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Abstract—Financial forecasting is a vital area in computa-
tional finance. This importance is reflected in the literature
by the continuous development of new algorithms. EDDIE is
well-established genetic programming financial forecasting tool,
which has successfully been applied to a variety of international
datasets. Recently, we introduced hyper-heuristics to EDDIE.
This was the first time in the literature that hyper-heuristics
were used for financial forecasting. Results showed that this
introduction significantly benefited the performance of the algo-
rithm. However, an issue was encountered in the way that low-
level heuristics were selected during the search process, because
it was considered to be a static way. To address this issue, in
this paper we further improve our algorithm by introducing a
Choice Function, which is a score based technique that offers a
more dynamic selection of the low-level heuristics. This paper
presents preliminary results, after having tested the Choice
Function approach with 10 datasets. These results show that
the introduction of the Choice Function is beneficial to EDDIE,
thus making it a very promising tool for future investigation on
financial forecasting problems.

I. INTRODUCTION

Financial forecasting is an important area in computational
finance [1]. There are numerous works that attempt to forecast
the future price movements of a stock; several examples can be
found in [2], [3]. Recently, we presented EDDIE 8-HH (ED8-
HH) [4], [5], an extended version of a well-established genetic
programming financial forecasting algorithm named EDDIE
[6], [7], [8]. In this new version, we were the first, to the best
of our knowledge, to introduce hyper-heuristics into a financial
forecasting problem. Hyper-heuristics is a well-known method
that has been used in a variety of search and optimization
problems [9], such as transportation [10], scheduling [11],
and timetabling [12], and has returned very promising results.
The application of hyper-heuristics to EDDIE 8 was also a
great success. Nevertheless, a limitation of our approach in
[4], was in the way the low-level heuristics were selected, and
particularly the weight updating scheme that was responsible
for the selection of the heuristics. This was because the
weights were updated by the same, predefined percentage,
every time a heuristic was selected.

In this paper, a more dynamic approach is followed, which
guides the selection of the low-level heuristics during the
search process. We use the so-called Choice Function [13],
[14], which not only rewards the performance of individual

heuristics, but also the performance of heuristics as successors
of previously invoked ones. In addition, the Choice Function
has the advantage of being able to both intensify and diversify
the search, based on certain conditions that will be explained
later in this paper. As a result, the process of selecting
different low-level heuristics is improved, leading to better
exploration and exploitation of the search space, and therefore
maximizing the advantages of the hyper-heuristics framework.
In order to demonstrate the Choice Function’s effectiveness,
we present preliminary results for 10 different datasets and
compare the results against the previous version of the EDDIE
algorithm. Demonstrating the above is important, because of
the continuous efforts of both the industrial and scientific
society, for the continuous development of new and improved
financial forecasting algorithms.

The rest of this paper is organized as follows: first of all,
in order to make it clearer to the reader, we present the
EDDIE 8 algorithm by itself (i.e. without hyper-heuristics) in
Section II. Then, Section III presents the low-level heuristics
that are going to be part of the hyper-heuristics framework, to
which the Choice Function will be applied. Section IV presents
the hyper-heuristics framework, and particularly describes the
Choice Function and explains how it controls the selection of
the low-level heuristics. Section V presents the experimental
setup, and Section VI presents and discusses the experimental
results. These compare EDDIE 8’s performance in the follow-
ing conditions:

• a hyper-heuristics framework that uses [4]’s static way of
selecting the low-level heuristics, and

• a hyper-heuristics framework that uses the Choice Func-
tion as the selection method of the low-level heuristics.

Finally, Section VII concludes this paper and also discusses
future work.

II. THE EDDIE 8 ALGORITHM

EDDIE 8 (ED8) is a Genetic Programming (GP) [15],
[16] financial forecasting algorithm, which learns and extracts
knowledge from a set of data. The kind of question ED8 tries
to answer is ‘will the price increase within the n following
days by r%’? The user first feeds the system with a set of past
data; EDDIE then uses this data and through a GP process, it



produces and evolves Genetic Decision Trees (GDTs), which
make recommendations of buy (1) or not-to-buy (0).

The set of data used is composed of three parts: (i) daily
closing price of a stock, (ii) a number of attributes, and (iii)
signals. Stocks’ daily closing prices can be obtained online on
websites such as http : //finance.yahoo.com and also from
financial statistics databases like Datastream. The attributes
are indicators commonly used in technical analysis [17]; which
indicators to use depends on the user and his belief of their
relevance to the prediction. The technical indicators that are
used in this work are: Moving Average (MA), Trade Break
Out (TBR), Filter (FLR), Volatility (Vol), Momentum (Mom),
and Momentum Moving Average (MomMA).1

The signals are calculated by looking ahead of the closing
price for a time horizon of n days, trying to detect if there is
an increase of the price by r% [7]. For this set of experiments,
n was set to 20 and r to 4%. In other words, the GP is trying to
use some of the above indicators to forecast whether the daily
closing price is going to increase by 4% within the following
20 days.

After feeding the data to the system, EDDIE creates and
evolves a population of GDTs. Figure 1 presents the Backus
Normal Form (BNF) [21] (grammar) of ED8. As we can see,
the root of the tree is an If-Then-Else statement. The first
branch is either a boolean (testing whether a technical indicator
is greater than/less than/equal to a value), or a logic operator
(and, or, not), which can hold multiple boolean conditions. The
‘Then’ and ‘Else’ branches can be a new GDT, or a decision,
to buy or not-to-buy (denoted by 1 and 0).

<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision
<Condition> ::= <Condition> “And” <Condition> |

<Condition> “Or” <Condition> |
“Not” <Condition> |
VarConstructor <RelationOperation> Threshold

<VarConstructor> ::= MA period | TBR period | FLR period | Vol period |
Mom period | MomMA period

<RelationOperation> ::= “>” | “<” | “=”
Terminals:

MA, TBR, FLR, Vol, Mom, MomMA are function symbols
Period is an integer within a parameterized range, [MinP, MaxP]
Decision is an integer, Positive or Negative implemented
Threshold is a real number

Fig. 1. The Backus Normal Form of ED8

As we can observe from the grammar in Figure 1, there
is a function called VarConstructor, which takes two children.
The first one is the indicator, and the second one is the Period.
Period is an integer within the parameterized range [MinP,
MaxP] that the user specifies. The advantage of this approach
is that ED8 is not constrained to pre-specified periods, as is

1We use these indicators because they have been proved to be quite useful
in developing GDTs in previous works like [18], [19] and [20]. Of course,
there is no reason not to use other information like fundamentals or limit order
book. However, the aim of this work is not to find the ultimate indicators for
financial forecasting.

usually the case in industry.2 As a consequence, it is up to the
GP and the evolutionary process to look for the optimal periods
from the period range provided. For instance, if this range is
2 to 65 days, then ED8 can create Moving Averages with any
of these periods, e.g., 12 days MA, 15 days MA, and so on.
Furthermore, the periods are leaf nodes and are thus subject to
genetic operators, such as crossover and mutation. A sample
GDT of ED8 is presented in Figure 2. As we can see, if the
12 days MA is less than 6.4, then the user is advised to buy;
otherwise, the user is advised to consult another GDT, which
is located in the third branch (“else-branch”) of the tree. As
explained, the periods 12 and 50 of the figure’s sample tree
are leaf nodes; the advantage of this being that the GP can
replace them with other, more effective periods, which might
have come up during the evolutionary process.

Depending on the classification of the predictions, we can
have four cases: True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN). As a result, we can
use the metrics presented in Equations 1, 2 and 3.

Rate of Correctness

RC =
TP + TN

TP + TN + FP + FN
(1)

Rate of Missing Chances

RMC =
FN

FN + TP
(2)

Rate of Failure
RF =

FP

FP + TP
(3)

The above metrics combined give the following fitness func-
tion, presented in Equation 4:

ff = w1 ∗RC − w2 ∗RMC − w3 ∗RF (4)

where w1, w2 and w3 are the weights for RC, RMC and RF
respectively. These weights are given in order to reflect the
preferences of investors. For instance, a conservative investor
would want to avoid failure; thus a higher weight for RF
should be used. For the experiments of this paper, the focus
is on strategies that mainly target correctness and reduced
failure. Thus these weights have been set to 0.6, 0.1 and 0.3
respectively.

The fitness function is a constrained one, which allows ED-
DIE to achieve lower RF. The effectiveness of this constrained
fitness function has been discussed in [8], [22]. The constraint
is denoted by R, which consists of two elements represented
by a percentage, given by

R = [Cmin, Cmax],

2In the literature, the users of similar algorithms pre-specify certain periods
that they consider useful. For instance, 12 days MA, and 50 days MA. The
indicators (e.g., MA) together with their respective period (e.g., 12) are treated
by the GP as a single leaf node. Thus, the numbers 12 and 50 cannot change
during the evolutionary process. In our previous work [6], we questioned this
approach, because nobody can guarantee that, for instance, a 12 days MA is
better than a 15 days MA. To address this issue, we created ED8, which is
able to search in the space of technical indicators and their periods.
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Not-Buy(0) Buy(1)

Fig. 2. Sample GDT generated by ED8.

where Cmin = Pmin

Ntr
×100%, Cmax = Pmax

Ntr
×100%, and 0 ≤

Cmin ≤ Cmax ≤ 100%. Ntr is the total number of training
data cases, Pmin is the minimum number of positive position
predictions required, and Pmax is the maximum number of
positive position predictions required.

Therefore, a constraint of R = [50, 65] means that the
percentage of positive signals that a GDT predicts3 should
fall into this range. When this happens, then w1 remains as
it is (i.e. 0.6 in the experiments of this paper). Otherwise, w1

takes the value of zero.
This concludes this short presentation of ED8. The next

section presents the low-level heuristics that are applied to
ED8 as part of the hyper-heuristics framework.

III. HEURISTICS

Although ED8 was characterized as an effective financial
forecasting algorithm [23], [6], an issue that arose, as a result
of its extended grammar, was that ED8’s search space was
significantly bigger.4 As a consequence, ED8 could sometimes
miss good solutions due to ineffective search. To address this,
hyper-heuristics frameworks were introduced in [4], [5], which
consisted of different low-level heuristics. The rest of this
section describes such heuristics, which are going to be used
for the experiments of this paper.

3As already mentioned, each GDT makes recommendations of buy (1) or
not-to-buy (0). The former denotes a positive signal and the latter a negative.
Thus, within the range of the training period, which is t days, a GDT will
have returned a number of positive signals.

4In order to understand the kind of search space ED8 is dealing with, let
us give an example: since ED8 is using 6 technical indicators, with periods
ranging from 2 to 65 days, the total number of the potential indicators is
6× 64 = 384. If a given GP tree can take up to a maximum of k indicators
(this depends on the depth of the particular tree), then the permutations of the
available indicators are 384k . To put this in perspective, let us also calculate
the permutations of a GP that would not use a range of periods, as ED8
does. Thus, if for instance the GP was using 6 technical indicators with 2
periods each (this is a quite common approach [27], [28]), then the number
of permutations would be (2×6)k = 12k . We can thus see that the number of
permutations for ED8 is significantly higher, thus making it extremely difficult
to thoroughly search this search space.

In EDDIE 8, each GP individual represents a possible
GDT whose basic component is the variable constructor. As
explained above, an issue that ED8 was facing was its big
search space, which was a direct result of the increased number
of period choices. Therefore, the objective was to design
heuristics that improve a given GDT by exploring the space
of its periods.

Based on [4], it was found that a very effective hyper-
heuristic framework is one that includes a combination of
random mutators and hill climbers. These can take one of the
following three approaches:

• A random mutation: this approach makes a random
change either to the indicators or the periods of the
current GDT, resulting in new GDT(s). It compares the
new GDT(s) with the original GDT, and returns the best
one.

• An iterative hill climbing: this is a local search procedure
that iteratively searches the local space (i.e. neighbor-
hood) of the current GDT. A neighbor can be obtained
from the current solution by making a small change to
its structure. The procedure starts from an initial solution,
and then iteratively moves to a better neighbor. The search
stops when none of the neighbors yields an improvement
to the current tree, returning a local optimum GDT.

• A single-step hill climbing: this approach is similar to
the previous hill climber, however, the search examines
only the neighbourhood of the initial GDT. It stops once a
better neighbor is found, or the neighborhood is examined
completely without improvement.

Based on the above approaches, the following period-based
heuristics are devised:

1) Period-based Mutation (PMut). This heuristic mutates
the current GDT by trying two new periods for a
randomly picked variable constructor. The two periods
are obtained by adding/subtracting a pre-set value (k)
from the current period, resulting in two new GDTs. The
hyper-heuristics framework used in this paper utilizes



3 values of k: 11 (PMut11), 13 (PMut13), and 15
(PMut15).5

2) Period-based hill climbing (PHC). This is an iterative
hill climbing procedure. In PHC, the neighbourhood
includes any GDT that can be obtained by modifying
the period of a variable constructor in the current tree.
Here, this modification is defined as a marginal change
(k) to the value of period, such that −10 ≤ k ≤ 10.

3) Period-based single-step hill climbing (sPHC). This is
the single-step hill climbing version of PHC.

Hence, the hyper-heuristics framework that is going to be
used in this paper consists of the above 5 low-level heuristics,
i.e., PMut11, PMut13, PMut15, PHC, and sPHC.

IV. HYPER-HEURISTICS FRAMEWORK

This section presents the hyper-heuristics frameworks that
are going to be tested in this paper. First, we present the details
of the framework that was introduced in [4], and explain how
the low-level heuristics are selected. This framework will act
as a benchmark for the experiments. Then we present the
Choice Function, which is the newest addition to the ED8
algorithm, and the main contribution of this paper. We start
by presenting the details of the Choice Function, and then we
continue by explaining how it is incorporated into the hyper-
heuristics framework, and thus how it controls the selection
of the low-level heuristics.

A. Hyper-heuristics Framework 1 (ED8-HH)

In this simple framework, which from now on will be re-
ferred to as ED8-HH, all low-level heuristics are used simulta-
neously. Inspired by the Population Based Incremental Learn-
ing algorithm [24] and the similar Estimation of Distribution
Algorithms [25], [26], all low level heuristics are initially given
a weight w of being selected, where w = 1

#heuristics . Thus,
if a framework consists of 5 heuristics, then the initial weight
of each heuristic is 1

5 . Then depending on the result on the
performance of a tree after the implication of a heuristic, the
following cases can occur: increase in performance, no change
in performance, decrease in performance. Depending on the
case, there is a different reward/punishment for the respective
heuristic. This is denoted by r. Thus, the weight w is updated
as follows:

1) Increase in performance
w = w0 + r

2) No change in performance
w = w0 − r/5

3) Decrease in performance
w = w0 − r

The highest reward is offered when the selected heuristic
has offered an increase in the performance of the respective
tree. In the case of no change in performance, the selected
heuristic is slightly penalized by a decrease in its weight by

5In our previous work, other k values were tested, too. However, the ones
presented here were found very useful and were included in the framework
we are presenting.

r/5. Lastly, there is a punishment of r in the case of decrease
in the performance.

As explained already, the above mentioned way of updating
the weights can be considered rather static, because these
updates are always related to the same, pre-defined r. Thus,
it was important to look for a more dynamic way of selecting
the low-level heuristics. The suggested solution to this is the
Choice Function, the details of which are presented next.

B. The Choice Function

Choice Function heuristic selection methods were first in-
troduced in [13]. These methods guid the selection of low-
level heuristics during the search process, by introducing score
based techniques. A detailed explanation of the implementa-
tion of the Choice Function in a hyper-heuristics framework is
presented in [14]. The implementation in this paper is based
on this work ([14]).

More specifically, the Choice Function focuses on 3 aspects:
1) How well a given heuristic has performed individually

(Factor f1 - Equation 5)
2) How well a given heuristic has performed as a successor

of a previously invoked heuristic (Factor f2 - Equation
6)

3) The elapsed time since a given heuristic was called
(Factor f3 - Equation 7)

The Choice Function thus ranks the low-level heuristics with
respect to a combined score of the above aspects. It should
also be mentioned that the first two aspects intensify recent
performance, while the last one offers diversification in the
search.

1) Calculating the Factors in the Choice Function:
a) Factor f1: First of all, the Choice Function is inter-

ested in the performance of each low-level heuristic. Thus, a
measure of the past performance of a low-level heuristic Hj

is equal to:

f1(Hj) =

l∑
n=1

αn(
In(Hj)

Tn(Hj)
) (5)

In the above equation, In(Hj) is the change in the fitness
function the nth last time Hj was used, and l refers to the first
time that Hj was selected. Furthermore, Tn(Hj) is the amount
of CPU time in milliseconds from the time Hj was used the
nth last time, until the moment it returned a solution to the
controller. The parameter α takes a value in the interval [0, 1]
and it assigns a decreasing geometric sequence of weights to
the past performance measures of Hj .

The idea above is that if a certain low-level heuristic has
recently been effective, it is possible that it will continue being
effective in the near future.

b) Factor f2: This factor takes into account the perfor-
mance of the current heuristic as a function of the heuristic that
was used immediately before. This is because, the performance
of a low-level heuristic may be affected by the low-level
heuristic that was used immediately before it. Suppose that
Hk was used at the last iteration and the use of Hj next is



being considered. Then the measure of the past performance
of the pair (Hk, Hj) is calculated using:

f2(Hk, Hj) =

l∑
n=1

βn(
In(Hk, Hj)

Tn(Hk, Hj)
) (6)

Here In(Hk, Hj) is the change in the cost function the nth

last time the pair (Hk, Hj) was used, and l refers to the first
time in the search that Hj was used immediately after Hk.
Tn(Hk, Hj) is the amount of CPU time in milliseconds from
the time the pair (Hk, Hj) was used the nth last time, until
the time when a solution was returned to the controller. The
parameter β takes a value in the interval [0, 1] and it also
assigns a decreasing geometric sequence of weights to the
past performance measures of the pair (Hk, Hj).

c) Factor f3: So far the factors f1 and f2 were presented.
These two factors are important because they intensify the
search on low-level heuristics which have performed well in
the past. However, it is also important to have a factor that
offers diversification. The third factor f3 thus diversifies the
search by considering low-level heuristics that may not have
been used for some time. This is beneficial in situations where
the search is stuck at a local optimum. Thus, it might be
worth using another heuristic that has not been chosen recently
during the search. This leads to a diversified search process.
The value of f3 is calculated for each low-level heuristic Hj

using:

f3(Hj) = δ × τ(Hj) (7)

Here τ(Hj) is the amount of CPU time in milliseconds
since the low-level heuristic Hj was last used and each time
Hj is used τ(Hj) is reset to 0. Parameter δ is the weight of
f3 and receives values between 0 and 1.

C. Incorporating the Choice Function into the Hyper-
heuristics framework (ED8-CF)

Based on the above, the Choice Function is incorporated
into the hyper-heuristics framework, which is from now on
going to be referred to as ED8-CF. Thus, instead of using
the selection method presented in Section IV-A, the low-level
heuristics are selected based on the Choice Function F . The
value of F is calculated by the sum of the 3 factors presented
above:

F (Hj) = f1(Hj) + f2(Hk, Hj) + f3(Hj) (8)

The process that is followed is:
• With a probability p, select a tree from the current

population
• For a number of k iterations, do:

◦ Calculate the value of F for each low-level heuristic
◦ Select the low-level heuristic with the highest Choice

Function F score (Equation 8)
◦ Apply the low-level heuristic to a period of the

selected tree

◦ Update the factors f1, f2, and f3, as described above,
in Equations 5 - 7

The above process allows a number of different heuristics
to be applied on the period branches of the tree, resulting to
an improved fitness. As already mentioned, this approach has
the advantage that the low-level heuristics are selected based
on different factors, which are related to both intensified and
diversified search criteria. This thus increases the chances of a
better exploration and exploitation of the huge search space of
EDDIE 8. Hence, it also increases the chances of improving
the algorithm’s performance.

V. EXPERIMENTAL SETUP

We run tests for 10 datasets. These datasets consist of
daily closing prices from 8 stocks from FTSE 100, and 2
international indices. The 8 FTSE 100 stocks are: Aggreko,
Amlin, British American Tobacco (BAT), Carnival, Centrica,
Easyjet, Next, and Xstrata. The 2 indices are: Athens Stock
Exchange (Greece), and MDAX (Germany). The training
period is 1000 days and the testing period 300.

We are interested in investigating the advantages of intro-
ducing the Choice Function to a hyper-heuristics framework.
For this reason, we compare the Choice Function algorithm
introduced in this paper (ED8-CF) with the previously devel-
oped hyper-heuristics framework [4] (ED8-HH). The goal is to
report the differences in the performance of ED8 under each
framework and comment on whether the introduction of the
Choice Function is beneficial to EDDIE 8. This will take place
in the next section, Section VI.

The GP parameters are presented in Table I. For statistical
purposes, the GP is run 50 times. Thus, the process is as
follows. We create a population of 500 GDTs, which are
evolved for 50 generations, over a training period of 1000
days. At the last generation, the best performing GDT in terms
of fitness is saved and applied to the testing period. As we have
already said, this procedure is done for 50 individual runs.6

TABLE I
GP PARAMETERS.

GP Parameters

Max Initial Depth 6
Max Depth 8
Generations 50
Population size 500
Tournament size 2
Reproduction probability 0.1
Crossover probability 0.9
Mutation probability 0.01
Weight w1 0.6
Weight w2 0.1
Weight w3 0.3
Period (ED8) [2,65]

Furthermore, Table II presents the parameters of the Choice
Function hyper-heuristics framework. The probability p of

6We do not argue that these are the optimal GP parameters. Nevertheless,
experience from previous EDDIE experiments has shown that the above GP
parameters return effective results.



applying hyper-heuristics to a certain tree is set for this work at
35%. Thus, 35% of the trees’ periods can be updated through
hyper-heuristics at each generation. It should be mentioned
at this point that we experimented with higher and lower
values of p and found that p = 35% was offering the best
results. Similarly, the number of maximum iterations k that
the low-level heuristics are applied to a tree is set to 30.
We also experimented with k = 15 and k = 50, but found
that k = 30 was offering the best results. Lastly, we have
set the Choice Function parameters α, β and δ to 0.8, 0.5,
and 1 respectively. We have set them in a way that reflects the
aspects of the Choice Function we consider the most important
during the search; for instance, experience has shown that
the algorithm tends to get stuck in specific well-performing
low-level heuristics. For this reason, we have decided to give
emphasis on diversification and thus gave δ a value of 1.7

TABLE II
CHOICE FUNCTION HYPER-HEURISTIC PARAMETERS.

CF-HH Parameters

Choice Function Probability p 35%
Maximum Iterations k per Tree 30
α 0.8
β 0.5
δ 1

VI. RESULTS

This section presents the experimental results. Results are
presented in Tables III(a) and III(b). The former presents
the average results, over the 50 individual runs, for the 10
datasets tested in this paper, under the performance metrics
of Fitness, RC, RMC and RF. The first line for each dataset
denotes results returned by ED8-HH, while the second line
presents results returned by ED8-CF. Table III(b) presents the
best8 results, over the 50 runs. For example, the first entry in
this table, denotes that the highest Fitness value that ED8-
HH obtained, out of 50 individual runs for the dataset of
Aggreko, was 0.342. We should emphasize at this point that
we are particularly interested in the best results, because if an
investor was using EDDIE to assist him with his investments,
he would run the algorithm many times and then select the
best tree that was produced. Thus, we are very interested in
any improvements that might come up in terms of best results,
because they have practical advantages in the real world.

A. Average results

Table III(a) presents the average results. We are interested
in examining if ED8-CF has significantly improved any of the

7Nevertheless, we do not argue that these values are the optimal ones.
We have left the investigation of searching for the optimal values of these
parameters as a future work. More details about this can be found at the
Conclusion section of this paper.

8Since fitness and RC are maximization problems, the ‘best’ result between
two values is the maximum value. On the other hand, RMC and RF
are minimization problems, so the ‘best’ result between two values is the
minimum value.

following: Fitness, RC, RMC, and RF. In order to determine
if a difference is significant, we run a two tailed t-test at
5% significance level, under the null hypothesis that the
two distributions have equal means and equal but unknown
variances; the alternative hypothesis is that the means are not
equal. When there is a significant improvement introduced
by ED8-CF, this is denoted by setting the respective value
in bold fonts; when on the other hand ED8-CF introduced a
significant diminution to a certain metric, the respective value
is underlined. As one can observe from Table III(a), there are
no values in bold, and only one value is underlined (Aggreko’s
RF). This thus shows that ED8-CF performs as well as its
predecessor, ED8-HH.

The above result should not surprise us. Even if an algorithm
that is applied to EDDIE 8 is able to offer improvements to
ED8’s performance metrics, it would be extremely hard to
consistently do this. This is because of the huge search space
that ED8 is dealing with. Algorithms applied to ED8 might
be able to offer improvements in certain runs, but on average,
it is not likely to offer significantly improved average results.9

Thus, one should focus on investigating the performance of
the new algorithms (i.e., the Choice Function in this paper) in
terms of the best results. This is done next.

B. Best results

The best results are presented in Table III(b). The formatting
of the table follows the same philosophy as above, i.e., an
improvement is denoted by bold fonts, and a diminution is
denoted by underlined fonts.10

The first observation one can make is that we are dealing
with a completely different picture than the one we discussed
above in the average results. There are now quite a few
improvements and the number of these improvements, caused
by ED8-CF, is higher than the number of diminutions. This
allows us to argue that the Choice Function has been very
beneficial to the hyper-heuristics framework, and to the ED-
DIE algorithm as a whole. We can observe that the Choice
Function has offered 15 improvements to the HH framework.
These improvements are: Aggreko (RF), Amlin (RC), Athens
(RMC and RF), BAT (RC and RMC), Centrica (RF), Easyjet
(Fitness, RC, and RMC), MDAX (Fitness, RC, and RF), Next
(RF), and Xstrata (RF). It should also be noted that some of
these improvements are quite significant, e.g., MDAX’s Fitness
increase from 0.1691 to 0.2798 (11% increase). In addition, it
is also important to note that the number of diminutions caused
by ED8-CF is low (only 4); this strengthens the argument
that the Choice Function has improved the hyper-heuristics
framework, because it not only has improved the values of the
performance metrics, but it has also kept any negative effects
to a low range.

9The same behaviour in terms of average results was also observed in [4].
10Since we are now dealing only with a single value (best), instead of

distributions, we cannot run a formal statistical test to determine the best
algorithm. We therefore consider an improvement to be significant when the
value of the metric has improved by at least 1%.



TABLE III
AVERAGE [III(A)] AND BEST [III(B)] RESULTS FOR ED8-HH VS ED8-CF.

(a) Average Results

Dataset Heuristic Fitness RC RMC RF
Aggreko ED8-HH 0.252 0.5941 0.3392 0.2523

ED8-CF 0.2508 0.5949 0.3023 0.2702
Amlin ED8-HH 0.1756 0.5423 0.3663 0.3869

ED8-CF 0.1569 0.5273 0.3835 0.4126
Athens ED8-HH 0.1176 0.5049 0.4253 0.476

ED8-CF 0.1303 0.5127 0.436 0.4576
BAT ED8-HH 0.2192 0.5431 0.4606 0.2173

ED8-CF 0.2348 0.5557 0.4272 0.2193
Carnival ED8-HH 0.2085 0.5788 0.278 0.3811

ED8-CF 0.193 0.5645 0.3201 0.3894
Centrica ED8-HH 0.1888 0.4869 0.5353 0.1661

ED8-CF 0.2048 0.4995 0.5186 0.1597
Easyjet ED8-HH 0.0862 0.4137 0.7609 0.2972

ED8-CF 0.1098 0.4335 0.7236 0.2796
MDAX ED8-HH 0.0701 0.4759 0.3117 0.613

ED8-CF 0.0784 0.4793 0.3073 0.5938
Next ED8-HH 0.1258 0.4772 0.5276 0.3591

ED8-CF 0.1454 0.4892 0.5037 0.3553
Xstrata ED8-HH 0.2474 0.5903 0.2868 0.2602

ED8-CF 0.2462 0.5841 0.3181 0.2416

(b) Best Results

Dataset Heuristic Fitness RC RMC RF
Aggreko ED8-HH 0.342 0.7133 0.0 0.0845

ED8-CF 0.342 0.7133 0.0 0.0
Amlin ED8-HH 0.2707 0.6467 0.0 0.0

ED8-CF 0.2798 0.66 0.0 0.3287
Athens ED8-HH 0.2362 0.61 0.0124 0.3764

ED8-CF 0.2222 0.6067 0.0 0.3167
BAT ED8-HH 0.3598 0.7233 0.0628 0.0658

ED8-CF 0.369 0.7433 0.0 0.0833
Carnival ED8-HH 0.2652 0.6467 0.0 0.2598

ED8-CF 0.2745 0.6533 0.0 0.2685
Centrica ED8-HH 0.4357 0.8167 0.0 0.0688

ED8-CF 0.4371 0.8167 0.0 0.0
Easyjet ED8-HH 0.3045 0.6733 0.0985 0.0

ED8-CF 0.3194 0.69 0.0 0.0968
MDAX ED8-HH 0.1691 0.6233 0.0 0.5301

ED8-CF 0.2798 0.64 0.0 0.0
Next ED8-HH 0.294 0.66 0.0 0.2476

ED8-CF 0.294 0.66 0.0 0.2308
Xstrata ED8-HH 0.3835 0.76 0.0 0.056

ED8-CF 0.3896 0.7667 0.0 0.0

Another observation that can be made is that the improve-
ments in the best values took place for 9 out of the 10 datasets.
This is also very important, because it demonstrates that the
Choice Function has the ability to improve the metrics of the
majority of the datasets that is given. It thus seems that the
Choice Function can successfully be applied to a wide variety
of datasets.11

VII. CONCLUSION

To conclude, from the above preliminary results we can
argue that the introduction of the Choice Function has been
advantageous. As we have seen, the Choice Function is
competitive in terms of average results, since it performs as
well as its predecessor. We should again mention that because
of the huge search space that EDDIE 8 is dealing with, it can
be very hard to constantly locate extremely good solutions.
Thus, it might not be that easy for any new EDDIE version
to be consistently better in terms of average results.

On the other hand, the Choice Function has shown that it
can perform very well in terms of best results. It seems that, if
given enough individual runs, it is able to locate an extremely
good solution, at least once. This is all that an investor who
uses EDDIE wants and needs. In real life an investor is not
necessarily interested in robust average results. If an investor
was using EDDIE to assist him with his investments, he
would run the algorithm many times and then select the best
tree that was produced. Thus, we are very interested in any
improvements can be achieved in terms of best results, because
they have practical advantages in the real world. The Choice
Function seems to be able to offer this, allowing us to consider
it as a beneficial extension to the EDDIE 8 series. In addition

11Of course, this requires further investigation using a wider range of
datasets. Nevertheless, the fact that there were improvements in 9 out of the
10 datasets tested is very encouraging.

to this, we should re-iterate that the applicability of the Choice
Function to a wide range of different datasets is considered as
an important advantage of the algorithm.

To conclude, the Choice Function seems to have maximized
the advantages of the hyper-heuristics framework used in this
paper. It is worth investigating whether this could generalize
to other hyper-heuristics frameworks. We thus plan to further
investigate this in future work. Plans about other types of
future work are presented next.

There are several paths that can be followed as a future
work. First of all, we could look into the possibility of
dynamically updating the Choice Function values of α, β
and δ. In the current framework these values are fixed. [14]
has already done some work in this direction, by extending
the work of [13], and introducing a learning scheme that
dynamically updates the values of α, β and δ. This is certainly
something that deserves further investigation. Finally, applying
the Choice Function algorithm to more datasets could help
with the generalisation of the results of this paper.
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