 3.97 × 10−25, 2.77 × 10−21, 1.12 × 10−20, and 3.96 × 10−16

for 30-, 60-, 90-, 120-, and 150-day periods, respectively. All of these p-values were
below the adjusted significance level of 0.01, indicating that using TAIs resulted in a
significant improvement in the expected Sharpe Ratio distributions. For one-day-ahead
predictions, the KS test produced p-values of 3.59 × 10−1, 3.64 × 10−1, 8.24 × 10−1,
1.83 × 10−1, and 1.68 × 10−1 respectively; in this case, the p-values are above the
adjusted significance level, indicating that there is no statistically significant difference
in the Sharpe Ratio distributions.

In summary, the above results confirm that using TAIs in ML can lead to an
improvement in the risk-adjusted portfolio performance, with room for improvement
of up to 66.10% in the case of out-of-sample predictions, and up to 20.07% in the
case of one-day-ahead predictions. Moreover, the use of TAIs as additional features for
machine learning algorithms causes a statistically significant difference in the expected
Sharpe Ratio distributions in the case of out-of-sample predictions, as shown by the
KS test. Even though we did not observe a statistically significant difference in the
Sharpe Ratio distributions when using TAIs in the case of one-day-ahead predictions,
we observe improvements across all periods. These results confirm the importance of
using TAIs as additional features.

5.3 Shapley values

In the previous section, we observed that incorporating TAIs as additional features in
our regression problem can significantly reduce the error rate and improve portfolio
performance. The experimental results described in the previous section outlined that
the inclusion of TAIs in our regression problem led to a notable reduction in error
rates and an improvement in portfolio performance. In this section, we will explore the
relative importance of those features using the SHAP [22] and SAGE [23] algorithms,
which produce metrics describing different aspects of feature quality, and are thus
widely used for model explainability in a variety of machine learning contexts [74, 75].

Both SHAP and SAGE build on the concept of Shapley values [73]; in traditional
co-operative game theory, Shapley values reflect a partitioning of the overall output of
a group (or ‘grand-coalition’), which expresses this output as the sum of the individual
contributions of its members, obtained by quantifying the average marginal contribu-
tion of each member across all possible member combinations (i.e. ‘sub-coalitions’). In
the context of assessing feature quality in machine learning algorithms, a Shapley value
treatment of an algorithm’s features provides an assessment of how much each feature
contributes to a measure of interest in relation to the model. However, calculating true
marginal contributions for obtaining classical Shapley values can be a computationally
prohibitive step, and therefore algorithms like SHAP and SAGE rely on compu-
tationally efficient variants, which involve approximating marginal contributions as
deviations of conditional distributions from practical prior baselines.
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In the literature, SHAP primarily tends to be used in ‘explainability’ contexts;
given a prediction, it measures the extent to which each feature has contributed to
the prediction. However, under the assumption that important features will be given
larger weights in the final models following training, and that therefore the average
influence of a feature over all predictions reflects its weighting in the model to a large
extent, this can then be interpreted as a proxy measure for evaluating feature impor-
tance. Conversely, SAGE measures feature quality more directly; instead of making
assumptions about the model’s internals, it measures the influence of each feature on
the evaluation metric directly8.

In order to have a clear view of the marginal contribution of each feature in each
case, we present them here as percentages. To achieve this, we divided the average
SHAP (or SAGE) value of each feature by the sum of SHAP (or SAGE) values for
all features. Figure 3 presents the percentage SHAP (on the left side) and SAGE
values (on the right side) calculated on the testing set for each feature, across all TAI-
based algorithms using the out-of-sample method, displayed for each asset class and
considered period. Regarding the SHAP values, we can observe that the relevance of
prices lagged by two or more days tends to be lower compared to the other features.
For REITs, TAIs combined account for 82% for a 30-day testing period, 72% for a 60-
day period, 69% for a 90-day period, 73% for a 120-day period, and 77% for a 150-day
period; while N1+N2 account for a further 14% for a 30-day period; 26% for a 60-day
period, 29% for a 90-day period, 23% for a 120-day period, and 15% for a 150-day
period; and then the remaining lags only account for 4% for a 30-day period, 2% for
a 60-day period, 2% for a 90-day period, 4% for a 120-day period, and 8% for a 150-
day period. Similarly for stocks and bonds, TAIs account for 83% for a 30-day period,
66.5% for a 60-day period, 70% for a 90-day period, 75% for a 120-day period, 78%
for a 150-day period; N1 +N2 account for 13% for a 30-day period, 31% for a 60-day
period, 28% for a 90-day period, 21% for a 120-day period, 17% for a 150-day period;
and the remaining lags only account for 3.75% for a 30-day period, 2.25% for a 60-day
period, 2% for a 90-day period, 4% for a 120-day period, and 5% for a 150-day period.

Regarding the SAGE values, for REITs, we can observe that the combined contri-
bution for TAIs tends to be 80% for a 30-day period, 60% for a 60-day period, 67%
for a 90-day period, 71% for a 120-day period, and 78% for a 150-day period; while
the combined contribution for N1 +N2 is 13% for a 30-day period, 18% for a 60-day
period, 18% for a 90-day period, 19% for a 120-day period, and 17% for a 150-day
period; and the contribution of the remaining lags is 7% for a 30-day period, 22% for
a 60-day period, 15% for a 90-day period, 10% for a 120-day period, and 5% for a 150-
day period. Regarding stocks and bonds, the combined contribution for TAIs tends to
be 77% for a 30-day period, 63% for a 60-day period, 69.5% for a 90-day period, 73.5%
for a 120-day period, and 68% for a 150-day period; while the combined contribution
for N1+N2 is 13.5% for a 30-day period, 24% for a 60-day period, 20.5% for a 90-day
period, 19% for a 120-day period, and 15% for a 150-day period; and the contribution
of the remaining lags is 9.5% for a 30-day period, 13% for a 60-day period, 10% for a
90-day period, 7.5% for a 120-day period, and 17% for a 150-day period.

8Note that, when relying on the RMSE for model evaluation, SAGE actually uses the negative RMSE
internally instead, such that Shapley values denoting important features end up positive (with negative
values denoting harmful features respectively)
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The combined SHAP and SAGE findings above may explain the substantial
improvement in terms of RMSE, achieved by employing ML algorithms making use
of TAIs in their feature-set (see Section 5.1). It is worth noting that, in the current
literature, commonly employed approaches for financial forecasting currently tend to
rely on lagged observations exclusively [76, 77].

Fig. 3: Shapley average value for each asset class and feature classified by period
considered.

5.4 Computational times

The computational times for most of the algorithms are quite similar. On average,
the execution time of HLTM, TBATS, and ARIMA was around 0.168 minutes, while
LR, SVR, and KNN had slightly longer execution times, falling in the range of 0.2
to 0.3 minutes. LSTM had the longest computational time, averaging around 1.818
minutes. It is important to note that the difference in runtime, although varying across
algorithms, is generally not considered significant. This is because these algorithms are
typically run offline during the model-building phase, and only the resulting models
are used in real-time applications where computational efficiency is crucial.

With regards to the Genetic Algorithm, we found that on average it was taking
around 10.92 seconds per run. However, it is also worth noting that Genetic Algorithms
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are highly parallelisable, and thus their computational times can be further reduced
through parallelisation processes [78].

5.5 Discussion

Our experiments aimed to investigate the extent to which the inclusion of Technical
Analysis Indicators (TAIs) as additional features could significantly reduce the error
rate in predicting the time-series of REITs, stocks, and bonds, and improve the perfor-
mance of a portfolio made of those asset classes. We outline below the main advantages
observed from including TAIs, as per our study findings:

Reduction in Error Rate: The inclusion of TAIs caused a general reduction in the
average RMSE for both out-of-sample and one-day-ahead predictions, particularly
for REITs and stocks. On the other hand, there were less evident improvements in
the average RMSE for bond time-series given the already low RMSE values and low
volatility of bond returns. The KS test results confirm that there is a statistically
significant reduction in the RMSE for REITs and stocks following the inclusion of
TAIs in the regression algorithms.

More Consistent Predictions: For bonds and stocks, we observed a lower stan-
dard deviation in the RMSE distributions across the holding periods considered when
including TAIs. This indicates a higher concentration of RMSE values around their
average value, suggesting more consistent predictions when TAIs are included.

Effects on Portfolio Performance: The second aim of our experiments was to
demonstrate how the inclusion of TAIs affects the performance of a multi-asset port-
folio. We observed significant improvements in the risk-adjusted performance of a
portfolio made of REITs, stocks, and bonds across the considered holding periods,
when optimising asset-allocation on the basis of price predictions obtained from TAI-
driven ML models. According to our KS test results, there is a statistically significant
difference in the portfolio performance when using out-of-sample predictions, while
the difference is less significant (given a p-value lower than 0.05) for one-day-ahead
predictions.

Trade-off Between Return and Risk: The increase in the expected portfolio return
caused by the use of TAIs is associated with an increase in the expected portfolio
risk, thus creating a trade-off. However, we also observed an increase in the average
expected Sharpe ratio, an aggregate metric, which is often considered more attractive
than the isolated metrics of return or risk.

Feature Importance Analysis: We also analysed the importance of each feature
with respect to the final prediction and its contribution to the overall RMSE for each
asset class and prediction period. According to our findings, TAIs tend to show more
relevance with respect to lagged prices as features, indicating that the information
contained in the TAIs is critical in determining and predicting future prices.

In conclusion, our experiments demonstrated that the incorporation of TAIs into
machine learning models for the prediction of REIT, stock, and bond time-series con-
fers several benefits, including lower prediction error rate, increased consistency in
prediction, and improved risk-adjusted portfolio performance. We also demonstrated
that TAIs tend to contribute more highly to the reduction in RMSE compared to
lagged prices.
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6 Conclusion

This study focused on the task of predicting out-of-sample and one-day-ahead prices
for REITs, stocks, and bonds. We employed five different machine learning algorithms
in combination with Technical Analysis Indicators (TAIs) for five prediction periods
(30-, 60-, 90-, 120-, and 150-day). Our experimental results indicate that: the use of
TAIs generates a reduction in the average and volatility of RMSE distributions for the
asset classes considered, which in turn leads to an improvement in the risk-adjusted
performance of a portfolio made of those asset classes. Furthermore, we observed that
TAIs tend to show greater relevance compared to the lagged prices, as demonstrated
through the SHAP and SAGE average values.

The main limitation of the study relates to the unavoidably limited number of
datasets, i.e. 10 companies for each market and each asset class. Other than repeat-
ing such analyses at a time where more data becomes available, other ways to address
this limitation in future work could involve exploring further asset classes (e.g. risk-
free securities or commodities) or other markets (e.g. Europe or emerging markets).
Another limitation is the exclusive focus on TAIs as the additional features; future
work could explore features beyond TAIs, such as financial statements, economic data,
or industry trends, to assess whether these further improve the predictive performance
of the models considered, and thus lead to improvements in risk-adjusted portfolio
performance of multi-asset portfolios. Additionally, since our study only considers a
limited number of algorithms, another area for future research could involve consid-
ering a larger number of algorithms for real estate price prediction. Finally, it would
be useful to investigate longer prediction periods (for example, up to 2 or more years)
to address the needs of an institutional investor aiming to hold the investment for the
long-term.
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