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Abstract—This paper explores the use of the Directional
Changes (DC) paradigm for financial forecasting. DC is an
event-based alternative to the traditional approach of time-series
with fixed intervals. In the DC approach, price movements are
recorded when specific events occur, rather than in fixed time
intervals, while significant price changes are identified using a
threshold. Here, we consider a more general model that allows
multiple weighted thresholds, and propose three novel trading
strategies built within the DC paradigm. To optimize the weights
of the thresholds, we use a genetic algorithm and manage to
find strategies that outperform previously known single-threshold
strategies under the common efficiency metrics. Furthermore,
our method manages to create profitable trading strategies that
outperform some traditional ones, such as buy-and-hold, MACD,
and RSI.

Index Terms—directional changes, multiple thresholds, trading
strategies, genetic algorithm, financial forecasting

I. INTRODUCTION

The field of financial forecasting has advanced tremendously
over the last few decades with a focus on the concepts of
return and risk. The introduction of modern portfolio theory
by the seminal work of Markowitz, [1], ignited a line of
research that revolved around making profitable portfolios for
investors while at the same time managing their risk. Although
traditional forecasting models have been improved through
the addition of new technical tools, the use of time-series
has largely remained unchanged. However, relying solely on
interval-led data can be risky as unexpected news events or
price movements outside of the interval can be missed or
detected too late, potentially resulting in losses by the selection
of hourly, daily, or weekly intervals.

In order to prevent neglecting price and market movements,
instead of using time-series data to sample price values in
regular time intervals (e.g. daily closing prices, hourly data),
we use an event-based system to capture significant points
in price movements, namely, the (DC) paradigm. This uses a
sampling method to take snapshots of historical data whenever
there is a change in price that exceeds a specific threshold. The
characteristic parameter of the DC paradigm is a threshold

θ > 0, whose value is determined by the trader based on their
belief of what constitutes a significant price change. Note that
this change can be either an increase or a decrease in value.
The price data is then divided into uptrend and downtrend in-
tervals, where each interval consisting of a directional change,
called directional change (DC) event is usually followed by
an overshoot (OS) event.

In finance, a trading strategy is a term for creating a plan
for buying, selling, or holding assets, such as stocks, bonds,
material, or intellectual property, with the goal of making
a profit. In this work our aim is, at first, to use various
indicators and scaling laws from the DC paradigm to create
three novel trading strategies. The next step is to feed the
strategies with a range of different thresholds to see what
recommendations they produce. The goal of this step is to
identify multiple concurrent events by different thresholds over
a profiling period and provide more opportunities to trade
profitably. Intuitively, such a method should yield at least as
good trading strategies as those of the single-threshold model,
since the latter is a special case of our multi-threshold model.

In the presented experiments, we test ten predefined thresh-
old values for two trading strategies, while the remaining strat-
egy is tested with five of those thresholds. As a result, there
are multiple buy-sell-hold recommendations at each time-
step. To resolve any conflicting recommendations, a genetic
algorithm (GA) is used to optimize the weights of each DC
threshold. Genetic algorithms are evolutionary algorithms that
are commonly used for stochastic optimization [2] and have
been successfully employed to address financial forecasting
problems [3], [4].

We conduct our experiments on 18 New York Stock Ex-
change (NYSE) listed stocks. Our research compares the
multi-threshold DC strategy to: (i) a collection of single-
threshold strategies, (ii) the two technical analysis indicators in
a time-series context, and (iii) a buy-and-hold strategy. Section
II summarises the necessary DC background and Section III
covers the related literature. Section IV and Section V present
the methodology and experimental setup, respectively. Finally,
we provide the results in Section VI and the conclusions from
our experiments in Section VII.979-8-3503-1458-8/23/31.00 ©2023 Crown



II. DIRECTIONAL CHANGES

In this section, we give an overview of our model, namely
the DC paradigm. Particularly, in Section II-A, we outline
the fundamental principles of DC. Section II-B describes the
background on the indicators that are relevant to our proposed
methodology.

A. DC Basics

The DC approach is a way of recording price changes that
are caused by events. It involves only two types of events,
namely, OS events and DC events. A DC event is confirmed
when there is a price change that exceeds the pre-specified
threshold in the opposite direction of the current trend. The
time interval between two consecutive DC events is an OS
event, which usually is of non-zero length. The threshold θ
used in this model is specified by the user according to the
application (asset) at hand. Fig. 1 shows an example of the
formation of consecutive DC and OS events at a threshold
θ = 5%. Any point A on the graph is a pair of time-step
TA and price PA. Suppose we have a financial product whose
price starts at 100$ at time-step 0 and decreases to 96$ at
time-step TEXTi

. Since the price change is smaller than the
pre-specified value of θ, we do not consider the time interval
0−TEXTi as a DC event. However, from TEXTi to time-step
TDCCi , the price experiences a significant change of 5%, so
indeed, the time interval TEXTi

-TDCCi
is a DC event.

As a result, with relation to TDCCi , we need to define two
important notions of points: the extreme point EXTi and the
directional change confirmation point DCCi. Throughout the
paper, without loss of generality, we will consider discrete
time, in the form of time-steps 0, 1, 2, . . . which models the
particular points in time where we “sense” the price of the
underlying asset (e.g., here it is the daily closing price of
a stock). The extreme point is the leftmost limit of the DC
interval, while the confirmation point is the earliest time-step
in which we have a DC. The definitions of these points will
be useful in our strategies’ description in Section IV-A. To
detect another DC event, the threshold must be reached in
the opposite direction of the previous DC event’s direction,
as shown at point DCCi+1 in Fig. 1. The price change of
a DC event can be longer than the minimum required price
change (determined by θ) that would qualify it as a DC event.
To account for this, the concept of a theoretical confirmation
point, DCC∗, is introduced. This can be seen in Fig. 1, where
a price change of 4.8$ (recall that θ = 5% in our example)
between points EXTi and DCC∗ is sufficient to confirm a DC
event. TDCC∗ indicates that the time-step ⌈TDCC∗⌉ = TDCCi

(time-step 4) is the upper limit of the DC event, in other
words, the time-step of confirmation point DCCi. In the
DC paradigm, the individual event’s direction is taken into
account, and note that there are only two directions: by uptrend
(UT) (resp. downtrend (DT)) we refer to the series of points
between a low and a high (resp. a high and a low) extreme
point. In Fig. 1 the interval EXTi-EXTi+1 is an uptrend.

By presenting the data in this way, the DC paradigm
offers users a new perspective on observing price changes.

Fig. 1. Transformation of time-series data into the DC paradigm. There are
two DC event confirmation points, at time 4 and 10. An uptrend takes place
between the two extreme points, EXTi and EXTi+1, which are confirmed
retrospectively at their subsequent confirmation points, DCCi and DCCi+1.

A significant benefit of this approach is that users can focus
on key points rather than potentially missing important events
due to their preferred time intervals in the physical time-series.
In the rest of this section, we discuss auxiliary results from
the DC literature, which we will also use in our model.

B. Indicators

Here, we focus on the model’s parameters, called indicators,
most of which have been defined in prior works. The use
of indicators in the literature of technical analysis serves the
purpose of uncovering hidden patterns in financial data, which
can be utilized by decision-making tools such as DC in order
to make trading even more profitable. We now give a thorough
description of the indicators that we applied to our strategies’
creation.

• Number of DC events (NDC): The total number of DC
events throughout the investigated period.

• Number of Overshoot Events (NOS): The total number
of OS events in the profiled data.

• Theoretical Confirmation Point (DCC∗): The earliest
time at which a price change equals θ.
At the uptrend:

PDCC∗ = PEXTi · (1 + θ) (1)

• Overshoot Values at Current Points (OSVCUR): The main
goal of this indicator is to measure the magnitude of an
OS event. It can be calculated as follows:

OSVCUR =
PCUR − PDCC∗

θ · PDCC∗
, (2)

where PCUR is the current price of the asset.

III. RELATED WORK

We can explain the two main sources of literature on which
this research is based as follows: First, the discoveries made
in evolutionary algorithms trading strategy optimization; and
second, the findings about DC and their usage on trading
strategies via evolutionary algorithms.



A. Evolutionary Algorithms and Trading

Evolutionary algorithms (EA) have emerged as a popular
tool for solving complex financial optimization problems by
mimicking the process of natural selection to identify optimal
solutions in large search spaces. In [5], although the authors
comprehensively studied 51 journal articles, they were unable
to make a definitive conclusion about which EA performs
better in different research areas of finance. In the meantime,
optimization of trading strategies based on GA has gained
attention [6], [7]. However, both the mentioned articles and the
attention in the literature generally continued to use physical
time, other than [8], where authors tried to optimize different
strategies under the DC paradigm. It should be noted here that
profitable results have been achieved not only through GA but
also through genetic programming under the umbrella of DC
[9], or even without directional change [10], as highlighted in
recent literature. In this paper, we propose using GA as an op-
timizer to experiment with different trading recommendations
based on various θ values derived from DC. The aim is to
investigate whether the use of multiple threshold values can
improve the quality of trading decisions by providing more
diverse and informative data profiles.

B. Scaling Laws & Indicators

Scaling laws, conceptually, describe the functional relation-
ship between two physical quantities that scale with each other
over a significant interval. In DC, these relationships focus
on to establish mathematical connections among price moves,
duration and frequency. Here, we will cover the literature
regarding to these laws in DC with the addition of indicators
that are derived from paradigm itself.

At scaling laws, early findings provided a deeper under-
standing of the behavior of foreign exchange markets, among
13 pairs, 17 scaling laws were demonstrated to the research
community [11]. With newly added 12 more, the DC helped
to understand the patterns by profiling time-series into event-
based system [12]. Among them, one which is related to our
work. Authors showcased an empirical consistency between
numerous foreign currency data that the duration of an OS
event, over the profiled data, is approximately twice the
duration DC event on average. Following the notation of [12],
let us denote by ⟨TOS⟩ and ⟨TDC⟩ the average time of an OS
and DC event, respectively. Then the aforementioned scaling
law can be written as:

⟨TOS⟩ ≈ 2 · ⟨TDC⟩, (3)

where “≈” indicates empirical equality. This is closely tied
to the mathematical relationships between DC and OS, which
will be used in Section IV-A in creating a trading strategy.
After the initial discoveries, 4 and 1 more were added,
respectively [13], [14], where the financial product differed
from the previous researches and the usage of DC under equity
products added to the field. These findings are already being
used to develop trading strategies in the field [8], and it is
likely that there will be further progress in this area.

DC has also been enhanced by the addition of indicators,
which helps new users to gain a better understanding of the
paradigm and use them as technical-analysis-like tools in the
field. The study in [13] was one of the first to explore the use
of four indicators. Conceptually, [15] can be thought of as a
dictionary of DC-based indicators, providing information on
how to extract pattern-based data from the paradigm itself.
In this paper, we adapted our indicators from the original
versions, and they contribute to the field as new indicators
as well. Their construction and implementation are discussed
comprehensively in Section II-B and IV.

C. Trading Strategies

An important aspect of DC-based trading strategies is the
use of classification tasks, which have been shown to outper-
form technical analysis techniques [16]. In that work, Forex
instrument pairs were investigated, and the use of classification
tasks provided a new option for users to observe trend reversals
under DC. Very recently, researches showed that with 20
different Forex pairs under DC, the proposed algorithm by DC
trend reversion projection were able to outperform majority
of the DC and non-DC benchmarks (i.e., exponential moving
average) in terms of both return and risk [17]. Overall, these
works show that DC framework is flexible and open for
improvements in trading strategies.

Based on our review of this literature, a first observation
is that DC has been used to a limited extent in the creation
of trading strategies. To increase the application of indicators
and scaling laws in trading strategies, our first motivation is
to create strategies for traders to act on. As another limitation,
the trading strategies that were tested have only used a single
threshold for determining buy, hold, or sell recommendations
most of the time, while we aim to implement multi-thresholds
for a richer recommendation through the addition of different
thresholds. With the addition of GA optimization, we target
to improve these recommendations and provide a more com-
prehensive decision-making tool for traders.

IV. METHODOLOGY

We implement the scaling laws and indicators derived
by DC, by constructing simple strategies, since this seems
sufficient in improving the effectiveness of the current state-
of-the-art DC strategies.

In what follows, we first introduce the strategies in Section
IV-A, then we discuss the GA methodology and how it was
used to optimize the aforementioned trading strategies in
Section IV-B.

A. Individual Strategy Creation Process

Table I summarizes the three individual DC-based trading
strategies discussed in the paper. These strategies all follow
four key rules: (i) a new position (i.e., executing a buy, or sell
on a stock) cannot be opened if a position is already open;
therefore, a position must be closed before a new one can
be opened, (ii) short selling is not permitted, so all opening
positions must involve going long on a financial product, (iii)



TABLE I
INDIVIDUAL STRATEGIES

Strategy Buying Selling
St1 Twice the duration of DC from PDCC in DT Twice the duration of DC from PDCC in UT
St2 | OSVCUR | ≥ | OSV Best | in DT | OSVCUR | ≥ | OSV Best | in UT
St3 3rd consecutive OS in UT PDCC in DT

a transaction cost of 0.25% is applied to each trade, (iv)
execution of buying orders should be in downtrend (DT),
selling in uptrend (UT), for St1 and St2 only. The first trading
strategy is based on the scaling law presented in Equation
(3). The two remaining strategies are based on indicators. It’s
worth noting that the definition of OSVCUR in this paper is a
modified version of the original indicator from [15]. Instead of
using extreme values, this indicator uses current values. This
allows us to use these indicators at every data point, rather
than only during extreme points. St3 is again based on the
indicators defined in Section II-B. The following paragraphs
describe the strategies rigorously.

Strategy St1 uses the first scaling law, Equation (3), which
dictates that the duration of an OS event is approximately
twice the DC event. In this paper, we aim to test the scaling
law as performing it to each trend rather than using on the
whole profiled data. As an execution signal, we check the
time duration that lasts for DC, at the moment we confirm
the DC at PDCC at DT, and then wait for the double of that
duration to buy the stock. In order to sell the stock, we wait for
the PDCC at UT, and then act on its double duration again.
The motivation behind this strategy is to make an informed
decision based on the scaling law would hold on each trend.

Strategy St2 is based on Overshoot Values at Current
Points indicator. In the creation, we check if |OSVCUR| ≥
|OSV Best|, where |OSVCUR| is the absolute value of indi-
cator where we defined at Equation (2). In order to estimate
the |OSV Best|, we do the following: first we obtain the
distribution of all OSVCUR values for DC profiled data; then
we divide these values into quartile and then select one median
OSVCUR for each quartile (i.e., we test four indicator value).
In the end, we identify best OSVCUR value with the highest
Sharpe ratio (in a validation set) among four indicator value,
and attain the best one as OSV Best. Finally, whenever we
see the |OSVCUR| ≥ |OSV Best| rule holds, we check the
trend direction as signal, if it is DT we buy the stock, and
wait for the opposite to hold to sell the stock.

In Strategy 3 (St3), we check the consecutive OS events
in UT, for example, in order to buy a position, we need to
see subsequent three OS events without seeing any OS in DT
prior to 3rd OS. Then, wait for the next DT confirmation point
to close the position. The motivation behind St3 is to make a
profit, by capturing a resistance of uptrend.

B. Genetic Algorithm

GA starts by creating a population of potential solutions,
called candidates, or chromosomes. These solutions are eval-
uated using a fitness function to determine their quality (i.e.,
the Sharpe Ratio, which will be covered in Section IV-B2).

At each iteration, a new population is generated by selecting
the more fit individuals from the current population proba-
bilistically. Some of these selected candidates will undergo
crossover and mutation, which are processes that introduce
changes to the chromosome in order to explore different areas
of the search space. The rest of the selected chromosomes
are carried forward without any changes. In our research, we
assigned weight to each candidate’s gene, and in terms of the
genes, they represent ”what would be the performance under
this particular threshold by DC”. Eventually, the Sharpe Ratio
in the resulting model depends on these weights. It is important
to note here that in the upcoming sections, we will dive into the
models representation and optimization phases more. The new
population then replaces the old one, and the process repeats
until we reach the pre-specified number of generations.

In one of the recent works [8], instead of thresholds re-
searchers use different DC-based strategies as genes in chro-
mosome. However, they implemented these strategies under
one threshold θ = 2.5%, which limits research to analyze
the events by only one DC profiled data. Therefore, we
aim to answer the question of how the GA can improve its
performance by utilizing multiple thresholds. In the remainder
of this section, we will show how we implement the GA, which
eventually constructs a recommendation on buy-hold-sell any
unit of time.

It is clear that any chosen value of θ can only generate a
single set of DC and OS events. For instance, while smaller
thresholds result in more frequent events and the opportunity
to take prompt actions, larger thresholds detect fewer events
but allow for the possibility of taking action in response to
larger price changes. Thus, in this work, we aim to capture
the spectrum of events by optimization of multiple thresholds.
Each one of the following values of θ creates its own set of
buy-hold-sell strategies. The chosen thresholds are as follows:
0.098%, 0.22%, 0.48%, 0.72%, 0.98%, 1.22%, 1.55%, 1.70%,
2%, 2.55%. The reason we choose these thresholds is changes
in the price of the stock that fall approximately within 0.1
to 2.5 percent range would encapsulate the events that we
see important. Furthermore, this range also encompasses a
wide spectrum of price fluctuations, covering both smaller and
larger changes. It is important to note here, due to application
of St3 is heavily depending on rapid price changes, we used
only first five thresholds for it.

Consequently, it is possible that at a given time, one
threshold value may recommend a “buy” action while another
recommends a “sell”, or “hold” action. One benefit of having
multiple θ’s is that it can provide a greater depth of information
and more recommendations for each data point. However, if a



trader wants to consider the recommendations from multiple
θ’s, they may encounter conflicting actions, such as one
strategy suggesting to buy a position while another suggesting
to sell it. To address these conflicting recommendations, we
assign a weight to each θ and adjust these weights over time.
When it comes to making a decision, we can then follow the
recommendation that has the highest overall weight, based on
the sum of the weights of all the θ’s. The following details
describe the process using a GA.

1) Representation of Individuals
An individual in the GA consists of 10 genes, with each

gene representing a threshold. The value of each gene is a
weight ranging from 0 to 1. An example of an individual
is shown in Table II. There are total of 10 thresholds. The
first row in the example individual is a label for reference.
The remaining rows show that each of the 10 θ has been
assigned a weight. At each point in time, each θ will make
a recommendation on whether to buy a position, hold the
current position, or close a position. This means that different
recommendations may be made at any given time based on
the weights and recommendations of the individual strate-
gies. Let us assume that θ1, θ2, θ3, θ4, θ5 recommend
a buy at that time of the data, θ6, θ7 hold, and θ8, θ9,
θ10 to sell the position. We then sum up the weights for
each recommendation, i.e. the sum of buying a position is
0.10+ 0.20+ 0.05+ 0.15+ 0.10 = 0.60 (θ1, θ2, θ3, θ4, θ5);
the sum of holding is 0.05+0.10 = 0.15 (θ6, θ7); and the sum
of selling a position is 0.08+0.07+0.10 = 0.25 (θ8, θ9, θ10).
In the example, buying the position has the highest weight sum
(0.60). Therefore, at that specific time, the decision would be
to buy the position. Eventually, GA evolves the weights of the
individual θ’s in order to maximize the fitness function, which
represents the overall performance of the thresholds. Below,
we define the operators and fitness function of the GA that we
used in order to optimization of a better performance metric.

TABLE II
INDIVIDUAL CHROMOSOME REPRESENTATION. FIRST ROW IS FOR THE

REPRESENTATION OF CHROMOSOME THAT IS CONSTRUCTED BY 10
THRESHOLD WEIGHT.

θ θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10
W 0.1 0.2 0.05 0.15 0.1 0.05 0.1 0.08 0.07 0.1

2) Genetic Operators & Fitness Function
We use one-point crossover with a probability p and one-

point mutation with a probability 1−p. We also use elitism, to
ensure that the best individual is copied to the next generation.

We use the Sharpe Ratio (SR) as our fitness function to take
into account risk-adjusted returns. The equation for SR is as
follows:

SR =
Rp −Rf

σp
(4)

where, Rp is total rate of return for a given GA individual,
Rf is risk-free asset, which is selected as 2.5% for a two-
year data-set to preserve the resemblance of USA government

bonds, and σp is the standard deviation of returns, i.e. the risk
of the trading strategy. In what follows, we will be calculating
the empirical SR by using the empirical Rate of Return (RoR)
and the well-known empirical standard deviation derived from
the asset data.

V. EXPERIMENTAL SETUP

In this section, we first describe the data we are using in
Section V-A. Then, in Section V-B, we outline the procedure
for adjusting the parameters of the GA. Finally, we cover the
benchmarks in Section V-C.

A. Data

For this study, we are using 18 publicly traded stocks’
daily adjusted closing prices listed on the New York Stock
Exchange. The tickers are: ALL, ASGN, CI, COP, CTXS1,
EME, EVR, GILD, GPK, ISRG, MKL, MOH, PEG, PXD,
QCOM, UBSI, VFC, XEL. The time period is from November
27, 2009 to November 27, 2019, and it is sourced from
YAHOO Finance [18], using the python library yfinance. The
data is divided into three parts: 60% for training, 20% for
validation, and 20% for testing. We chose this time period
to exclude any potential distortion in the stock market data
caused by the COVID-19 pandemic.

B. GA parameters tuning

We conducted a grid search to fine-tune the
following parameters: population size, with values in
{20, 50, 70, 100, 150, 200, 300}; generations number, with
values in {15, 18, 25, 30, 35, 45}; and crossover probability
p, with values in {0.75, 0.85, 0.95, 0.99}. It’s worth noting
that the mutation probability is equal to 1 − p. In tuning,
after removing the last two years of the entire 10-year data,
we further split the remaining data into new 80% training
and 20% validation sets, and performed grid search on this
subset of data. The tuned parameters are presented in Table
III. Each GA experiment was run for 50 individual runs.

TABLE III
GA PARAMETER TUNING

Population size 100
Generations 18

Crossover probability 0.95
Mutation probability 0.05

Tournament size 2

C. Benchmarks

1) DC Benchmarks
The goal of this study is to show that using a stochastic

search technique, namely a genetic algorithm to optimize
recommendations from multiple thresholds, we improved the
trading performance, and surpassed that of single threshold-
based strategies. It is worth noting that our method uses three
strategies that we introduce. However, due to implementation

1Recently, the ticker changed into RKOS



of 10 thresholds for St1, St2, and 5 thresholds for St3,
while the methodology of strategies stays the same, these
10 thresholds form 10 individual recommendations to St1
and St2; similarly 5 of those thresholds form 5 individual
recommendations to St3. Thus, each threshold determines
different recommendations which produced different results.
In order to differentiate them in Section VI, we will denote
these results as θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9 and θ10.

In order to test the performance of strategies (St1, St2,
and St3) that use recommendations from a multiple-threshold
DC setup, we compared them to the performance of single-
threshold strategies. Single-threshold strategies are based on
10 different thresholds for St1 and St2, and 5 different thresh-
olds for St3. Finally, the multiple-threshold DC strategies
optimized using the GA will be called GA-optimized strategies
and will be denoted by GA1, GA2, and GA3, respectively.

2) Financial Benchmarks
We use two benchmarks from technical analysis, the relative

strength index (RSI), and the moving average convergence
divergence (MACD). From the literature, it is worth noting
that in the majority of related studies to ours, Buy-and-Hold,
RSI, and MACD have been the primary benchmarks used for
comparison. They are widely used approach in trading that
relies on technical indicators to guide trading decisions. We
utilize both MACD and RSI with default period lengths of 26
and 12 for MACD and 14 for RSI in this research.

As another benchmark, we use Buy and Hold (BandH),
which is a well-known benchmark for trading. This is a passive
investment strategy in which an investor purchases the product
and holds them for a long period of time, regardless of market
fluctuations. In our model, the trader buys the financial product
on the first day of the test set and sells it on the last day.

VI. RESULTS

Table IV shows the Sharpe Ratio (SR), Rate of Return
(RoR), and Standard Deviation (Risk) results of 18 stocks
for each of the three strategies in combination with the ten
thresholds, while also highlighting the GA-optimized strate-
gies’ performance. We note that the metric we are using is the
average (for each of the SR, RoR, and Risk) over the 18 stocks
for each individual combination of threshold (or GA-optimized
thresholds) and strategy. Furthermore, we use the test set result
from a certain run among the 50, which is supplied by the best
results among the training runs with a highest SR. While it
is important to evaluate the performance by number of runs,
it is also essential to identify the best trained model for use
in real-world applications. By this approach, we reflect the
practical considerations involved in implementing GA-based
trading strategies in real-world contexts, where trader would be
implementing the best returned GA-model during the training
phase.

Table IV also indicates that many thresholds have poor
performance across all three metrics. Among the thresholds,
θ4, θ10 under St1, θ3, θ10 under St2, and θ1, θ2 under St3
have relatively good SR compared to the other thresholds.
Meantime, the RoR for all thresholds is middling, with St2

TABLE IV
AVERAGE PERFORMANCE RESULTS, GA AND THE 10 INDIVIDUAL
DC-THRESHOLDS. WE PRESENT THE BEST VALUE PER METRIC IN

BOLDFACE.

Sharpe Ratio RoR Risk
Algo. St1 St2 St3 St1 St2 St3 St1 St2 St3
GA 4.14 2.50 5.63 0.24 0.19 0.16 0.05 0.08 0.02
θ1 0.43 0.51 2.83 0.07 0.16 0.09 0.07 0.11 0.02
θ2 0.52 0.47 2.31 0.07 0.13 0.09 0.07 0.11 0.02
θ3 0.22 0.76 2.00 0.05 0.09 0.09 0.07 0.09 0.02
θ4 0.57 -2.16 0.06 0.07 0.05 0.07 0.07 0.08 0.02
θ5 0.54 0.13 -2.45 0.09 0.06 0.04 0.06 0.09 0.02
θ6 0.49 0.68 - 0.07 0.12 - 0.07 0.10 -
θ7 0.28 -0.72 - 0.09 0.08 - 0.06 0.08 -
θ8 0.41 -0.87 - 0.08 0.07 - 0.07 0.09 -
θ9 -0.35 -2.34 - 0.01 0.08 - 0.07 0.07 -
θ10 0.59 1.63 - 0.05 0.10 - 0.06 0.08 -

under θ1 having slightly higher profit. Again, the performance
for risk under each individual thresholds fluctuates between
0.05 to 0.07 for St1, 0.07 to 0.11 for St2, and 0.02 for St3. In
short, with a certain threshold, trader would be able to profit
9%, 16%, and 9% on average with 18 stocks if the portfolio
is equally weighted, under St1, St2, and St3, respectively.

From Table IV it is also apparent that by the multiple-
thresholds GA optimization, SR and RoR are improved drasti-
cally. From the Sharpe Ratio columns, single-threshold strate-
gies θ10 in St1, θ10 in St2 and θ1 in St3 showed values of
0.59, 1.63, 2.83, respectively. Whereas, using GA we achieve
nearly 8, 1.5, and 2 times the performance of the best single-
threshold strategy (over the ten individual thresholds). RoR
columns show us that all three GA-optimized strategies out-
perform their corresponding single-threshold strategies when
compared to all ten thresholds. In St1, it yields more than
twice the profit of its best performed single threshold strategy,
whereas, in St3, it nearly doubles the profit. Additionally, in
terms of risk, all strategies have performed similarly well with
values ranging from 2% to 8%. Although, the St2 risk is
0.07%, and it falls behind the θ9 with a low margin, all of the
GA-optimized strategies had relatively the same performance
with their corresponding single-threshold strategies. In sum-
mary, the multiple-threshold optimization by the GA enhanced
the trading performance in the SR and RoR metrics.

It should also be noted that the high SR and RoR values
may be partially attributed to the strong bull market at the test
set period. But more importantly, while the bull market may
affect the SR and RoR performance, the DC paradigm also
plays a huge role in the results. This will be evident when we
show the results of our GA-optimized strategies to benchmarks
such as BandH, RSI, and MACD, where we found similarly
high performance.

For the performance metrics SR, RoR, and Risk, we also
performed the Friedman non-parametric statistical test (Tables
V, VI, and VII). The null hypothesis is that all strategies,
including the GA-optimized strategy, come from the same
continuous distribution. The second and fifth columns show
the Friedman Ranking (FR) based on the SR and RoR metrics.
The third and sixth columns show the adjusted p-value (padj)



of the post-hoc Conover test [19].
From Table V, it is clear that the best ranking strategy is

the GA-optimized strategy in St1. Also, we reject the null
hypothesis at Sharpe Ratio, whereas, we only fail to reject
it at RoR at 5% significance level for θ10. However, both
results would be statistically significant if the significance level
is 10%. In Table VI, the GA-optimized strategy is ranked
first in both metrics. From the third column, we can see that
the performance is statistically significant against every single
threshold strategy for SR under St2, however, we fail to reject
θ10, θ8, and θ5 strategies in RoR from the sixth column.
From Table VII, it is indicative that the GA-optimized strategy
is first in the rankings, and is also statistically significant
against every single threshold. Therefore, it is noteworthy that
GA-optimized strategies substantiated better performance in
comparison to the great majority of single-threshold strategies.

Table VIII displays that rankings and p-values for strategies
at the metric of Risk differs from the substantial progress
that we achieved at SR and RoR. We find the GA-optimized
ranked as 2nd, 2nd, and 5th, respectively to strategies, without
any statistical significance. Thus, future work could focus on
guiding the GA search towards solutions that are less risky.

TABLE V
NON-PARAMETRIC FRIEDMAN TEST WITH CONOVER POST-HOC TEST FOR

ST1 BASED ON THE SHARPE RATIO AND RATE OF RETURN.

Sharpe Ratio Rate of Return
Algo. FR padj Algo. FR padj
GA 2.28 - GA 2.78 -
θ10 5.39 0.0292 θ10 5.56 0.0714
θ5 5.94 0.0064 θ8 5.72 0.0528
θ4 6.00 0.0064 θ5 5.78 0.0517
θ8 6.00 0.0064 θ4 6.06 0.0286
θ3 6.28 0.0038 θ1 6.33 0.0154
θ7 6.28 0.0038 θ3 6.44 0.0134
θ1 6.39 0.0038 θ6 6.50 0.0134
θ6 6.44 0.0038 θ7 6.56 0.0134
θ2 7.00 0.0008 θ2 6.61 0.0134
θ9 7.89 7.3e-05 θ9 7.67 0.0012

TABLE VI
NON-PARAMETRIC FRIEDMAN TEST WITH CONOVER POST-HOC TEST FOR

ST2 BASED ON THE SHARPE RATIO AND RATE OF RETURN.

Sharpe Ratio Rate of Return
Algo. FR padj Algo. FR padj
GA 2.33 - GA 3.06 -
θ6 5.33 0.0309 θ10 5.11 0.2164
θ10 5.56 0.0176 θ8 5.28 0.2069
θ2 5.78 0.0071 θ5 5.67 0.1099
θ3 6.06 0.0058 θ4 5.83 0.0963
θ1 6.11 0.0041 θ1 5.89 0.0856
θ4 6.11 0.0032 θ3 6.11 0.0626
θ7 6.50 0.0021 θ6 6.22 0.0626
θ9 6.50 0.0018 θ7 7.22 0.0030
θ5 6.78 0.0011 θ2 7.33 0.0030
θ8 6.89 0.0011 θ9 7.39 0.0030

Additionally, we compare our GA optimized results with
other financial benchmarks, namely, RSI, MACD, and the
widely known buy-and-hold (BandH). The reason we chose

TABLE VII
NON-PARAMETRIC FRIEDMAN TEST WITH CONOVER POST-HOC TEST FOR

ST3 BASED ON THE SHARPE RATIO AND RATE OF RETURN.

Sharpe Ratio Rate of Return
Algo. FR padj Algo. FR padj
GA 1.67 - GA 1.39 -
θ2 3.00 0.0564 θ2 3.44 0.0033
θ1 3.61 0.0078 θ3 3.72 0.0010
θ3 3.83 0.0030 θ1 3.83 0.0007
θ4 4.17 0.0006 θ4 4.06 0.0003
θ5 4.56 0.0001 θ5 4.56 2.98e-05

TABLE VIII
NON-PARAMETRIC FRIEDMAN TEST WITH CONOVER POST-HOC ON THREE

STRATEGIES’ RISK INDIVIDUALLY.

St1 St2 St3
Algo. FR padj. Algo. FR padj. Algo. FR padj.
θ10 5.00 - θ9 4.27 - θ5 2.8 -
GA 5.17 0.880 GA 5.44 0.436 θ3 3.25 0.476
θ5 5.72 0.880 θ7 5.13 0.436 θ2 3.44 0.476
θ4 5.78 0.880 θ8 5.49 0.436 θ4 3.5 0.476
θ9 5.89 0.843 θ10 5.72 0.436 GA 3.83 0.397
θ3 5.94 0.786 θ4 6.27 0.352 θ1 4.16 0.145
θ1 6.06 0.770 θ3 6.52 0.211 - -
θ8 6.39 0.685 θ5 6.69 0.173 - -
θ7 6.5 0.685 θ1 6.75 0.152 - -
θ2 6.61 0.642 θ2 6.75 0.152 - -
θ6 6.94 0.587 θ6 6.91 0.119 - -

them is the fact that their construction follows the idea of
trend chasing. That is why comparison of a trend based
paradigm, namely DC, corresponds to these benchmarks. Table
IX demonstrates that strategies St1, St2, and St3 yield on
average 24.5%, 18.2%, and 16.1% at RoR, respectively, while
the medians are 19.9%, 14.8%, and 11.7% for that metric,
respectively. Also, RSI, MACD, and BandH were not capable
of outperforming any of the GA-optimized strategies result on
averages or medians. The metric values for these benchmark
are: 11.17%, 1.3%, 14.9% on average and 0.5%, 2.93%, 11.6%
on median, orderly by RSI, MACD, and BandH. Furthermore,
while GA1 were able to outrank the other GA-optimized
strategies and financial benchmarks, it only outperformed the
RSI and MACD statistically at the 10% significance level.

TABLE IX
NON-PARAMETRIC FRIEDMAN TEST WITH CONOVER POST-HOC ON

GA-OPTIMIZED AND FINANCIAL BENCHMARK STRATEGIES BASED ON
ROR.

Algo. Average Median FR padj
GA1 0.244 0.199 2.33 -
GA2 0.186 0.148 2.78 0.5247
GA3 0.161 0.117 3.61 0.1211

BandH 0.149 0.116 3.67 0.1211
RSI 0.117 0.005 3.94 0.0549

MACD 0.013 0.0293 4.67 0.0051

From the Table X, it is indicative that each GA-optimized
strategy outperformed the financial benchmarks at the risk
adjusted return (SR) metric. Especially, GA3 achieved nearly



3.5 and 25 times the performance of the RSI, and MACD
strategies, respectively. At 10% significance level, it statisti-
cally backed the performance over GA2, RSI, and MACD. It
also cannot be overlooked that other GA-optimized strategies
came as second and third in the rankings. Let us also reiterate
that BandH acts on only one trade, where it buys the stock
at first day and sells it on the last day. Therefore, there is no
point in measuring SR and Risk.

TABLE X
NON-PARAMETRIC FRIEDMAN TEST WITH CONOVER POST-HOC ON

GA-OPTIMIZED AND FINANCIAL BENCHMARK STRATEGIES BASED ON SR.

Algo. Average Median FR padj
GA3 5.628 6.580 2.00 -
GA1 4.142 3.762 2.44 0.3169
GA2 2.504 2.546 3.00 0.0910
RSI 1.607 -0.295 3.67 0.0091

MACD 0.172 0.403 3.89 0.0050

We also performed the Friedman statistical test with
Conover post-hoc test on Risk (Table XI). Even though GA3
ranked first overall, the performance was not statistically
significant against any of the other GA-optimized strategies
and MACD, except RSI. Nevertheless, the risk gets slightly
reduced when we trade on GA3.

TABLE XI
NON-PARAMETRIC FRIEDMAN TEST WITH CONOVER POST-HOC ON

GA-OPTIMIZED AND FINANCIAL BENCHMARK STRATEGIES BASED ON
RISK

Algo. Average Median FR padj
GA3 0.021 0.018 1.06 -

MACD 0.045 0.041 2.94 0.3624
GA1 0.052 0.052 3.22 0.2637
GA2 0.073 0.061 3.72 0.1227
RSI 0.080 0.077 4.06 0.0002

VII. CONCLUSION

In this paper, we suggest new trading strategies applied on
an extension of the DC paradigm, where we use multiple
thresholds instead of a single one. We demonstrate a new
technique for achieving more profitable results in the finan-
cial trading field by using strategies emerging from the DC
paradigm and optimizing them using a GA. We conjecture
that this happens due to the fact that (a) the strategy space
is now enhanced with a richer set of options for the traders,
and (b) stochastic search via GA in the multi-threshold model
is sufficiently strong to pinpoint strategies that turn out to
perform better than the single-threshold ones. We conducted
experiments where 18 stocks were tested under 10 different
DC thresholds for strategy St1 and St2, and 5 thresholds
for strategy St3, and used a GA to find a good mixture
of thresholds. From our results we can draw the following
conclusions: (i) The multi-threshold DC paradigm is capable
of generating trading strategies that are profitable, (ii) using
GA as an optimizer produces the highest SR and RoR among
the great majority of the individual thresholds, and (iii) the

GA-optimized strategy statistically outperforms the MACD
and RSI benchmarks.

In the future, we plan to use the GA optimization approach
to test trading strategies with multiple thresholds, and expand
our research on a risk-oriented work. We believe that extending
the chromosomes to contain multiple thresholds and multiple
strategies will lead to even better performance.
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