
Metaheuristics Application on a Financial

Forecasting Problem

Dafni Smonou
Centre for Computational Finance and
Economic Agents, University of Essex,

Wivenhoe Park, CO4 3SQ, UK

Michael Kampouridis
School of Computing, Medway Campus,

University of Kent,

Chatham Maritime, ME4 4AG, UK

Edward Tsang
Centre for Computational Finance and

Economic Agents, University of Essex,

Wivenhoe Park, CO4 3SQ, UK

Abstract- EDDIE is a Genetic Programming (GP) tool, which is

used to tackle problems in the field of financial forecasting. The

novelty of EDDIE is in its grammar, which allows the GP to look

in the space of technical analysis indicators, instead of using pre-

specified ones, as it normally happens in the literature. The

advantage of this is that EDDIE is not constrained to use pre-

specified indicators; instead, thanks to its grammar, it can choose

any indicators within a pre-defined range, leading to new

solutions that might have never been discovered before. However,

a disadvantage of the above approach is that the algorithm’s

search space is dramatically larger, and as a result good solutions

can sometimes be missed due to ineffective search. This paper

presents an attempt to deal with this issue by applying to the GP

three different meta-heuristics, namely Simulated Annealing,

Tabu Search, and Guided Local Search. Results show that the

algorithm’s performance significantly improves, thus making the

combination of Genetic Programming and meta-heuristics an

effective financial forecasting approach.

I. INTRODUCTION

 Financial forecasting is a well-known and applied

method in the industry. Its importance has led investors and

researchers to focus on the creation of more efficient ways to

apply financial forecasting. In the field of Computational

Intelligence, a new financial forecasting tool called EDDIE 8

(ED8) has been presented [1]. ED8, which is an extended

version of EDDIE (Evolutionary Dynamic Data Investment

Evaluator) [2], uses Genetic Programming [3], [4] in order to

make predictions. The new feature of this version, in

comparison to its predecessor EDDIE 7 (ED7), and to every

other financial forecasting tool in the literature, was its

extended grammar (BNF) [5], which provided the algorithm

with the ability to search in the space of technical analysis
1

indicators to form Genetic Decision Trees (GDTs).
2

In ED7 the indicators used were limited and pre-specified

by the user, for instance 12 and 50 days Moving Average. On

the other hand ED8 was not limited to the above periods and

was able to choose between a range of periods specified by the

user, for instance any period between the range of 2 and 65

days Moving Average. The GP would then be responsible for

1
 Technical analysis is a financial forecasting method, used to predict a future

movement based on existing patterns.
2
 Due to the fact that the decision trees created by EDDIE were a result of

Genetic Programming, they were referred as ‘Genetic Decision Trees’.

searching the above period range and suggest appropriate

periods for the technical indicators.

Results in [1], [6] showed that thanks to its extended

grammar, ED8 could reach new and improved solutions.

However, it was observed that occasionally the performance

could be compromised, as a consequence of this new

grammar. This was because ED8’s search space had

dramatically increased, and thus ED8 could not always search

effectively its large search space. This will be discussed in

more details in Section II-B. In order to overcome the problem

of ineffective search, several heuristics were applied by

Kampouridis et al. in [7], and then combined into different

hyper-heuristics frameworks, which were proven beneficial

for the performance of EDDIE.

However, only a few low-level heuristics were examined

in [7], e.g. different implementations of hill-climbers. While

hill climbing is an effective search algorithm, it is also known

for getting stuck in local optimums. Furthermore, [7] also

concluded that more search algorithms should be applied to

ED8, to investigate if further performance improvements

could take place. To this extend, this paper applies three

search algorithms, namely Simulated Annealing, Tabu Search,

and Guided Local Search. The advantage of these algorithms

is that they fall in the category of meta-heuristics, thus have

the potential of overcoming local optima [8], [9], [10]. Our

goal is to show that as a result of the application of the above

meta-heuristics, ED8’s search effectiveness can significantly

improve and lead to even better solutions, thus make EDDIE a

beneficial algorithm for the financial forecasting community.

The rest of this paper is as follows: Section II presents

EDDIE and the purpose of using heuristics, Section III

focusses on the metaheuristics applied for the purpose of this

project, Section IV analyses the experimental design, Section

V includes a presentation and discussion of the experimental

results, and finally, Section VI concludes this paper.

II. EDDIE

Computational Intelligence (CI) techniques have been

extensively used for financial forecasting. Genetic

Programming (GP) [3], [4] is a CI technique that has received

much attention for this type of problems. Some examples of

recent GP applications for financial forecasting are: [11], [12].

EDDIE is a financial forecasting algorithm that uses GP to

evolve trading strategies and predict future movements of the

stock market. The rest of Section II presents EDDIE in detail.

A. THE GENERAL EDDIE PROCESS

This Section focusses on providing some basic information

about the way EDDIE works and specifically the EDDIE 7

(ED7) version, which EDDIE 8 (ED8) is extending.

For starters, EDDIE tries to answer the question: “Will the

price of a stock X increase by r% within the next n days?” The

algorithm uses three basic inputs: technical analysis indicators,

historical data (daily closing prices of stocks and indices) and

binary target signals of buy or not-to-buy (1, 0). The twelve

indicators used from technical analysis in ED7 are the

“Moving Average” of 12 and 50 days, the “Trade Break Out”

of 12 and 50 days, the “Filter” of 12 and 50 days, the

“Volatility” of 12 and 50 days, the “Momentum” of 12 and 50

days and finally the “Momentum Moving Average” of 12 and

50 days. The common factors of these are the pre-specified

periods of 12 and 50 days which cannot change in this version

of EDDIE; therefore the indicators are considered as

constants. Additionally, the historic data used, can be obtained

from online websites, for instance http://finance.yahoo.com.

Last but not least, the signals are estimated by looking n days

ahead of the closing price and by checking to see if the price

has risen by r%.

Furthermore, GP is used as a basic tool for EDDIE. A

population of Genetic Decision Trees (GDTs) is generated

randomly and these trees are evolved for a number of

generations. The grammar (BNF) of ED7 is illustrated in

Fig.1. A point that needs to be highlighted is the

“<Variable>”, which can be any of the twelve pre-specified

technical indicators mentioned earlier. However, the fact of

using these pre-specified indicators was considered to be a

limitation of EDDIE, and the first attempt to tackle this issue

took place in ED8 [1], as we will see in Section II-B.

Fig. 1. The Backus Normal Form of ED7 [6].

The evaluation of EDDIE’s GDTs is based on the

Confusion Matrix [13], from which we derive three

performance measures:

Rate of Correctness

TP T

TP T FP F
 (1)

Rate of Missing Chances

 M
F

F TP
 (2)

Rate of Failure

 F
FP

FP TP
 (3)

Those three metrics RC, RMC, RF are combined to create

the fitness function which was defined as:

ff w1 - w2 M - w F (4)

where w1, w2, w3 are the weights for RC, RMC and RF,

chosen specifically to reflect investor’s preferences [14].

B. EDDIE 8

ED8 was created to overcome ED7’s limitations of using

pre-specified period indicators. Instead, ED8 would allow the

algorithm to choose any periods within a specific range.

As was described in the previous section, ED7 used 6

indicators with 2 pre-specified periods (12 and 50 days). On

the contrary, as it can be seen in Fig. 2, instead of the constant

“<Variable>” ED8 now uses a function called

“<VarConstructor>”. This new feature is a function that

takes two children, the “Indicator” and “Period”. The

indicators are the same with the previous version; however,

the periods can now take any values within a range [Pmin,

Pmax]. Consequently, ED8 can now produce GDTs which

contain indicators such as MA 18 days, Mom of 46 days and

so on. This is an important difference from ED7, because it

made the algorithm much more flexible and dynamic. ED8 has

many more options available, instead of being restricted to

only 12 indicators, and it is up to the GP and the evolutionary

process to determine the best periods for each decision tree.

Fig. 2. The Backus Normal Form of ED8 [6].

However a serious issue that arose was that the new

grammar had dramatically increased the search space of the

GP. As it was explained in [7], if a given GDT can have a

maximum of k indicators then, the permutations of the 12

indicators (6 indicators * 2 periods) under ED7 are 12
k
. On the

contrary, if ED8 is using the same 6 indicators with periods

within the range of [2, 65] days, then the permutations of the

384 indicators (6 indicators *64 periods) are 384
k
. ED8’s

search space was now significantly larger than ED7’s;

therefore, ED8 could occasionally miss good solutions due to

ineffective search. For that reason, it was decided that

different heuristics should be applied to the leaf periods of the

trees, in an attempt to make the search more effective.

C. HEURISTICS AND METAHEURISTICS

In order to deal with ED8’s problem of ineffective search,

Kampouridis et al. [7] combined certain heuristics under

<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision

<Condition> ::= < ondition> “And” < ondition> |

 < ondition> “Or” < ondition> |

 “ ot” < ondition> |

 Variable <RelationOperation> Threshold

<Variable> ::= MA 12 | MA 50 | TBR 12 | TBR 50 | FLR 12 |

 FLR 50 | Vol 12 | Vol 50 | Mom 12 | Mom 50 |

MomMA 12 | MomMA 50

< elationOperation> :: “>” | “<” | “ ”

Decision is an integer, Positive or Negative implemented

Threshold is a real number

<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision

< ondition> :: < ondition> “And” < ondition> |

 < ondition> “Or” < ondition> |“ ot” < ondition> |

 VarConstructor <RelationOperation> Threshold

<VarConstructor> ::= MA period | TBR period | FLR period |

 Vol period | Mom period | MomMA period

< elationOperation> :: “>” | “<” | “ ”

 MA, TBR, FLR, Vol, Mom, MomMA are function symbols

 Period is an integer within a parameterized range [MinP, MaxP]

 Decision is an integer, Positive or Negative implemented

 Threshold is a real number

http://finance.yahoo.com/

hyper-heuristic frameworks. In that work, 14 low-level

heuristics were applied to 30 datasets on ED8. Those

heuristics were applied to the indicators and the periods.
3
 The

rationale behind this was that these heuristics would offer

exploitation of the search area of the technical indicators and

their periods.

Moreover, the best of those heuristics (in terms of

performance) were chosen to be combined under three

different hyper-heuristics frameworks. The results were very

promising as all three hyper-heuristics improved the average

and best solutions; therefore they significantly improved the

overall performance of ED8. That was the first time that

hyper-heuristics had been applied to financial forecasting.

However, it was also pointed out that the low-level

heuristics used in [7] (different hill-climbers and mutators)

were not an exhaustive list of heuristics, and that other search

algorithms could offer even more effective search.

The above can be particularly true for meta-heuristics,

which are designed with the goal of over-coming local optima.

Our purpose thus in this paper is to experiment with three

such meta-heuristics and investigate their effect to the

performance of ED8. The next section presents these meta-

heuristics and also explains how they were applied in the

EDDIE framework.

III. METHODOLOGY

As explained earlier, in order to improve ED8’s search, we

will be applying different meta-heuristics to the trees’ period

nodes. Thus, at every generation a number of trees is selected,

and then a meta-heuristic is applied to each tree.

This Section describes the implementation details for these

meta-heuristics, namely Simulated Annealing (SA), Tabu

Search (TS) and Guided Local Search (GLS). The reason

behind the choice of the above algorithms is their proven good

performance within various research fields [15], [16], [17]. In

addition, due to the fact that SA and TS are well-known

algorithms, we will not focus on general descriptions of them,

but on explaining how they behave in the EDDIE framework.

A. SIMULATED ANNEALING

Simulated Annealing (SA) is a meta-heuristic that allows

the local search to probabilistically visit worse solutions, with

the view that other solutions in the same neighborhood may

provide a better overall solution. More detailed information

about SA and its application to genetic algorithms can be

found in [8], [18].

On EDDIE, SA was applied to the periods of the

indicators. The probability of acceptance initially receives a

3
 As mentioned earlier, with the term “indicators” we refer to the 6

technical indicators used by EDDIE such as Moving Average, Momentum

etc., whereas with the term “periods” we refer to the periods of those

indicators that could take any integer value between a specific range for

instance [2, 65]. We should note that for the purposes of this paper, we will

only focus to period-based heuristics, i.e., heuristics that apply local search

only to the period (e.g., 12 days) and not to the indicator (e.g., Moving

Average). We have left the latter investigation as a future work.

high value, which is then gradually decreased throughout the

iterations (the maximum number of which is represented by

the name “kmax”), tending to zero. The probability function

with which a worse solution can be accepted is:

P e new fitness - old fitness) temperature (5)

The SA process for EDDIE is as follows: first, a tree is

probabilistically selected. Then, all period branches of the tree

are identified and form the neighborhood of the GDT. A

neighbor can then be obtained by making a marginal change

(k) to the value of the periods, such as -10 ≤ k ≤ 10. The

search starts from an initial solution (a random period branch

is selected), and then iteratively moves to other solutions of

the same or other period branches of the tree. The SA

principles, where worse solutions can probabilistically be

accepted, are applied. Fig. 3 summarizes a general SA process

tailored to EDDIE.

Fig. 3. SA Pseudocode (Based on: [19])

B. TABU SEARCH

With the application of Tabu Search (TS) we aim to

overcome the problem of local search, by allowing the search

to focus on other areas that are believed to contain better

solutions. In other words with TS the search is guided in such

way so that it is not likely to get stuck in a local optima [9],

[20], [21], [22], [23].

On EDDIE, TS has been applied on the periods, like SA.

The process starts again with the random selection of a tree.

Then, all period branches of the tree are identified and form

the neighborhood of the GDT. A neighbor can then be

obtained by making a marginal change (k) to the value of the

periods, such as -10 ≤ k ≤ 10. Additionally, it is checked

whether this new period is contained in the aspiration criteria.
4

If yes, then the new fitness is calculated and if it is better than

the old one, the new period replaces the old one. If it is worse,

the new period is discarded. Additionally, if the period is not

4
 The “aspiration criteria” refer to the solutions (periods) that we believe to be

promising for better fitness. The solutions that are included in the aspiration

criteria can be tested even if they are part of the tabu list.

t ← GDT(s) // Probabilistically select a tree.
neighborhood (s) //All period branches of “t”.
s ← s0; e ← E s) // Initial periods, fitness.
sBest ← s; eBest ← e // Initial "best" solution.
k ← 0 // Energy evaluation count.
while k < kmax // While time left.
 T ← temperature k kmax) // Temperature calculation.
 sOld ← neighbor(s) // Pick some period branch.
 sNew ← sOld+rand(-k:k) // Marginal change to period.
 eNew ← E sNew) // Compute its fitness.
 if P(e, eNew, T) > random() then // Probabilistically accept
 //new solution.
 s ← sNew; e ← eNew // Yes, change period.
 end
 if e >eBest then // Is this a new best?
 sBest ← sNew; eBest ← eNew // Save 'new neighbor'.
 end
 k ← k 1 // One more evaluation done.
end
return sBest // Return the best solution found.

in the aspiration criteria, we check whether it is a tabu
5
. If yes

then we discard it, otherwise the new fitness is calculated and

if it is better, the new period is kept. If it is worse the new

period is discarded. This process is repeated until the

termination criteria are met.

Before each iteration the tabu list and the aspiration criteria

are updated accordingly. Specifically, a period along with its r

closest neighbors will be added to the tabu list as soon as it is

visited. By the r closest neighbors, we mean the [- , +]

area of the period. For instance if we currently examine the

period 10, and r=4 in the tabu list we will add the periods 8, 9,

10, 11, 12. The advantage of this is that, for short term, the

algorithm will be prevented from revisiting solutions that are

very similar to the one already tested. Furthermore, if a period

provides better fitness, it is added to the “aspiration criteria”

list along with its m closest neighbors ([-m, +m] area). This

enables the search to visit those periods again, despite the fact

that it could be part of the “tabu list”.

Fig. 4 summarizes a TS process tailored to EDDIE.

Section IV-B provides more information on the parameter

values.

Fig. 4. TS Pseudocode (Based on: [19])

C. GUIDED LOCAL SEARCH

Guided Local Search (GLS) is the final metaheuristic we

applied. As is mentioned by Voudouris and Tsang [10], GLS

has the advantage of being easily adaptable to a wide range of

combinatorial optimisation problems. Several applications of

the GLS can be found in [17], [24].

GLS is a method that is added to a local search algorithm,

such as Hill Climbing (HC), in order to manipulate its choices.

With the use of GLS, the HC procedure is “guided” to escape

local optima. This is accomplished by using penalties on

solution features, as well as an augmented fitness function

which is carefully modified according to our problem and its

objective is to bring the search out of the local optima [25].

5
 The “tabu” represents areas that we do not wish to be revisited.

As explained in [26], we define for each feature (in our

case a period) an indicator
6
 function Ii (Equation 6), with

which it is indicated whether a feature is present in the current

solution s
7
 or not:

 Ii(s) {
1, solution has property i

 0, otherwise
 , s S (6)

Furthermore, when a Local Search algorithm returns a local

maximum, the GLS algorithm penalizes all features present in

that solution which have maximum utility, util(s,fi) as

illustrated in Equation (7):

util(s, fi) Ii(s)
ci

1 pi
 (7)

where, is the indicator for solution , is the cost of features

of solution and is the penalty of solution . Finally, GLS

uses an augmented fitness function as can be seen in Equation

(8), to guide the Local Search out of the local maximum:

 h(s) g(s) - ∑ pi Ii s)

 1 (8)

where, () is the fitness function, is the number of

features, is the penalty parameter for feature and is the

regularization parameter. As it is explained in [27], the

advantage of using this augmented function is that the local

maxima encountered by local search, when GLS is used, are

with respect to Equation (8) and may be different than the

local maxima with respect to the original fitness function

(Equation 4). Before any penalties are applied, these two are

identical but as search progresses, the local maxima with

respect to the original fitness may not be local maxima with

respect to the augmented function. This allows local search to

escape from the local maxima of the original fitness since

GLS is altering the local maxima status under the augmented

fitness function using the penalty modification mechanism

explained in the next paragraph.

GLS was implemented on EDDIE as part of our HC

process. It was added on top of a hill climber to be performed

when the algorithm gets stuck in a local maximum area. The

process starts with the Hill Climbing Algorithm on the periods

of the Tree. The GLS process begins when the Hill Climbing

returns a local maximum. The first thing that is calculated

when the GLS initiates, is the vector (which consists of

binary elements). Additionally, as part of the GLS, the utility

function (Equation 7) is calculated and used to penalize the

current solution features (periods). More specifically, if the

feature maximizes the utility then it is penalized by

incrementing the previous penalty of this feature by 1. The

new penalties along with the GLS indicators Ii and the fitness

are used to calculate the augmented fitness function (Equation

8). This will be used in the HC process from now on instead of

6
 Here there is some overlapping terminology between financial forecasting

and GLS. The term indicator here has nothing to do with technical analysis

indicators that EDDIE uses.
7
 By the term “solution” on EDDIE we mean a Genetic Decision Tree.

t ← GDT(s) // Probabilistically select a tree.
neighborhood (s) //All period branches of “t”.
s ← s0 // Initial periods.
sBest ← s // Initial "best" solution.
tabuList ← null // Initialize empty Tabu List.
aspirCriteria ← null // Initialize empty Aspiration Criteria.
while (not stoppingCondition()) // Termination Criteria.
 sOld ← neighbor(s) // Pick some period branch.
 s ew ← sOld+rand(-k:k) // Marginal change to period.
 if(not containsTabuElements(sNew,tabuList) //Is new period
 or containsAspiration(sNew, aspirCriteria) // tabu or AC?
 if(fitness(sNew) > fitness(sBest)) // Is new fitness better?
 sBest ← sNew // Keep new period.
 tabuList ← featureDifferences(sNew, sBest) // Update TL
 aspir riteria ← featureDifferences sNew,sBest) //Update AC
 while(size(tabuList) > maxTabuListSize) // Tabu List FIFO
 ExpireFeatures(tabuList) // Oldest element discarded
 end
 end
 end
end
return(sBest) // Return Best Solution.

the simple fitness function (Equation 4). Last but not least the

process will return the best overall solution, with respect to the

highest fitness function.

Moreover, the regularization parameter , represents the

relative importance of penalties and provides a way of

controlling the influence of the information on the search

process. For more information about the role of λ the reader

can refer to [24]. At this point it should be mentioned that λ, is

problem dependent thus, it has no standard formula or value.

However, in the literature [25] it has been shown that an

effective way to calculate it is by using the formula:

 a
g(s)

| F(s) |
 (9)

where 0≤ ≤1 and | () is the total number of indicators, in

other words the number of features present in each solution.

Therefore, we decided to use the same formula for our

experiments. Finally, the number of times that the GLS

process while continue is pre-specified (termination criteria).

Fig. 5 illustrates a GLS Pseudocode tailored to EDDIE.

Fig. 5. GLS Pseudocode (Based on: [27]).

IV. EXPERIMENTAL DESIGN

This Section will present the data and parameter values

used in our experiments for Simulated Annealing, Tabu

Search and Guided Local Search algorithms.

The data used for our experiments can be found in

http://finance.yahoo.com and in “Datastream”. For the purpose

of our experiments, 10 datasets were chosen due to their

observed good performance with EDDIE from previous

experimental works [1], [6], [7]. These datasets are daily

closing prices of the following stocks and indices: Aggreko,

Athens, Barclays, BAT, Cadbury, Imperial Tobacco, NYSE,

Schroders, Sky and Tesco.

As it was discussed in Section II-A, there are several

parameters that we need to specify in order to run our

experiments. To begin with, we defined the training period to

be 1000 days and the testing period to be 300 days.

Additionally, as it can be seen from Table I, n is 20 days, r is

4% and the indicators’ periods can take any value between 2

and 65.

TABLE Ι

EDDIE PARAMETERS

Furthermore, we specify the GP parameters (Table II). All of

these experimental parameter values are the same as [7], and

we decided to keep them unchanged for comparison purposes.

In order to be able to analyze the statistical results, we run

the GP 50 times. For processing purposes of the results of

those 50 runs, the average and best
8
 performance measures are

calculated. The results are illustrated in Section V.

At this point, it is also important to explain the individual

experimental parameters values that were chosen for each

metaheuristic.

To begin with, for the Simulated Annealing algorithm, it

was essential to decide upon the values of “temperature” and

“kmax”, which are the maximum number of iterations. After

several tests, we concluded in using the value 0.9 for

“temperature” and 8 for “kmax”. The basic idea behind the

choice of “temperature” value was the fact that we wanted the

probability of acceptance to fall gradually until it reaches zero.

The value 0.9 was fulfilling this requirement and was proven

under the tests to give similar or best results with the other

values
9
, but in less computational time. That was evidence

enough for us to conclude in this value as the most

appropriate. Moreover, the value kmax was chosen in a similar

way.

TABLE ΙΙ

GP PARAMETERS

Additionally, regarding Tabu Search’s r and m parameters

of Tabu List and Aspiration Criteria, we set r equal to 4 and m

8
 Fitness and RC are maximization problems therefore the best result will be

the maximum value. On the contrary RMC and RF are minimization problems

so the best will be the minimum value.
9 The values tested varied from 0.05 to 15.

t ← GDT(s) // Probabilistically select a tree.
neighborhood (s) //All period branches of “t”.
s ← s0 // Initial periods.
If (Hill Climbing ← local maximum) // If HC returns local maxima.

 begin GLS // Start GLS process.
 while (not stoppingCondition) // Termination Criteria.
 for (i ← 1 until M) // For all periods.

pi ← 0 // set penalties to 0.
 end
 for (i ← 1 until M) // For all periods.
 utili ← Ii(sk+1) ci / (1 + pi) // Calculate utility
 // function.
 end
 for (each i such that utili is maximum)
 pi ← pi + 1; // Penalize current periods.
 end
 h ← g - Σpi * Ii // Calculate augmented fitness

 // function h.
 sk+1 ←Hill Climbing(sk, h) // Hill Climbing using h.

 end
end
s* ← best solution found with respect to fitness function g;
return s*;

 end GLS

where S: search space, g: fitness function, h: augmented fitness function,

 :lambda parameter, Ii: indicator function for period i, ci: cost for period i, M:

total number of periods present to current solution, pi: penalty for period i.

EDDIE Parameters Value

n 20
r 4

period [2, 65]

GP Parameters Value

Max initial Depth 6

Max Depth 8

Generations 50

Population size 500

Tournament size 2

Reproduction probability 0.1

Crossover probability 0.9

Mutation probability 0.01

http://finance.yahoo.com/

equal to 2. The r=4 was chosen in a way to prevent, for short

term, the search from revisiting solutions that are very similar

to the one already tested. The choice of m=2 was based on the

idea that when a period provides better fitness, then its close

neighbors could also lead to further improvements.

Lastly, for the Guided Local Search algorithm we decided

that for simplicity, would be equal to 1 (Equation 9). We do

not argue that this is the optimal value, but we have left the

investigation of this as a future research. Additionally, as there

is no direct associated cost for each feature in EDDIE, we

decided to assign the same cost value to all features.

Therefore, the cost value , used in the utility function

(Equation 7) was set equal to 1 for each feature of . Finally,

we decided to allow for the GLS process to perform 10

iterations. We have left it as future work to see if the results

can be further improved with more iteration.

V. RESULTS

This Section will present the results over 50 runs of

Simulated Annealing, Tabu Search and Guided Local Search

algorithms. First we will present and compare ED8’s results

with and without each one of the above meta-heuristics. Then,

an overall discussion for these results will follow in Section

V-D.

As mentioned earlier, the results for each algorithm are

divided into average and best. Any significant improvements

are denoted with bold fonts, whereas any significant

diminutions are underlined. In order to test for any

significantly improved average results we run a two sample

Kolmogorov Smirnov (K-S) test under the significance level

of 5%, for the distributions of the 4 metrics (Fitness, RC,

RMC, RF). When testing the results between two data vectors

(for instance 50 Fitness runs from original ED8 and ED8 with

SA), the null hypothesis H0 was that the two vectors come

from the same continuous distribution, whereas the alternative

H1 is that they don’t. Moreover, to account for the fact that we

make four comparisons for each dataset, it was essential that

we applied Bonferroni correction
10

. Since we compare 4

different metrics between each metaheuristic and ED8, the p-

value after the Bonferroni correction at 95% confidence

is () , where 4 is the number of

metrics used to compare the results of the EDDIE versions.

As far as the best results are concerned, it was not possible to

apply statistical tests on them, as they are only single values

and not distributions. Therefore, for consistency purposes with

the Kampouridis et al. [7], we denote a significant

improvement/diminution when the difference of the

metaheuristic with the original ED8 is above 1%.

A. SIMULATED ANNEALING

Tables III and IV illustrate the average and best results of

the application of SA to ED8, using the experimental

parameter values mentioned in Section IV-B.

10 For more information the reader can refer to [28].

As it can be observed from Table III, the average results of

the SA are as good as ED8 average results. There is only one

case, the RC of Athens, which is worsened at the 5%

significance level.

On the other hand, as one can observe from the best results

in Table IV, the SA managed to improve the performance

metrics for all 10 datasets. Additionally, the SA improved at

least two metrics in 7 out of these 10 datasets. Overall, the SA

algorithm has improved 27 metrics of the datasets and

worsened only 7 metrics. We should take into consideration

that in several cases the best results were impressively

improved, for instance Sky and Barclay’s fitness by 10% and

7% respectively. Therefore, we can argue that the addition of

SA was proven quite beneficial for ED8’s best results.

TABLE ΙΙΙ

AVERAGE RESULTS FOR SA

TABLE IV

BEST RESULTS FOR SA

B. TABU SEARCH

Table V presents the average results of the TS. As we can

observe, there are no significant differences between the two

versions of ED8 (with and without TS), with the exceptions of

only two metrics Athens and Sky’s).

Dataset Heuristic Fitness RC RMC RF

Aggreko Original 0.2424 0.5919 0.2132 0.2716

 S.A. 0.2175 0.5550 0.4036 0.2656

Athens Original 0.1541 0.5335 0.3583 0.4486

 S.A. 0.1253 0.5118 0.4008 0.4724

Barclays Original 0.2651 0.5780 0.4301 0.1291

 S.A. 0.2417 0.5417 0.4755 0.1374

BAT Original 0.2122 0.5458 0.4318 0.2403

 S.A 0.2134 0.5290 0.4694 0.2362

Cadbury Original 0.2793 0.6573 0.2170 0.3112

 S.A. 0.2599 0.6309 0.2615 0.3227

Imp Tob Original 0.1945 0.5343 0.6445 0.205

 S.A. 0.1919 0.5387 0.5702 0.248

NYSE Original 0.1637 0.5379 0.2494 0.4470

 S.A. 0.1441 0.5213 0.3593 0.4565

Schroders Original 0.1827 0.5530 0.4142 0.3588

 S.A 0.1798 0.5496 0.4166 0.3610

Sky Original 0.1248 0.6270 0.7736 0.5802

 S.A. 0.1056 0.5981 0.7443 0.5962

Tesco Original 0.2602 0.6169 0.3304 0.2563

 S.A. 0.2478 0.6033 0.3313 0.2703

Dataset Heuristic Fitness RC RMC RF

Aggreko Original 0.3256 0.6933 0.0607 0.1373

 S.A. 0.3529 0.7267 0 0.1855

Athens Original 0.2579 0.6467 0.0124 0.3571

 S.A. 0.2337 0.6200 0 0.3672

Barclays Original 0.3633 0.7100 0.2449 0.0411

 S.A. 0.4350 0.8167 0 0.0541

BAT Original 0.3303 0.6667 0.2780 0.1083

 S.A 0.3690 0.7433 0 0

Cadbury Original 0.3685 0.7533 0.1341 0.2131

 S.A. 0.3733 0.7600 0 0.2179

Imp Tob Original 0.2802 0.6367 0.3946 0

 S.A. 0.2929 0.6533 0 0

NYSE Original 0.2341 0.6067 0.0123 0.3780

 S.A. 0.2283 0.6100 0 0.3893

Schroders Original 0.2369 0.6100 0.2333 0.2456

 S.A 0.3054 0.6800 0 0.1780

Sky Original 0.2066 0.6800 0.5922 0.4222

 S.A. 0.3059 0.6967 0 0

Tesco Original 0.3044 0.6667 0.2255 0.1667

 S.A. 0.3216 0.6900 0 0.2083

With regards to the best results, Table VI informs us that

TS managed to offer improvements to all of the datasets.

Additionally, it is worth mentioning that TS improved at least

two performance measures per dataset, and in some cases like

Cadbury and Sky, it improved all 4 metrics. In total, the TS

algorithm has improved 31 metrics of the datasets and

worsened only 4 metrics. We can again notice some

impressively improved results, e.g., Sky and Barclay’s fitness

by 12% and 7% respectively. Therefore, we can once more

argue, that the addition of TS was proven beneficial for ED8.

TABLE V

AVERAGE RESULTS FOR TS

TABLE VI

BEST RESULTS FOR TS

C. GUIDED LOCAL SEARCH

Finally, in Tables VII and VIII the average and best results

of the application of GLS on the original ED8 are presented.

Following the same analysis as the previous two Sections,

we can see in Table VII the average results of the GLS, which

are as good as ED8 average results.

In terms of best results, as we can observe from Table VIII

the GLS has improved all of the 10 datasets. Additionally, the

GLS has improved at least two metrics in all 10 datasets, and

all 4 metrics in 7 of them. This thus indicates that the GLS has

done extremely well. In total, the GLS algorithm has improved

the metrics of the datasets 35 times, and only worsened them 3

times. We can once again observe some impressively

improved results, e.g., YSE and Barclay’s by 12% and

10% respectively. Therefore, we can suggest, that the addition

of GLS was proven really valuable for ED8.

TABLE VII

AVERAGE RESULTS FOR GLS

TABLE VIII

BEST RESULTS FOR GLS

D. DISCUSSION

As it was observed in the previous Sections, all three

metaheuristics maintained the average ED8 results at the same

level, while significantly improving all the datasets in terms of

the best results. First of all, we should note that the fact that

the average results were not improved by the metaheuristics is

not alarming. Due to the large search space that ED8 is

dealing with, it is not easy to be consistent and always return

significantly improved solutions.

Nevertheless, the heuristics have indeed introduced

significant improvements, as it can be seen from the best

results. This is an extremely important achievement due to the

fact that an investor in the real world would be running

Dataset Heuristic Fitness RC RMC RF

Aggreko Original 0.2424 0.5919 0.2132 0.2716

 T.S. 0.2187 0.5589 0.3884 0.2745

Athens Original 0.1541 0.5335 0.3583 0.4486

 T.S. 0.1118 0.5028 0.4588 0.4799

Barclays Original 0.2651 0.5780 0.4301 0.1291

 T.S. 0.2674 0.5832 0.4140 0.1371

BAT Original 0.2122 0.5458 0.4318 0.2403

 T.S. 0.2138 0.5429 0.4547 0.2216

Cadbury Original 0.2793 0.6573 0.2170 0.3112

 T.S. 0.2614 0.6335 0.2667 0.3212

Imp Tob Original 0.1945 0.5343 0.6445 0.2053

 T.S. 0.1976 0.5255 0.6198 0.2028

NYSE Original 0.1637 0.5379 0.2494 0.4470

 T.S. 0.1551 0.5334 0.3423 0.4433

Schroders Original 0.1827 0.5530 0.4142 0.3588

 T.S. 0.1917 0.5487 0.4723 0.3419

Sky Original 0.1248 0.6270 0.7736 0.5802

 T.S. 0.1011 0.6025 0.7551 0.6151

Tesco Original 0.2602 0.6169 0.3304 0.2563

 T.S. 0.2514 0.6075 0.3274 0.2679

Dataset Heuristic Fitness RC RMC RF

Aggreko Original 0.3256 0.6933 0.0607 0.1373

 T.S. 0.3420 0.7133 0 0.2015

Athens Original 0.2579 0.6467 0.0124 0.3571

 T.S. 0.2225 0.6100 0 0.2899

Barclays Original 0.3633 0.7100 0.2449 0.0411

 T.S. 0.4350 0.8167 0 0.0392

BAT Original 0.3303 0.6667 0.2780 0.1083

 T.S. 0.3323 0.6900 0.2287 0

Cadbury Original 0.3685 0.7533 0.1341 0.2131

 T.S. 0.3817 0.7700 0 0.1928

Imp Tob Original 0.2802 0.6367 0.3946 0

 T.S. 0.2989 0.6567 0.0541 0

NYSE Original 0.2341 0.6067 0.0123 0.3780

 T.S. 0.2606 0.6500 0.0309 0.3125

Schroders Original 0.2369 0.6100 0.2333 0.2456

 T.S. 0.2815 0.6567 0.0444 0.2429

Sky Original 0.2066 0.6800 0.5922 0.4222

 T.S. 0.3207 0.7000 0.1165 0

Tesco Original 0.3044 0.6667 0.2255 0.1667

 T.S. 0.3253 0.6967 0.0294 0.1765

Dataset Heuristic Fitness RC RMC RF

Aggreko Original 0.2424 0.5919 0.2132 0.2716

 GLS 0.2339 0.5762 0.3694 0.2497

Athens Original 0.1541 0.5335 0.3583 0.4486

 GLS 0.1491 0.5250 0.3117 0.4564

Barclays Original 0.2651 0.5780 0.4301 0.1291

 GLS 0.2894 0.6091 0.3824 0.1260

BAT Original 0.2122 0.5458 0.4318 0.2403

 GLS 0.2254 0.5416 0.4390 0.2337

Cadbury Original 0.2793 0.6573 0.2170 0.3112

 GLS 0.2698 0.6353 0.2553 0.3158

Imp Tob Original 0.1945 0.5343 0.6445 0.2053

 GLS 0.1969 0.5349 0.6139 0.2087

NYSE Original 0.1637 0.5379 0.2494 0.4470

 GLS 0.1569 0.5339 0.2825 0.4504

Schroders Original 0.1827 0.5530 0.4142 0.3588

 GLS 0.1872 0.5495 0.4319 0.3514

Sky Original 0.1248 0.6270 0.7736 0.5802

 GLS 0.1175 0.6187 0.7608 0.5922

Tesco Original 0.2602 0.6169 0.3304 0.2563

 GLS 0.2533 0.5967 0.3615 0.2777

Dataset Heuristic Fitness RC RMC RF

Aggreko Original 0.3256 0.6933 0.0607 0.1373

 GLS 0.3420 0.7133 0 0

Athens Original 0.2579 0.6467 0.0124 0.3571

 GLS 0.2389 0.6267 0 0.3411

Barclays Original 0.3633 0.7100 0.2449 0.0411

 GLS 0.4350 0.8167 0 0.0260

BAT Original 0.3303 0.6667 0.2780 0.1083

 GLS 0.3690 0.7433 0 0

Cadbury Original 0.3685 0.7533 0.1341 0.2131

 GLS 0.4153 0.8067 0 0.1897

Imp Tob Original 0.2802 0.6367 0.3946 0

 GLS 0.3197 0.6767 0 0

NYSE Original 0.2341 0.6067 0.0123 0.3780

 GLS 0.2464 0.6200 0 0.3540

Schroders Original 0.2369 0.6100 0.2333 0.2456

 GLS 0.2909 0.6700 0 0

Sky Original 0.2066 0.6800 0.5922 0.4222

 GLS 0.2214 0.6733 0 0.4706

Tesco Original 0.3044 0.6667 0.2255 0.1667

 GLS 0.3619 0.7400 0 0.1467

EDDIE multiple times and then use the best resulted GDT for

his investments; thus, due to the fact that the metaheuristics

have improved ED8’s best results, this investor would see an

increase to his profit margin.

Furthermore, Table IX summarizes the improvements and

diminutions of the three algorithms, in terms of best results.

As we can observe, GLS was proven to be the most beneficial

in terms of improvements and diminutions, as it managed to

improve 35 metrics, while it only worsened 3. SA and TS also

offered a significant difference between the number of

improvements and diminutions. This achievement is really

impressive and indicates that with the addition of

metaheuristics, ED8 best GDT’s would provide more accurate

information to the investor.

To sum up, from the above discussion we are able to

support that the application of metaheuristics to EDDIE can

lead to significantly improved performance, thus being a really

valuable addition to EDDIE.

TABLE IX

SUMMARY BEST RESULTS

VI. CONCLUSION

This paper presented work on the application of the three

meta-heuristics, namely Simulated Annealing, Tabu Search

and Guided Local Search, to a Genetic Programming financial

forecasting algorithm called EDDIE 8. The novelty of ED8 is

that it allows the GP to search in the space of technical

indicators for solutions, instead of using pre-specified ones, as

it usually happens in the literature. However, a consequence of

this is that ED8’s search area is quite large, and sometimes

solutions can be missed due to ineffective search.

In order to address this issue, we applied the three above-

mentioned metaheuristics to the period nodes of ED8’s trees.

Results showed that the algorithm’s performance improves

significantly, thus making the combination of Genetic

Programming and meta-heuristics an effective financial

forecasting approach.

More specifically, we found that all three metaheuristics

were beneficial and important. We also particularly

emphasized the significance of the improved best results, due

to the fact that an investor, who would use the best tree of

those experiments, could experience an exceptional boost to

his profit.

The fact that the metaheuristics tested in this paper have

improved EDDIE’s performance is very encouraging. Our

next goal is to combine these meta-heuristics into hyper-

heuristics frameworks, as it has happened before in [7]. This

will have the additional benefit that such frameworks can

combine the strengths of each meta-heuristic, and thus

improve the EDDIE’s performance results even further.

REFERENCES

 [1] M. Kampouridis, E. Tsang, “EDDIE for Investment Opportunities

Forecasting: Extending the Search Space of the GP”, Proceedings of the

IEEE Congress on Evolutionary Computation, Spain, pp.2019-2026,

2010.

 [2] E. Tsang, J. Li, S. Markose, H. Er, A. Salhi, G. Iori, “EDDIE in financial

decision making”, Journal of Management and Economics 4, 2000.

 [3] R. Poli, W.B. Langdon, .F. McPhee, “A Field Guide to Genetic

Programming”, Lulu Enterprises, UK , 2008.

 [4] J. Koza, “Genetic Programming: On the programming of computers by

means of natural selection”, Cambridge, MA: MIT Press, 1992.

 [5] J. W. Backus, “The Syntax and Semantics of the Proposed International

Algebraic Language of the Zurich”, International Conference on

Information Processing, UNESCO, pp.125-132, 1959.

 [6] M. Kampouridis, E. Tsang, “Investment Opportunities Forecasting:

Extending the Grammar of a GP-based tool”, International Journal of

Computational Intelligence Systems, 5 (3), pp. 530-541, 2012.

 [7] M. Kampouridis, A. Alsheddy, E. Tsang, “On the investigation of hyper-

heuristics on a financial forecasting problem”, Annals of Mathematics

and Artificial Intelligence, Springer, Available online, 2012.

 [8] S. Kirkpatrick, .D. Gelatt, M.P. Vecchi, “Optimization by Simulated

Annealing”, Science 220 (4598): 671–680, 1983.

 [9] F. Glover, et al. “A user’s guide to tabu search”, University of Colorado

Annals of Operations Research 41 3-28, 1993.

[10] . Voudouris, E. Tsang, “Guided Local Search”, Technical Report

CSM-247, University of Essex, 1995.

[11] H. Xie, M. Zhang, and P. Andreae, “Genetic programming for new

Zealand CPI inflation prediction”, Proceedings of the IEEE Conference

on Evolutionary Computation, Singapore, pp. 2538–2545, 2007.

[12] M. Bernal-Urbina, A. Flores-Mendez, “Time series forecasting through

polynomial artificial neural networks and genetic programming”,

Proceedings of the IEEE Conference on Evolutionary Computation,

Hong Kong, pp. 3324–3329, 2008.

[13] . Kohavi, F. Provost, “Glossary of Terms Machine Learning”, Vol 30,

1998.

[14] J. Li, “FGP: A genetic programming based financial forecasting tool”,

Ph.D. dissertation, University of Essex, 2001.

[15] M. Laguna, J. Barnes, F. Glover, “Intelligent scheduling with tabu

search: An application to jobs with linear delay penalties and sequence-

dependent setup costs and times”, Journal of Applied Intelligence Vol. 3

No. 2 pp. 159-172, 1993.

[16] M. Lemes, C. Zacharias, A. Dal Pino, “Generalized simulated annealing

Application to silicon clusters”, Physical Review B (Condensed Matter),

Volume 56, Issue 15, pp.9279-9281, 1997.

[17] A. Alsheddy, “Empowerment scheduling: a multi-objective optimization

approach using Guided Local Search”, PhD Thesis, Uni. of Essex, 2011.

[18] L. Davis, “Genetic algorithms and simulated annealing”, Pitman, 1987.

[19] J. Brownlee, “Clever Algorithms: Nature-Inspired Programming

Recipes”, PhD First Edition, Lulu Enterprises, 2011.

[20] F. Glover, “Future paths for Integer Programming and Links to

Artificial Intelligence”, Computers & Operations Research, 5:533-549,

1986.

[21] F. Glover and C. McMillan, “The general employee scheduling problem:

an integration of MS and AI”, Computers and Operations Research

Vol.13, No. 5, pp. 563-573, 1986.

[22] M. Gendreau, “Introduction to tabu search”, in handbook of

Metaheuristics, pages 37–54, Springer, 2003.

[23] F. Glover, M. Laguna, “Tabu Search”, Kluwer Academic Publishers,

1998.

[24] . Voudouris, “Guided local search for combinatorial optimization

problems”, PhD Thesis, University of Essex, 1997.

[25] C. Voudouris and E. Tsang, “7: Guided Local Search”, in Handbook of

Metaheuristics, pp.185-218, Springer, 2003.

[26] P. Mills, “Extensions to Guided Local Search”, PhD Thesis, Department

of Computer Science, University of Essex, 2002.

[27] C. Voudouris and E.Tsang, “Guided Local Search and its application to

the Travelling Salesman problem”, European Journal of Operational

Research 113 pp.469-499, 1999.

[28] H. Abdi, "Bonferroni and Šidák corrections for multiple comparisons",

In N.J. Salkind Encyclopedia of Measurement and Statistics, Thousand

Oaks, CA: Sage, 2007.

Metaheuristic Improvements Diminutions

SA 27 7

TS 31 4

GLS 35 3

http://www.utdallas.edu/~herve/Abdi-Bonferroni2007-pretty.pdf

