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Abstract- EDDIE is a Genetic Programming (GP) tool, which is 

used to tackle problems in the field of financial forecasting. The 

novelty of EDDIE is in its grammar, which allows the GP to look 

in the space of technical analysis indicators, instead of using pre-

specified ones, as it normally happens in the literature. The 

advantage of this is that EDDIE is not constrained to use pre-

specified indicators; instead, thanks to its grammar, it can choose 

any indicators within a pre-defined range, leading to new 

solutions that might have never been discovered before. However, 

a disadvantage of the above approach is that the algorithm’s 

search space is dramatically larger, and as a result good solutions 

can sometimes be missed due to ineffective search. This paper 

presents an attempt to deal with this issue by applying to the GP 

three different meta-heuristics, namely Simulated Annealing, 

Tabu Search, and Guided Local Search. Results show that the 

algorithm’s performance significantly improves, thus making the 

combination of Genetic Programming and meta-heuristics an 

effective financial forecasting approach. 

 

I.    INTRODUCTION 

 

   Financial forecasting is a well-known and applied 

method in the industry. Its importance has led investors and 

researchers to focus on the creation of more efficient ways to 

apply financial forecasting. In the field of Computational 

Intelligence, a new financial forecasting tool called EDDIE 8 

(ED8) has been presented [1]. ED8, which is an extended 

version of EDDIE (Evolutionary Dynamic Data Investment 

Evaluator) [2], uses Genetic Programming [3], [4] in order to 

make predictions. The new feature of this version, in 

comparison to its predecessor EDDIE 7 (ED7), and to every 

other financial forecasting tool in the literature, was its 

extended grammar (BNF) [5], which provided the algorithm 

with the ability to search in the space of technical analysis
1
 

indicators to form Genetic Decision Trees (GDTs).
2
   

In ED7 the indicators used were limited and pre-specified 

by the user, for instance 12 and 50 days Moving Average. On 

the other hand ED8 was not limited to the above periods and 

was able to choose between a range of periods specified by the 

user, for instance any period between the range of 2 and 65 

days Moving Average. The GP would then be responsible for 

                                                         
1
 Technical analysis is a financial forecasting method, used to predict a future 

movement based on existing patterns. 
2
 Due to the fact that the decision trees created by EDDIE were a result of 

Genetic Programming, they were referred as ‘Genetic Decision Trees’. 

 

searching the above period range and suggest appropriate 

periods for the technical indicators.  

Results in [1], [6] showed that thanks to its extended 

grammar, ED8 could reach new and improved solutions. 

However, it was observed that occasionally the performance 

could be compromised, as a consequence of this new 

grammar. This was because ED8’s search space had 

dramatically increased, and thus ED8 could not always search 

effectively its large search space. This will be discussed in 

more details in Section II-B. In order to overcome the problem 

of ineffective search, several heuristics were applied by 

Kampouridis et al. in [7], and then combined into different 

hyper-heuristics frameworks, which were proven beneficial 

for the performance of EDDIE. 

However, only a few low-level heuristics were examined 

in [7], e.g. different implementations of hill-climbers. While 

hill climbing is an effective search algorithm, it is also known 

for getting stuck in local optimums. Furthermore, [7] also 

concluded that more search algorithms should be applied to 

ED8, to investigate if further performance improvements 

could take place. To this extend, this paper applies three 

search algorithms, namely Simulated Annealing, Tabu Search, 

and Guided Local Search. The advantage of these algorithms 

is that they fall in the category of meta-heuristics, thus have 

the potential of overcoming local optima [8], [9], [10]. Our 

goal is to show that as a result of the application of the above 

meta-heuristics, ED8’s search effectiveness can significantly 

improve and lead to even better solutions, thus make EDDIE a 

beneficial algorithm for the financial forecasting community.  

The rest of this paper is as follows: Section II presents 

EDDIE and the purpose of using heuristics, Section III 

focusses on the metaheuristics applied for the purpose of this 

project, Section IV analyses the experimental design, Section 

V includes a presentation and discussion of the experimental 

results, and finally, Section VI concludes this paper. 

II.   EDDIE 

 

Computational Intelligence (CI) techniques have been 

extensively used for financial forecasting. Genetic 

Programming (GP) [3], [4] is a CI technique that has received 

much attention for this type of problems. Some examples of 

recent GP applications for financial forecasting are: [11], [12]. 

EDDIE is a financial forecasting algorithm that uses GP to 

evolve trading strategies and predict future movements of the 

stock market. The rest of Section II presents EDDIE in detail. 



A. THE GENERAL EDDIE PROCESS 

This Section focusses on providing some basic information 

about the way EDDIE works and specifically the EDDIE 7 

(ED7) version, which EDDIE 8 (ED8) is extending.  

For starters, EDDIE tries to answer the question: “Will the 

price of a stock X increase by r% within the next n days?” The 

algorithm uses three basic inputs: technical analysis indicators, 

historical data (daily closing prices of stocks and indices) and 

binary target signals of buy or not-to-buy (1, 0). The twelve 

indicators used from technical analysis in ED7 are the 

“Moving Average” of 12 and 50 days, the “Trade Break Out” 

of 12 and 50 days, the “Filter” of 12 and 50 days, the 

“Volatility” of 12 and 50 days, the “Momentum” of 12 and 50 

days and finally the “Momentum Moving Average” of 12 and 

50 days. The common factors of these are the pre-specified 

periods of 12 and 50 days which cannot change in this version 

of EDDIE; therefore the indicators are considered as 

constants. Additionally, the historic data used, can be obtained 

from online websites, for instance http://finance.yahoo.com. 

Last but not least, the signals are estimated by looking n days 

ahead of the closing price and by checking to see if the price 

has risen by r%.  

Furthermore, GP is used as a basic tool for EDDIE. A 

population of Genetic Decision Trees (GDTs) is generated 

randomly and these trees are evolved for a number of 

generations. The grammar (BNF) of ED7 is illustrated in 

Fig.1. A point that needs to be highlighted is the 

“<Variable>”, which can be any of the twelve pre-specified 

technical indicators mentioned earlier. However, the fact of 

using these pre-specified indicators was considered to be a 

limitation of EDDIE, and the first attempt to tackle this issue 

took place in ED8 [1], as we will see in Section II-B. 

 

Fig. 1. The Backus Normal Form of ED7 [6]. 

 

The evaluation of EDDIE’s GDTs is based on the 

Confusion Matrix [13], from which we derive three 

performance measures: 

 

Rate of Correctness    

     
TP   T 

TP   T    FP   F 
     (1) 

Rate of Missing Chances    

 M    
F 

F    TP
   (2) 

Rate of Failure   

 F  
FP

FP   TP
   (3) 

 

Those three metrics RC, RMC, RF are combined to create 

the fitness function which was defined as: 

 

ff   w1     - w2    M  - w     F                   (4) 
 

where w1, w2, w3 are the weights for RC, RMC and RF, 

chosen specifically to reflect investor’s preferences [14].   

 
B. EDDIE 8 

ED8 was created to overcome ED7’s limitations of using 

pre-specified period indicators. Instead, ED8 would allow the 

algorithm to choose any periods within a specific range.  

As was described in the previous section, ED7 used 6 

indicators with 2 pre-specified periods (12 and 50 days). On 

the contrary, as it can be seen in Fig. 2, instead of the constant 

“<Variable>” ED8 now uses a function called 

“<VarConstructor>”. This new feature is a function that 

takes two children, the “Indicator” and “Period”. The 

indicators are the same with the previous version; however, 

the periods can now take any values within a range [Pmin, 

Pmax]. Consequently, ED8 can now produce GDTs which 

contain indicators such as MA 18 days, Mom of 46 days and 

so on. This is an important difference from ED7, because it 

made the algorithm much more flexible and dynamic. ED8 has 

many more options available, instead of being restricted to 

only 12 indicators, and it is up to the GP and the evolutionary 

process to determine the best periods for each decision tree.  

 

Fig. 2. The Backus Normal Form of ED8 [6]. 

 

However a serious issue that arose was that the new 

grammar had dramatically increased the search space of the 

GP. As it was explained in [7], if a given GDT can have a 

maximum of k indicators then, the permutations of the 12 

indicators (6 indicators * 2 periods) under ED7 are 12
k
. On the 

contrary, if ED8 is using the same 6 indicators with periods 

within the range of [2, 65] days, then the permutations of the 

384 indicators (6 indicators *64 periods) are 384
k
. ED8’s 

search space was now significantly larger than ED7’s; 

therefore, ED8 could occasionally miss good solutions due to 

ineffective search. For that reason, it was decided that 

different heuristics should be applied to the leaf periods of the 

trees, in an attempt to make the search more effective.  

 
C.    HEURISTICS AND METAHEURISTICS 

In order to deal with ED8’s problem of ineffective search, 

Kampouridis et al. [7] combined certain heuristics under 

<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision 

<Condition> ::= < ondition> “And” < ondition> | 

     < ondition> “Or” < ondition> | 

      “ ot” < ondition> | 

       Variable <RelationOperation> Threshold 

<Variable> ::= MA 12 | MA 50 | TBR 12 | TBR 50 | FLR 12 | 

   FLR 50 | Vol 12 | Vol 50 | Mom 12 | Mom 50 |                                                     

MomMA 12 | MomMA 50 

< elationOperation> ::  “>” | “<” | “ ” 

Decision is an integer, Positive or Negative implemented 

Threshold is a real number 

<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision 

< ondition> ::  < ondition> “And” < ondition> | 

                        < ondition> “Or” < ondition> |“ ot” < ondition> | 

                         VarConstructor <RelationOperation> Threshold 

<VarConstructor> ::= MA period | TBR period | FLR period |  

                                    Vol period | Mom period | MomMA period 

< elationOperation> ::  “>” | “<” | “ ” 

              MA, TBR, FLR, Vol, Mom, MomMA are function symbols 

              Period is an integer within a parameterized range [MinP,  MaxP] 

              Decision is an integer, Positive or Negative implemented 

              Threshold is a real number 

http://finance.yahoo.com/


hyper-heuristic frameworks. In that work, 14 low-level 

heuristics were applied to 30 datasets on ED8. Those 

heuristics were applied to the indicators and the periods.
3
 The 

rationale behind this was that these heuristics would offer 

exploitation of the search area of the technical indicators and 

their periods.  

Moreover, the best of those heuristics (in terms of 

performance) were chosen to be combined under three 

different hyper-heuristics frameworks. The results were very 

promising as all three hyper-heuristics improved the average 

and best solutions; therefore they significantly improved the 

overall performance of ED8. That was the first time that 

hyper-heuristics had been applied to financial forecasting. 

However, it was also pointed out that the low-level 

heuristics used in [7] (different hill-climbers and mutators) 

were not an exhaustive list of heuristics, and that other search 

algorithms could offer even more effective search.  

The above can be particularly true for meta-heuristics, 

which are designed with the goal of over-coming local optima. 

Our purpose thus in this paper is to experiment with three 

such meta-heuristics and investigate their effect to the 

performance of ED8. The next section presents these meta-

heuristics and also explains how they were applied in the 

EDDIE framework. 

 

III. METHODOLOGY 

 

As explained earlier, in order to improve ED8’s search, we 

will be applying different meta-heuristics to the trees’ period 

nodes. Thus, at every generation a number of trees is selected, 

and then a meta-heuristic is applied to each tree. 

This Section describes the implementation details for these 

meta-heuristics, namely Simulated Annealing (SA), Tabu 

Search (TS) and Guided Local Search (GLS). The reason 

behind the choice of the above algorithms is their proven good 

performance within various research fields [15], [16], [17]. In 

addition, due to the fact that SA and TS are well-known 

algorithms, we will not focus on general descriptions of them, 

but on explaining how they behave in the EDDIE framework.   

 
A. SIMULATED ANNEALING 

Simulated Annealing (SA) is a meta-heuristic that allows 

the local search to probabilistically visit worse solutions, with 

the view that other solutions in the same neighborhood may 

provide a better overall solution. More detailed information 

about SA and its application to genetic algorithms can be 

found in [8], [18]. 

On EDDIE, SA was applied to the periods of the 

indicators. The probability of acceptance initially receives a 

                                                         
3
 As mentioned earlier, with the term “indicators” we refer to the 6 

technical indicators used by EDDIE such as Moving Average, Momentum 

etc., whereas with the term “periods” we refer to the periods of those 

indicators that could take any integer value between a specific range for 

instance [2, 65]. We should note that for the purposes of this paper, we will 

only focus to period-based heuristics, i.e., heuristics that apply local search 

only to the period (e.g., 12 days) and not to the indicator (e.g., Moving 

Average). We have left the latter investigation as a future work. 
 

high value, which is then gradually decreased throughout the 

iterations (the maximum number of which is represented by 

the name “kmax”), tending to zero. The probability function 

with which a worse solution can be accepted is:   

               

P   e   new fitness - old fitness)   temperature      (5) 

 

The SA process for EDDIE is as follows: first, a tree is 

probabilistically selected. Then, all period branches of the tree 

are identified and form the neighborhood of the GDT. A 

neighbor can then be obtained by making a marginal change 

(k) to the value of the periods, such as -10 ≤ k ≤ 10. The 

search starts from an initial solution (a random period branch 

is selected), and then iteratively moves to other solutions of 

the same or other period branches of the tree. The SA 

principles, where worse solutions can probabilistically be 

accepted, are applied. Fig. 3 summarizes a general SA process 

tailored to EDDIE. 

  

Fig. 3. SA Pseudocode (Based on: [19]) 

 
B. TABU SEARCH 

With the application of Tabu Search (TS) we aim to 

overcome the problem of local search, by allowing the search 

to focus on other areas that are believed to contain better 

solutions. In other words with TS the search is guided in such 

way so that it is not likely to get stuck in a local optima [9], 

[20], [21], [22], [23]. 

On EDDIE, TS has been applied on the periods, like SA. 

The process starts again with the random selection of a tree. 

Then, all period branches of the tree are identified and form 

the neighborhood of the GDT. A neighbor can then be 

obtained by making a marginal change (k) to the value of the 

periods, such as -10 ≤ k ≤ 10. Additionally, it is checked 

whether this new period is contained in the aspiration criteria.
4
 

If yes, then the new fitness is calculated and if it is better than 

the old one, the new period replaces the old one. If it is worse, 

the new period is discarded. Additionally, if the period is not 

                                                         
4
 The “aspiration criteria” refer to the solutions (periods) that we believe to be 

promising for better fitness. The solutions that are included in the aspiration 

criteria can be tested even if they are part of the tabu list. 

 

t ← GDT(s)                                        // Probabilistically select a tree. 
neighborhood (s)                                     //All period branches of  “t”. 
s ← s0; e ← E s)                                           // Initial periods,  fitness. 
sBest ← s; eBest ← e                                    // Initial "best" solution. 
k ← 0                                                         // Energy evaluation count. 
while k < kmax                                                          // While time left.  
  T ← temperature k kmax)                      // Temperature calculation. 
  sOld ← neighbor(s)                                // Pick some period branch. 
  sNew ← sOld+rand(-k:k)                 // Marginal change to period. 
  eNew ← E sNew)                                            // Compute its fitness. 
  if P(e, eNew, T) > random() then              // Probabilistically accept 
                                                                                        //new solution.              
     s ← sNew; e ← eNew                                   // Yes, change period. 
  end 
  if e >eBest then                                                   // Is this a new best? 
    sBest ← sNew; eBest ← eNew                    // Save 'new neighbor'. 
  end                                                                    
  k ← k   1                                             // One more evaluation done. 
end 
return sBest                                    // Return the best solution found. 



in the aspiration criteria, we check whether it is a tabu
5
. If yes 

then we discard it, otherwise the new fitness is calculated and 

if it is better, the new period is kept. If it is worse the new 

period is discarded. This process is repeated until the 

termination criteria are met.  

Before each iteration the tabu list and the aspiration criteria 

are updated accordingly. Specifically, a period along with its r 

closest neighbors will be added to the tabu list as soon as it is 

visited. By the r closest neighbors, we mean the  [-   , +    ] 

area of the period. For instance if we currently examine the 

period 10, and r=4 in the tabu list we will add the periods 8, 9, 

10, 11, 12. The advantage of this is that, for short term, the 

algorithm will be prevented from revisiting solutions that are 

very similar to the one already tested. Furthermore, if a period 

provides better fitness, it is added to the “aspiration criteria” 

list along with its m closest neighbors ([-m, +m] area). This 

enables the search to visit those periods again, despite the fact 

that it could be part of the “tabu list”.  

Fig. 4 summarizes a TS process tailored to EDDIE.  

Section IV-B provides more information on the parameter 

values.  
 

Fig. 4. TS Pseudocode (Based on: [19]) 

 
C. GUIDED LOCAL SEARCH 

Guided Local Search (GLS) is the final metaheuristic we 

applied. As is mentioned by Voudouris and Tsang [10], GLS 

has the advantage of being easily adaptable to a wide range of 

combinatorial optimisation problems. Several applications of 

the GLS can be found in [17], [24]. 

GLS is a method that is added to a local search algorithm, 

such as Hill Climbing (HC), in order to manipulate its choices. 

With the use of GLS, the HC procedure is “guided” to escape 

local optima. This is accomplished by using penalties on 

solution features, as well as an augmented fitness function 

which is carefully modified according to our problem and its 

objective is to bring the search out of the local optima [25]. 

                                                         
5
 The “tabu” represents areas that we do not wish to be revisited. 

 

 

 

As explained in [26], we define for each feature    (in our 

case a period) an indicator
6
 function Ii (Equation 6), with 

which it is indicated whether a feature is present in the current 

solution s
7
 or not:  

 

     Ii(s)   {
1,  solution has property i

       0,  otherwise                           
    , s   S          (6) 

 

Furthermore, when a Local Search algorithm returns a local 

maximum, the GLS algorithm penalizes all features present in 

that solution which have maximum utility, util(s,fi) as 

illustrated in Equation (7):  

 

util(s, fi)   Ii(s) 
ci

1   pi
   (7) 

 

where,    is the indicator for solution  ,    is the cost of features 

of solution   and    is the penalty of solution  . Finally, GLS 

uses an augmented fitness function as can be seen in Equation 

(8), to guide the Local Search out of the local maximum:  

 

                        h(s)   g(s) -    ∑ pi   Ii s)
 
  1            (8) 

 

where,  ( )  is the fitness function,   is the number of 

features,    is the penalty parameter for feature    and   is the 

regularization parameter. As it is explained in [27], the 

advantage of using this augmented function is that the local 

maxima encountered by local search, when GLS is used, are 

with respect to Equation (8) and may be different than the 

local maxima with respect to the original fitness function 

(Equation 4). Before any penalties are applied, these two are 

identical but as search progresses, the local maxima with 

respect to the original fitness may not be local maxima with 

respect to the augmented function. This allows local search to 

escape from the local maxima of the original fitness since 

GLS is altering the local maxima status under the augmented 

fitness function using the penalty modification mechanism 

explained in the next paragraph. 

GLS was implemented on EDDIE as part of our HC 

process. It was added on top of a hill climber to be performed 

when the algorithm gets stuck in a local maximum area. The 

process starts with the Hill Climbing Algorithm on the periods 

of the Tree. The GLS process begins when the Hill Climbing 

returns a local maximum. The first thing that is calculated 

when the GLS initiates, is the vector   (which consists of 

binary elements). Additionally, as part of the GLS, the utility 

function (Equation 7) is calculated and used to penalize the 

current solution features (periods). More specifically, if the 

feature maximizes the utility then it is penalized by 

incrementing the previous penalty of this feature by 1. The 

new penalties along with the GLS indicators Ii and the fitness 

are used to calculate the augmented fitness function (Equation 

8). This will be used in the HC process from now on instead of 

                                                         
6
 Here there is some overlapping terminology between financial forecasting 

and GLS. The term indicator here has nothing to do with technical analysis 

indicators that EDDIE uses.  
7
 By the term “solution” on EDDIE we mean a Genetic Decision Tree. 

t ← GDT(s)                                        // Probabilistically select a tree. 
neighborhood (s)                                     //All period branches of  “t”. 
s ← s0                                                                         // Initial periods. 
sBest ← s                                                       // Initial "best" solution. 
tabuList ← null                                       // Initialize empty Tabu List. 
aspirCriteria ← null                // Initialize empty Aspiration Criteria.  
while (not stoppingCondition())                     // Termination Criteria. 
     sOld ← neighbor(s)                             // Pick some period branch. 
     s ew ← sOld+rand(-k:k)             // Marginal change to period. 
      if(not containsTabuElements(sNew,tabuList)         //Is new period  
         or  containsAspiration(sNew, aspirCriteria)         //  tabu or AC? 
          if(fitness(sNew) > fitness(sBest))          // Is new fitness better? 
             sBest ← sNew                                          // Keep new period. 
             tabuList ← featureDifferences(sNew, sBest)      // Update TL  
             aspir riteria ← featureDifferences sNew,sBest) //Update AC 
             while(size(tabuList) > maxTabuListSize)   // Tabu List FIFO 
                 ExpireFeatures(tabuList)         // Oldest element discarded 
             end 
         end 
   end 
end 
return(sBest)                                                    // Return Best Solution. 



the simple fitness function (Equation 4). Last but not least the 

process will return the best overall solution, with respect to the 

highest fitness function.  

Moreover, the regularization parameter  , represents the 

relative importance of penalties and provides a way of 

controlling the influence of the information on the search 

process. For more information about the role of λ the reader 

can refer to [24]. At this point it should be mentioned that λ, is 

problem dependent thus, it has no standard formula or value. 

However, in the literature [25] it has been shown that an 

effective way to calculate it is by using the formula:  

 

     a   
g(s)

| F(s) |
    (9) 

where 0≤ ≤1 and | ( )  is the total number of indicators, in 

other words the number of features present in each solution. 

Therefore, we decided to use the same formula for our 

experiments. Finally, the number of times that the GLS 

process while continue is pre-specified (termination criteria). 

Fig. 5 illustrates a GLS Pseudocode tailored to EDDIE. 

 

Fig. 5. GLS Pseudocode (Based on: [27]). 

 

IV. EXPERIMENTAL DESIGN 

 

This Section will present the data and parameter values 

used in our experiments for Simulated Annealing, Tabu 

Search and Guided Local Search algorithms. 

The data used for our experiments can be found in 

http://finance.yahoo.com and in “Datastream”. For the purpose 

of our experiments, 10 datasets were chosen due to their 

observed good performance with EDDIE from previous 

experimental works [1], [6], [7]. These datasets are daily 

closing prices of the following stocks and indices: Aggreko, 

Athens, Barclays, BAT, Cadbury, Imperial Tobacco, NYSE, 

Schroders, Sky and Tesco.  

As it was discussed in Section II-A, there are several 

parameters that we need to specify in order to run our 

experiments. To begin with, we defined the training period to 

be 1000 days and the testing period to be 300 days. 

Additionally, as it can be seen from Table I, n is 20 days, r is 

4% and the indicators’ periods can take any value between 2 

and 65. 

 
TABLE Ι 

EDDIE PARAMETERS 

 

Furthermore, we specify the GP parameters (Table II). All of 

these experimental parameter values are the same as [7], and 

we decided to keep them unchanged for comparison purposes.  

In order to be able to analyze the statistical results, we run 

the GP 50 times. For processing purposes of the results of 

those 50 runs, the average and best
8
 performance measures are 

calculated. The results are illustrated in Section V. 

At this point, it is also important to explain the individual 

experimental parameters values that were chosen for each 

metaheuristic.  

To begin with, for the Simulated Annealing algorithm, it 

was essential to decide upon the values of “temperature” and 

“kmax”, which are the maximum number of iterations. After 

several tests, we concluded in using the value 0.9 for 

“temperature” and 8 for “kmax”. The basic idea behind the 

choice of “temperature” value was the fact that we wanted the 

probability of acceptance to fall gradually until it reaches zero. 

The value 0.9 was fulfilling this requirement and was proven 

under the tests to give similar or best results with the other 

values
9
, but in less computational time. That was evidence 

enough for us to conclude in this value as the most 

appropriate. Moreover, the value kmax was chosen in a similar 

way.  

 
TABLE ΙΙ  

GP PARAMETERS 

 

Additionally, regarding Tabu Search’s r and m parameters 

of Tabu List and Aspiration Criteria, we set r equal to 4 and m 

                                                         
8
 Fitness and RC are maximization problems therefore the best result will be 

the maximum value. On the contrary RMC and RF are minimization problems 

so the best will be the minimum value. 
9 The values tested varied from 0.05 to 15. 

t ← GDT(s)                                        // Probabilistically select a tree. 
neighborhood (s)                                     //All period branches of  “t”. 
s ← s0                                                                         // Initial periods. 
If (Hill Climbing ← local maximum) // If HC returns local maxima. 

 begin GLS                                                      // Start GLS process. 
                 while (not stoppingCondition)      // Termination Criteria. 
                      for (i ← 1 until M)                               // For all periods.  

pi ← 0                                      // set penalties to 0. 
                      end 
                      for (i ← 1 until M)                               // For all periods. 
                          utili ← Ii(sk+1)  ci / (1 + pi)               // Calculate utility 
                                                                                              // function.  
                      end 
                      for (each i such that utili is maximum)  
                          pi ← pi + 1;                      // Penalize current periods. 
                      end  
                      h ← g -     Σpi * Ii         // Calculate augmented fitness 

                                                           // function h. 
                      sk+1 ←Hill Climbing(sk, h)        // Hill Climbing using h.    

    end 
end 
s* ← best solution found with respect to fitness function g; 
return s*;  

 end GLS 
 
where S: search space, g: fitness function, h: augmented fitness function, 

 :lambda parameter, Ii: indicator function for period i, ci: cost for period i, M: 

total number of periods present to current solution, pi: penalty for period i. 

EDDIE Parameters Value 

n 20 
r 4 

period [2, 65] 

GP Parameters Value 

Max initial Depth 6 

Max Depth 8 

Generations 50 

Population size 500 

Tournament size 2 

Reproduction probability 0.1 

Crossover probability 0.9 

Mutation probability 0.01 

http://finance.yahoo.com/


equal to 2. The r=4 was chosen in a way to prevent, for short 

term, the search from revisiting solutions that are very similar 

to the one already tested. The choice of m=2 was based on the 

idea that when a period provides better fitness, then its close 

neighbors could also lead to further improvements.   

Lastly, for the Guided Local Search algorithm we decided 

that for simplicity,   would be equal to 1 (Equation 9). We do 

not argue that this is the optimal value, but we have left the 

investigation of this as a future research. Additionally, as there 

is no direct associated cost for each feature in EDDIE, we 

decided to assign the same cost value to all features. 

Therefore, the cost value   , used in the utility function 

(Equation 7) was set equal to 1 for each feature of  . Finally, 

we decided to allow for the GLS process to perform 10 

iterations. We have left it as future work to see if the results 

can be further improved with more iteration. 
 

V. RESULTS 

 

This Section will present the results over 50 runs of 

Simulated Annealing, Tabu Search and Guided Local Search 

algorithms. First we will present and compare ED8’s results 

with and without each one of the above meta-heuristics. Then, 

an overall discussion for these results will follow in Section 

V-D. 

As mentioned earlier, the results for each algorithm are 

divided into average and best. Any significant improvements 

are denoted with bold fonts, whereas any significant 

diminutions are underlined. In order to test for any 

significantly improved average results we run a two sample 

Kolmogorov Smirnov (K-S) test under the significance level 

of 5%, for the distributions of the 4 metrics (Fitness, RC, 

RMC, RF). When testing the results between two data vectors 

(for instance 50 Fitness runs from original ED8 and ED8 with 

SA), the null hypothesis H0 was that the two vectors come 

from the same continuous distribution, whereas the alternative 

H1 is that they don’t. Moreover, to account for the fact that we 

make four comparisons for each dataset, it was essential that 

we applied Bonferroni correction
10

. Since we compare 4 

different metrics between each metaheuristic and ED8, the p-

value after the Bonferroni correction at 95% confidence 

is      (      )         , where 4 is the number of 

metrics used to compare the results of the EDDIE versions.  

As far as the best results are concerned, it was not possible to 

apply statistical tests on them, as they are only single values 

and not distributions. Therefore, for consistency purposes with 

the Kampouridis et al. [7], we denote a significant 

improvement/diminution when the difference of the 

metaheuristic with the original ED8 is above 1%. 

 
A. SIMULATED ANNEALING       

Tables III and IV illustrate the average and best results of 

the application of SA to ED8, using the experimental 

parameter values mentioned in Section IV-B. 

                                                         
10 For more information the reader can refer to [28]. 

 

As it can be observed from Table III, the average results of 

the SA are as good as ED8 average results. There is only one 

case, the RC of Athens, which is worsened at the 5% 

significance level.  

On the other hand, as one can observe from the best results 

in Table IV, the SA managed to improve the performance 

metrics for all 10 datasets. Additionally, the SA improved at 

least two metrics in 7 out of these 10 datasets. Overall, the SA 

algorithm has improved 27 metrics of the datasets and 

worsened only 7 metrics. We should take into consideration 

that in several cases the best results were impressively 

improved, for instance Sky and Barclay’s fitness by 10% and 

7% respectively. Therefore, we can argue that the addition of 

SA was proven quite beneficial for ED8’s best results.   

 
TABLE ΙΙΙ 

AVERAGE RESULTS FOR SA              

 

TABLE IV 

BEST RESULTS FOR SA              

 
B. TABU SEARCH 

Table V presents the average results of the TS. As we can 

observe, there are no significant differences between the two 

versions of ED8 (with and without TS), with the exceptions of 

only two metrics  Athens and Sky’s   ).  

Dataset Heuristic Fitness RC RMC RF 

Aggreko Original 0.2424 0.5919 0.2132 0.2716 

 S.A. 0.2175 0.5550 0.4036 0.2656 

Athens Original 0.1541 0.5335 0.3583 0.4486 

 S.A. 0.1253 0.5118 0.4008 0.4724 

Barclays Original 0.2651 0.5780 0.4301 0.1291 

 S.A. 0.2417 0.5417 0.4755 0.1374 

BAT Original 0.2122 0.5458 0.4318 0.2403 

 S.A 0.2134 0.5290 0.4694 0.2362 

Cadbury Original 0.2793 0.6573 0.2170 0.3112 

 S.A. 0.2599 0.6309 0.2615 0.3227 

Imp Tob Original 0.1945 0.5343 0.6445 0.205 

 S.A. 0.1919 0.5387 0.5702 0.248 

NYSE Original 0.1637 0.5379 0.2494 0.4470 

 S.A. 0.1441 0.5213 0.3593 0.4565 

Schroders Original 0.1827 0.5530 0.4142 0.3588 

 S.A 0.1798 0.5496 0.4166 0.3610 

Sky Original 0.1248 0.6270 0.7736 0.5802 

 S.A. 0.1056 0.5981 0.7443 0.5962 

Tesco Original 0.2602 0.6169 0.3304 0.2563 

 S.A. 0.2478 0.6033 0.3313 0.2703 

Dataset Heuristic Fitness RC RMC RF 

Aggreko Original 0.3256 0.6933 0.0607 0.1373 

 S.A. 0.3529 0.7267 0 0.1855 

Athens Original 0.2579 0.6467 0.0124 0.3571 

 S.A. 0.2337 0.6200 0 0.3672 

Barclays Original 0.3633 0.7100 0.2449 0.0411 

 S.A. 0.4350 0.8167 0 0.0541 

BAT Original 0.3303 0.6667 0.2780 0.1083 

 S.A 0.3690 0.7433 0 0 

Cadbury Original 0.3685 0.7533 0.1341 0.2131 

 S.A. 0.3733 0.7600 0 0.2179 

Imp Tob Original 0.2802 0.6367 0.3946 0 

 S.A. 0.2929 0.6533 0 0 

NYSE Original 0.2341 0.6067 0.0123 0.3780 

 S.A. 0.2283 0.6100 0 0.3893 

Schroders Original 0.2369 0.6100 0.2333 0.2456 

 S.A 0.3054 0.6800 0 0.1780 

Sky Original 0.2066 0.6800 0.5922 0.4222 

 S.A. 0.3059 0.6967 0 0 

Tesco Original 0.3044 0.6667 0.2255 0.1667 

 S.A. 0.3216 0.6900 0 0.2083 



With regards to the best results, Table VI informs us that 

TS managed to offer improvements to all of the datasets. 

Additionally, it is worth mentioning that TS improved at least 

two performance measures per dataset, and in some cases like 

Cadbury and Sky, it improved all 4 metrics. In total, the TS 

algorithm has improved 31 metrics of the datasets and 

worsened only 4 metrics. We can again notice some 

impressively improved results, e.g., Sky and Barclay’s fitness 

by 12% and 7% respectively. Therefore, we can once more 

argue, that the addition of TS was proven beneficial for ED8.   

 
TABLE V 

AVERAGE RESULTS FOR TS             

 

TABLE VI  

BEST RESULTS FOR TS             

 
C. GUIDED LOCAL SEARCH 

Finally, in Tables VII and VIII the average and best results 

of the application of GLS on the original ED8 are presented. 

Following the same analysis as the previous two Sections, 

we can see in Table VII the average results of the GLS, which 

are as good as ED8 average results.  

In terms of best results, as we can observe from Table VIII 

the GLS has improved all of the 10 datasets. Additionally, the 

GLS has improved at least two metrics in all 10 datasets, and 

all 4 metrics in 7 of them. This thus indicates that the GLS has 

done extremely well. In total, the GLS algorithm has improved 

the metrics of the datasets 35 times, and only worsened them 3 

times. We can once again observe some impressively 

improved results, e.g.,  YSE and Barclay’s    by 12% and 

10% respectively. Therefore, we can suggest, that the addition 

of GLS was proven really valuable for ED8.  

 
TABLE VII 

AVERAGE RESULTS FOR GLS             

 

TABLE VIII 

BEST RESULTS FOR GLS             

 
D. DISCUSSION 

As it was observed in the previous Sections, all three 

metaheuristics maintained the average ED8 results at the same 

level, while significantly improving all the datasets in terms of 

the best results. First of all, we should note that the fact that 

the average results were not improved by the metaheuristics is 

not alarming. Due to the large search space that ED8 is 

dealing with, it is not easy to be consistent and always return 

significantly improved solutions.  

Nevertheless, the heuristics have indeed introduced 

significant improvements, as it can be seen from the best 

results. This is an extremely important achievement due to the 

fact that an investor in the real world would be running 

Dataset Heuristic Fitness RC RMC RF 

Aggreko Original 0.2424 0.5919 0.2132 0.2716 

 T.S. 0.2187 0.5589 0.3884 0.2745 

Athens Original 0.1541 0.5335 0.3583 0.4486 

 T.S. 0.1118 0.5028 0.4588 0.4799 

Barclays Original 0.2651 0.5780 0.4301 0.1291 

 T.S. 0.2674 0.5832 0.4140 0.1371 

BAT Original 0.2122 0.5458 0.4318 0.2403 

 T.S. 0.2138 0.5429 0.4547 0.2216 

Cadbury Original 0.2793 0.6573 0.2170 0.3112 

 T.S. 0.2614 0.6335 0.2667 0.3212 

Imp Tob Original 0.1945 0.5343 0.6445 0.2053 

 T.S. 0.1976 0.5255 0.6198 0.2028 

NYSE Original 0.1637 0.5379 0.2494 0.4470 

 T.S. 0.1551 0.5334 0.3423 0.4433 

Schroders Original 0.1827 0.5530 0.4142 0.3588 

 T.S. 0.1917 0.5487 0.4723 0.3419 

Sky Original 0.1248 0.6270 0.7736 0.5802 

 T.S. 0.1011 0.6025 0.7551 0.6151 

Tesco Original 0.2602 0.6169 0.3304 0.2563 

 T.S. 0.2514 0.6075 0.3274 0.2679 

Dataset Heuristic Fitness RC RMC RF 

Aggreko Original 0.3256 0.6933 0.0607 0.1373 

 T.S. 0.3420 0.7133 0 0.2015 

Athens Original 0.2579 0.6467 0.0124 0.3571 

 T.S. 0.2225 0.6100 0 0.2899 

Barclays Original 0.3633 0.7100 0.2449 0.0411 

 T.S. 0.4350 0.8167 0 0.0392 

BAT Original 0.3303 0.6667 0.2780 0.1083 

 T.S. 0.3323 0.6900 0.2287 0 

Cadbury Original 0.3685 0.7533 0.1341 0.2131 

 T.S. 0.3817 0.7700 0 0.1928 

Imp Tob Original 0.2802 0.6367 0.3946 0 

 T.S. 0.2989 0.6567 0.0541 0 

NYSE Original 0.2341 0.6067 0.0123 0.3780 

 T.S. 0.2606 0.6500 0.0309 0.3125 

Schroders Original 0.2369 0.6100 0.2333 0.2456 

 T.S. 0.2815 0.6567 0.0444 0.2429 

Sky Original 0.2066 0.6800 0.5922 0.4222 

 T.S. 0.3207 0.7000 0.1165 0 

Tesco Original 0.3044 0.6667 0.2255 0.1667 

 T.S. 0.3253 0.6967 0.0294 0.1765 

Dataset Heuristic Fitness RC RMC RF 

Aggreko Original 0.2424 0.5919 0.2132 0.2716 

 GLS 0.2339 0.5762 0.3694 0.2497 

Athens Original 0.1541 0.5335 0.3583 0.4486 

 GLS 0.1491 0.5250 0.3117 0.4564 

Barclays Original 0.2651 0.5780 0.4301 0.1291 

 GLS 0.2894 0.6091 0.3824 0.1260 

BAT Original 0.2122 0.5458 0.4318 0.2403 

 GLS 0.2254 0.5416 0.4390 0.2337 

Cadbury Original 0.2793 0.6573 0.2170 0.3112 

 GLS 0.2698 0.6353 0.2553 0.3158 

Imp Tob Original 0.1945 0.5343 0.6445 0.2053 

 GLS 0.1969 0.5349 0.6139 0.2087 

NYSE Original 0.1637 0.5379 0.2494 0.4470 

 GLS 0.1569 0.5339 0.2825 0.4504 

Schroders Original 0.1827 0.5530 0.4142 0.3588 

 GLS 0.1872 0.5495 0.4319 0.3514 

Sky Original 0.1248 0.6270 0.7736 0.5802 

 GLS 0.1175 0.6187 0.7608 0.5922 

Tesco Original 0.2602 0.6169 0.3304 0.2563 

 GLS 0.2533 0.5967 0.3615 0.2777 

Dataset Heuristic Fitness RC RMC RF 

Aggreko Original 0.3256 0.6933 0.0607 0.1373 

 GLS 0.3420 0.7133 0 0 

Athens Original 0.2579 0.6467 0.0124 0.3571 

 GLS 0.2389 0.6267 0 0.3411 

Barclays Original 0.3633 0.7100 0.2449 0.0411 

 GLS 0.4350 0.8167 0 0.0260 

BAT Original 0.3303 0.6667 0.2780 0.1083 

 GLS 0.3690 0.7433 0 0 

Cadbury Original 0.3685 0.7533 0.1341 0.2131 

 GLS 0.4153 0.8067 0 0.1897 

Imp Tob Original 0.2802 0.6367 0.3946 0 

 GLS 0.3197 0.6767 0 0 

NYSE Original 0.2341 0.6067 0.0123 0.3780 

 GLS 0.2464 0.6200 0 0.3540 

Schroders Original 0.2369 0.6100 0.2333 0.2456 

 GLS 0.2909 0.6700 0 0 

Sky Original 0.2066 0.6800 0.5922 0.4222 

 GLS 0.2214 0.6733 0 0.4706 

Tesco Original 0.3044 0.6667 0.2255 0.1667 

 GLS 0.3619 0.7400 0 0.1467 



EDDIE multiple times and then use the best resulted GDT for 

his investments; thus, due to the fact that the metaheuristics 

have improved ED8’s best results, this investor would see an 

increase to his profit margin. 

Furthermore, Table IX summarizes the improvements and 

diminutions of the three algorithms, in terms of best results. 

As we can observe, GLS was proven to be the most beneficial 

in terms of improvements and diminutions, as it managed to 

improve 35 metrics, while it only worsened 3. SA and TS also 

offered a significant difference between the number of 

improvements and diminutions. This achievement is really 

impressive and indicates that with the addition of 

metaheuristics, ED8 best GDT’s would provide more accurate 

information to the investor. 

To sum up, from the above discussion we are able to 

support that the application of metaheuristics to EDDIE can 

lead to significantly improved performance, thus being a really 

valuable addition to EDDIE.  

 
TABLE IX 

SUMMARY BEST RESULTS 

 

 

 

 

 

VI. CONCLUSION 

 

This paper presented work on the application of the three 

meta-heuristics, namely Simulated Annealing, Tabu Search 

and Guided Local Search, to a Genetic Programming financial 

forecasting algorithm called EDDIE 8. The novelty of ED8 is 

that it allows the GP to search in the space of technical 

indicators for solutions, instead of using pre-specified ones, as 

it usually happens in the literature. However, a consequence of 

this is that ED8’s search area is quite large, and sometimes 

solutions can be missed due to ineffective search. 

In order to address this issue, we applied the three above-

mentioned metaheuristics to the period nodes of ED8’s trees. 

Results showed that the algorithm’s performance improves 

significantly, thus making the combination of Genetic 

Programming and meta-heuristics an effective financial 

forecasting approach.  

More specifically, we found that all three metaheuristics 

were beneficial and important. We also particularly 

emphasized the significance of the improved best results, due 

to the fact that an investor, who would use the best tree of 

those experiments, could experience an exceptional boost to 

his profit.  

The fact that the metaheuristics tested in this paper have 

improved EDDIE’s performance is very encouraging. Our 

next goal is to combine these meta-heuristics into hyper-

heuristics frameworks, as it has happened before in [7]. This 

will have the additional benefit that such frameworks can 

combine the strengths of each meta-heuristic, and thus 

improve the EDDIE’s performance results even further.  
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