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Abstract

This thesis explores genetic programming (GP) applications in algorithmic trading, addressing

significant advancements in the field. Investors typically rely on fundamental analysis (FA)

or technical analysis (TA) indicators, with sentiment analysis (SA) gaining recent attention.

Consequently, algorithms have become the primary method for developing pre-programmed

trading strategies, leading to substantial financial benefits. While each analysis type has been

studied individually, their combined exploration remains limited. Our motivation is to assess

if integrating FA, SA, and TA indicators can improve financial profitability. Thus, in Chapter 5,

we introduce a novel GP algorithm which combines the three analysis types within the same

GP structure, wanting to understand the advantages of their combination. Chapter 6 presents

a strongly-typed GP architecture, where each branch of the algorithm represents one analysis

type, facilitating improved exploration and exploitation. Furthermore, we showcase a novel

fitness function that rewards a tree’s trading performance and the performance of its FA, SA,

and TA subtrees. Chapter 7 aims to enhance the GP algorithm’s performance and increase the

individuals’ financial advantages. Therefore, we propose a novel GP operator that encourages

active trading by injecting trees into the GP population that perform a high number of trades

while achieving high profitability at low risk. To evaluate our GP variants’ performance, we

conduct experiments on stocks of 42 international companies, comparing the novel algorithm
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with the GP variants introduced in the same chapter. Moreover, in Chapters 5 and 6, we com-

pare the proposed GP algorithm against four machine learning benchmarks and a financial

trading strategy, while Chapter 7 focuses on comparing the novel GP algorithm exclusively

with GP benchmarks. The evaluation employs three financial metrics: Sharpe ratio, rate of

return, and risk. Results consistently show that the proposed GP algorithms in each chapter

enhance the financial performance of trading strategies, surpassing the benchmarks.
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Chapter 1

Introduction

Algorithmic trading refers to the use of computer programs and algorithms to execute trades

in financial markets. It involves creating and implementing a set of predefined rules and

strategies that guide the buying and selling of financial instruments such as stocks, bonds,

commodities, currencies, and derivatives. These algorithms are designed to analyse market

data, identify patterns, make decisions, and execute trades at high speeds and frequencies

that would be nearly impossible for a human trader to achieve.

The science of algorithmic trading has emerged as a popular and promising sector in the

financial industry, driven not only by its potential for high returns but also by its continuous

development and variety. Researchers have been exploring different data sets, timelines, tech-

niques, and methodologies to predict stock market behaviour, financial instrument prices, po-

tential global crises, bankruptcies, and company profits. Accurate predictions hold a distinct

advantage in generating profits and mitigating substantial losses, making such forecasting

methods highly valuable in both the stock market and individual company contexts. Ad-

vancements in technology have significantly enhanced the accuracy of financial forecasting

1
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and the profits generated by algorithmic trading, moving away from traditional mathemat-

ical methods to leverage technological innovations over time. In the context of companies,

algorithmic traders and researchers utilise historical accounting and sales data, along with ex-

ternal market and economic indicators, for this purpose. Researchers have historically relied

on economic measures (fundamental analysis), events, such as news (sentiment analysis),

and historical prices (technical analysis) in order to infer future prices.

1.1 Motivation

In the field of algorithmic trading research and implementation, it is common to apply the

indicators derived from the fundamental, sentiment, and technical analysis types individu-

ally. Such applications have yielded significant results, and they play a pivotal role in the

accumulation of profits in the stock market. Integrating the individual fundamental, senti-

ment, and technical analysis types in trading strategies has been limited due to their distinct

approaches and philosophies in understanding and analysing market behaviour. However, re-

cent studies have suggested that combining these analysis types may lead to improved overall

performance.

Thus, as the first thesis contribution, we introduce a novel genetic programming (GP)

algorithm that incorporates indicators from all three analysis types. This integration serves

as the motivation for Chapter 5.

Chapter 6 introduces the second thesis contribution, where the focus lies on enhancing the

trading performance of GP algorithms through the adoption of a strongly-typed architecture.

The strongly-typed GP architecture enables the separate handling of FA, SA, and TA indicat-

ors in distinct branches of the GP algorithmic tree, thereby facilitating better exploration and
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exploitation within each indicator type’s search space. Moreover, we introduce a novel fitness

function that allows GP to guide the search towards trading strategies with strong perform-

ance across all three components. It achieves that by considering not only the performance of

individual trees but also the performance of FA, SA, and TA subtrees. This approach ensures

that all analysis indicators contribute to the overall performance of a GP individual. The ob-

jective is to evolve individuals that demonstrate strong performance in each component (FA,

SA, and TA subtrees), as well as in the overall individual.

The third thesis contribution is shown in Chapter 7. The proposed GP algorithm builds

upon these improvements by encouraging the algorithm to follow an active trading approach,

which monitors and analyses market conditions to identify short-term trading opportunities.

Such trading strategies from taking advantage of price movements within relatively short

timeframes, thereby increasing their profitability. To achieve this, we create a new GP oper-

ator. This novel operator identifies the FA, SA, and TA subtrees that are using highly active

trading strategies, achieving high profitability at low risk, and injects them into the following

generation by combining them into a new tree.

The primary goal of this research is to demonstrate the capability of the proposed GP

variants to generate unique and profitable trading strategies that leverage information from

all three analysis types. Performance comparisons are conducted against GP benchmarks

in Chapters 5 - 7, including the corresponding GP variants, machine learning and financial

benchmarks. Experiments are conducted on the stocks of 42 international companies, and res-

ults are analysed based on three financial metrics: Sharpe ratio, rate of return, and risk. The

research seeks to establish the effectiveness of the proposed GP algorithm and its potential to

enhance trading strategies in financial markets.
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1.2 Thesis overview

The thesis is structured into eight distinct chapters, each addressing various aspects of the

research. These eight chapters are separated into two main parts, Part I and Part II.

Part I starts with Chapter 2, which focuses on presenting financial forecasting and al-

gorithmic trading as the topics we try to explore in the thesis. Moreover, the chapter intro-

duces the data derived from the three financial analysis types and the generated indicators.

Chapter 3 is dedicated to the genetic programming methods used in literature, aiming to

provide a concise introduction to genetic programming algorithms. More specifically, the

chapter investigates the description of a GP algorithm, including its representation, initial-

isation methods, operators, breeding methods, and selection strategies. Chapter 4 includes

a comprehensive review of the literature on algorithmic trading and genetic programming,

comprised of sections dedicated to each of the analysis types, namely fundamental, sentiment,

and technical analysis. Additionally, the chapter introduces studies that have conducted pair-

wise combinations of the individual analysis types, as well as studies for the integration of all

three. A critical review of existing literature is mentioned at the end as a means to highlight

gaps and motivate the research direction of this thesis.

Part II is dedicated to showcasing the contributions this PhD thesis makes, and it is divided

into three chapters, namely Chapter 5, 6 and 7. Starting, Chapter 5 introduces the individual

GP algorithms and compares them with the combination of the analysis types indicators using

a novel GP algorithm. Following, in Chapter 6, we focus on comparing GP algorithms of

Chapter 5 with the two strongly-typed GP algorithms introduced in Chapter 6 to showcase the

advantages of the strongly-typed architecture, along with the novel fitness function. Lastly, in

Chapter 7, we propose a novel GP algorithm that utilises a novel GP operator used within a
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strongly-typed GP architecture, which focuses on active trading.

Chapter 8 presents the conclusion of the research. This chapter offers sections that sum-

marise the work conducted and the results found in Chapters 5 - 7, while it provides a final

summary of the research and delves into discussions regarding future potential research areas.
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Background Information
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Chapter 2

Financial Background Information

In this chapter, we will delve into the concepts of financial forecasting and algorithmic trading,

as well as the financial indicators employed in our research as solutions to the above topics.

More specifically, we will present the background information about financial forecasting in

Section 2.1 and then discuss how forecasting can be used as part of algorithmic trading in

Section 2.2. Finally, we will address the three financial analysis types: fundamental in Section

2.3, sentiment in Section 2.4, and technical in Section 2.5. In the following chapters, we also

address the methodology of extracting the financial data in our study.

2.1 Financial Forecasting

Financial forecasting is part of the wide world of finance and business management. It mainly

involves the estimation of future financial outcomes for a company, project, or investment,

typically based on historical data and analysis of current trends and market conditions. The

objective of financial forecasting is to make informed decisions to optimise stock market in-

vestments and produce stock market profits, strategic planning, setting long-term goals, and

7
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scenario analysis. It also involves the preparation of possible outcomes, evaluating the fin-

ancial viability of projects, managing the cash flow and budgeting, risk management, and

assessing the overall financial health of a company. The part of financial forecasting we focus

on in this PhD thesis is related to the stock market, where many organisations use financial

models and software to streamline the forecasting process. These models can predict stock

prices, perform data analysis, and scenario testing.

More traditionally, these forecasts involve the evaluation of a financial instrument’s in-

trinsic value by utilising economic indicators and financial statements. This method is known

as fundamental analysis (FA). Stock price data are exceptionally common to seek patterns and

trends to forecast future market movements. This technique is known as technical analysis

(TA). Extracting valuable insights from news sentiment or social media chatter can also be

used in financial forecasting. The above falls into the category of sentiment analysis (SA). All

three analysis types have distinct characteristics that support and assist in predicting the stock

market and creating trading strategies. Thus, in our study we use all three types of financial

analysis data. More details can be found in Sections 2.3 - 2.5.

In more conventional methods, forecasts are based on assumptions about various eco-

nomic and financial factors, such as interest rates, inflation rates, market demand, and in-

dustry trends. The accuracy of a forecast depends heavily on the validity of these assump-

tions. In our methods, we heavily employ machine learning algorithms, with a focus on

genetic programming algorithms, aiming for a more accurate and reliable financial forecast.

Moreover, the timeframe of such forecasts can vary and cover any time period, depending

on the specific needs of the project. In our research, the timeframe covers 5 years, which is

considered a medium to long period.

It needs to be noted that financial forecasts must be regularly monitored and revised as
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new information becomes available or as circumstances change. This adaptability is crucial

for accurate financial planning and predictions.

2.2 Algorithmic Trading

Algorithmic trading, also known as "algo trading" or "automated trading", is a method of ex-

ecuting trading strategies using computer algorithms. It involves the use of mathematical

models and computer programs to automate the process of buying or selling financial in-

struments, such as stocks, options, futures, and currencies. In this study, we focus on the

implementation of algorithmic trading in the stock market.

The method has emerged as a transformative force within the topic of financial markets.

In the modern digital era, financial institutions and traders increasingly relying on sophistic-

ated and advanced algorithms to execute trades swiftly, efficiently, and autonomously. This

transformation in trading practices is driven by the three critical analytical domains men-

tioned above: FA, SA, and TA. When harnessed within algorithmic trading systems, these

three analytical approaches empower market participants to make informed decisions, capit-

alise on emerging opportunities, and mitigate risks in an ever-evolving financial landscape.

The main reason traders choose to utilise algorithms in their trading is the speed and

efficiency they provide. Algorithms can execute trades in a matter of microseconds, allowing

traders to take advantage of even the smallest market opportunities. The speed of technology

is also used to minimise trading execution delays (latency), meaning the time lag between

the moment a trading order is submitted and when it is executed. This is important especially

in High-Frequency trading (HFT), 1 since even a small delay can impact the profitability of

1High-Frequency Trading (HFT) is a subset of algorithmic trading that focuses on extremely high-speed execu-
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a strategy. Moreover, algorithms use historical and real-time data to make trading decisions,

analyse vast amounts of data, identify patterns, and make predictions. Risk management is

another reason for the use of algorithms in trading, as they can be programmed to set stop-

loss orders, control position sizes, and limit exposure to market risks. Furthermore, the use

of algorithms can provide liquidity to markets by constantly quoting buy and sell prices, this

way maintaining a liquid market and earning profits from the bid-ask spread 2.

Machine learning and artificial intelligence are increasingly used in algorithmic trading

to develop predictive models and adapt strategies to changing market conditions. At the

same time, intensive backtesting is fundamental to evaluate how the algorithm would have

performed in the past and optimise the trading strategies. Overall, algorithmic trading can

have a significant impact on markets, and many firms (hedge funds, proprietary trading firms,

and financial institutions) invest heavily in research and technology to gain a competitive

edge over new strategies. Algorithms have revolutionised the financial markets by increasing

profits while reducing trading costs.

2.3 Fundamental Analysis

Financial forecasting and algorithmic trading rely on the use of different information provided

by the companies. The study of this information is called fundamental analysis (FA). More

specifically, fundamental analysis is a method of evaluating and analysing securities based on

intrinsic factors that influence their value. It involves assessing various qualitative and quant-

tion. HFT firms often make a large number of small trades in a very short period. Their profitability depends on

the speed and low-latency access to markets.
2Bid-ask spread is the difference between the highest price a buyer is willing to pay (the bid price) and the

lowest price a seller is willing to accept (the ask price) for a particular asset.
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itative factors related to the underlying asset, such as financial statements, industry trends,

competitive advantage, management team, economic indicators, and market conditions. The

goal of fundamental analysis is to determine the intrinsic value of an asset and assess whether

it is overvalued or undervalued in the market. 3 FA is commonly used by investors to make

long-term investment decisions and identify potential opportunities based on the underlying

fundamentals of the asset. Fundamental analysis can also be used in conjunction with other

methods, such as sentiment and technical analysis, to gain a comprehensive understanding

of an asset’s investment potential.

When conducting fundamental analysis for stocks, investors often examine financial ra-

tios, such as the Price-to-Earnings (P/E) ratio, Price-to-Book (P/B) ratio, and Debt-to-Equity

ratio, to assess a company’s financial health and valuation. By considering both quantitat-

ive and qualitative factors, fundamental analysis provides a well-rounded assessment of an

asset’s intrinsic value, helping investors make informed decisions in the financial markets.

Thus, within our research, a comprehensive array of twelve distinct and widely adopted

financial indicators ([7]) is employed for fundamental analysis (FA). These indicators include

the Net Profit ratio (NPR), Return on Equity (ROE), Quick ratio, Debt to Equity ratio, Price-

Earnings ratio, Price to Book ratio, Price-Sales ratio, Total Revenues, Levered Free Cash Flow,

Diluted Earnings Per Share (EPS), Earnings Before Interest, Taxes, Depreciation, and Amort-

ization (EBITDA), and Research and Development (R&D) expenses. A concise summary of all

indicators can be found in Table 2.1.

The data utilised in this research was procured from the 10-K filings of the esteemed fin-

3The intrinsic value of a stock refers to the estimated underlying value of a company’s stock based on its fun-

damental characteristics, such as its earnings, assets, growth prospects, and other relevant factors. It represents

an investor’s assessment of the stock’s true worth, independent of its current market price.
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Table 2.1: Fundamental Analysis indicators

Fundamental analysis indicators

Indicators from 10-K filings Net Profit ratio

Return on Equity, Quick ratio,

Price-Earnings ratio, Price to Book ratio,

Price-Sales ratio, Debt to Equity,

Total Revenues, Levered free Cash Flow,

Diluted EPS, EBITDA, R&D Expenses

ancial content service company, "Seeking Alpha"4. These filings served as a valuable source of

information pertaining to the companies under investigation. Among the twelve aforemen-

tioned indicators, namely Diluted EPS, Total Revenues, EBITDA, Levered Free Cash Flow, and

R&D Expenses, these particular metrics were readily accessible within the 10-K filings. For

the remaining seven indicators, we derived them employing the following equations, where

y denotes the financial year, price represents the stock value, and j corresponds to a specific

day within the five-year period.

More specifically, Diluted EPS, measures a company’s earnings available to the sharehold-

ers after accounting for the potential dilution of convertible securities. The metric provides a

more conservative measure of a company’s earnings per share, considering the potential im-

pact of dilutive securities, while it is important for investors to assess the company’s financial

health and profitability on a per-share basis. It is calculated by dividing the net income avail-

able to common shareholders by the weighted average number of diluted common shares

4https://seekingalpha.com. Last accessed: May 2023.



2.3. FUNDAMENTAL ANALYSIS 13

outstanding, and it is available in the 10-K filings.

Total Revenues, also provided in the 10-K filings, represent the total amount of money

generated by a company from its primary operations (sales of goods or services to customers),

and they reflect the company’s ability to generate income from its core operations. They

are typically recorded on a company’s income statement and represent the sum of all sales

transactions during a specific accounting period.

EBITDA is a metric that measures a company’s operating performance, indicating its earn-

ings before accounting for interest expenses, taxes, depreciation, and amortization 5, provid-

ing a clearer view of a company’s operational profitability. It is calculated by adding back

interest, taxes, depreciation, and amortization to the net income.

Levered Free Cash Flow measures the cash flow available to a company’s investors, in-

cluding equity and debt holders, after accounting for operating expenses, capital expendit-

ures, and interest expenses. It helps assess a company’s ability to generate cash flow to cover

both its operating and financial obligations, evaluating financial health and the potential for

dividends or debt repayments. The metric is calculated by subtracting operating expenses,

capital expenditures, and interest expenses from the company’s operating cash flow.

Research and Development Expenses show the costs incurred by a company in researching

and developing new products, services, technologies, or processes, which are significant for

innovation and future growth. They indicate a company’s commitment to innovation and

its investment in future growth, with high numbers of R&D spending signifying a company’s

focus on staying competitive and developing new revenue-generating opportunities. These

5Amortization is an accounting and budgeting process that refers to the gradual reduction or repayment of

liability or the allocation of the cost of an intangible asset over a specific period. It is used to spread out the cost

of certain expenses or assets over time rather than recognising them as a one-time expense.
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expenses are reported on a company’s income statement as part of its operating expenses.

The Net Profit ratio (NetProf) stands as a pivotal profitability metric, evaluating a com-

pany’s financial performance and efficiency. A higher Net Profit ratio is generally more favour-

able, indicating that the company is generating a larger profit margin relative to its revenue.

Businesses use the Net Profit ratio to identify areas where profitability can be improved and

to make pricing adjustments, cost-cutting measures, and expansion plans. It is calculated by

dividing the Net Income by the Revenue, ultimately measuring the portion of each dollar of

revenue that remains as profit after covering all operating expenses (interest, taxes, and other

costs).

NetProf(y) =
NetIncomey
Revenuey

(2.1)

Return on Equity (RoE) is an imperative profitability measure employed to quantify the re-

turn generated on the shareholders’ investment. It is a key profitability and financial perform-

ance indicator used by investors, analysts, and businesses to assess how efficiently a company

uses shareholders’ equity to generate earnings. A higher RoE indicates that the company uses

shareholders’ equity effectively to generate profit. It is conventionally calculated by dividing

the Net Income by the Shareholders’ Equity.

RoE(y) =
NetIncomey

ShareholderEqy
(2.2)

The Quick ratio (QuickR) serves as a vital liquidity ratio, assessing a company’s short-

term liquidity and its ability to meet its immediate financial obligations without relying on

the sale of inventory. This means how easily the company can utilise its cash or quick assets to

promptly settle immediate liabilities. It is a valuable measure of financial health and liquidity,

especially when a company faces sudden financial stress or economic downturns. This ratio
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is calculated by dividing the Current Assets minus Inventory by the Current Liabilities.

QuickR(y) =
CurrentAssetsy − Inventoryy

CurrentLiabilitiesy
(2.3)

Debt to Equity (DebtEq) measures a company’s financial leverage or capital structure. It

represents a critical metric elucidating the proportion of a company’s assets financed through

shareholders’ equity and debt. The Debt to Equity ratio provides insights into a company’s

capital structure, showing the degree to which it relies on debt financing compared to equity.

A high ratio indicates greater financial leverage, while a low ratio suggests less reliance on

debt. This metric is determined by dividing the Total Debt by the Shareholders’ Equity.

DebtEq(y) =
TotalDebty

ShareholderEqy
(2.4)

The Price-Earnings ratio (P/E) stands as a significant valuation metric utilised to ascertain

whether a company’s stock is overvalued or undervalued, assessing the relative value of a

company’s stock by comparing its market price (per share) to its earnings per share (EPS).

The P/E ratio is a key indicator of a company’s valuation. It is a fundamental tool for investors

when evaluating stocks since it shows how much investors are willing to pay for each dollar

of earnings. It is calculated by dividing the Share Price (p) by the Earnings per Share (EPS).

P/E(j) =
pricej
EPSy

(2.5)

The Price to Book ratio (P/B) holds significance as a valuation metric employed to discern

potential investment opportunities, providing insight into the market’s perception of a com-

pany’s assets and their market worth. It represents the total value of the company’s assets

minus its liabilities, and it is a metric of a company’s net worth. It is ascertained by dividing

the Share Price (p) by the Book Value per Share (BVPS).

P/B(j) =
pricej
BV PSy

(2.6)
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The Price-Sales ratio (P/S) holds significance as a valuation metric used to assess the value

assigned by financial markets to each dollar of a business’s revenues, ultimately answering

how the market values a company’s top-line revenue. The P/S ratio is particularly useful

when a company has low or negative earnings, in which traditional valuation metrics like

the Price-to-Earnings (P/E) ratio are not applicable. The P/S ratio measures the company’s

revenue as a measure of its value. It is computed by dividing the Share Price (p) by the

Revenue per share (Revenue).

P/S(j) =
pricej

Revenuey
(2.7)

All FA indicators were normalised between [−1, 1]. This normalisation process ensures that

each indicator is scaled uniformly, facilitating meaningful comparisons and analyses across

the diverse financial metrics used in the study. Normalising between [−1, 1] is important be-

cause it standardises the values, making it easier to consistently compare and analyse different

metrics.

2.4 Sentiment Analysis

Sentiment analysis (SA), also known as opinion mining, is a natural language processing

(NLP) technique used to determine the sentiment or emotional tone expressed in a piece of

text, such as a review, comment, social media post, or news article. The goal of sentiment

analysis is to classify the sentiment as positive, negative, neutral, or sometimes more nuanced

emotions like happy, sad, and angry. This analysis helps understand public opinion, customer

feedback, and overall sentiment about a particular topic, product, brand, or event. However,

it’s important to note that sentiment analysis has many challenges, like context, sarcasm,

irony, and cultural nuances, which can make the accuracy of finding a text’s sentiment com-
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plex. As a result, the accuracy of sentiment analysis models can vary based on the quality

of training data and the sophistication of the algorithms used, which involve text collection,

pre-processing, tokenisation, feature extraction and sentiment classification.

In our study, we first needed to acquire the needed data to generate and implement sen-

timent analysis indicators. To achieve that, we employed a Python-based web scraper, in-

tegrated with the Google Search Console API, to retrieve articles pertaining to the selected

companies. The web scraper effectively accessed the first twenty pages of daily Google search

results, utilising each company’s name as a keyword. These articles were obtained for the

same timeframe as the technical analysis indicators. Moreover, not only were the articles

downloaded, but also their corresponding titles and summaries were retrieved, thereby facil-

itating the creation of polarity, subjectivity, and sentiment indicators not only for the body of

each article but also for its title and summary.

In order to focus solely on relevant articles related to the selected companies, certain

criteria were applied. Primarily, articles with a minimum length of 500 characters were con-

sidered. Additionally, to ensure relevance, these articles were required to mention both the

company’s name and its stock market ticker. This criterion helped filter out articles that were

not directly relevant to the companies of interest or those that might have been mistakenly

downloaded.

To align the sentiments expressed in the articles with the corresponding stock price data,

a meticulous synchronisation of the publication dates of the articles with the relevant stock

prices was undertaken. In cases where an article was published on a weekend when the stock

market was closed, its sentiment was assimilated as part of the sentiment for the preceding

Friday. This approach was designed to capture any potential impact on the stock price during

the subsequent trading day, typically occurring on Monday.
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When multiple articles were published for the same company on the same date, we adop-

ted the approach of calculating the average sentiment value of these relevant articles. Con-

versely, for days with no published articles, we assigned a sentiment value of zero (0) to

indicate neutrality or the absence of any specific sentiment, thereby ensuring continuity in

our data points.

Let us now proceed to the presentation of the sentiment analysis indicators. Two com-

monly used indicators in sentiment analysis are sentiment polarity and subjectivity of given

texts. Sentiment polarity captures the overall sentiment inclination, categorising the text as

positive, negative, or neutral. On the other hand, subjectivity measures the degree to which

the text expresses a personal opinion rather than objective facts. Our analysis utilises indicat-

ors based on these concepts while distinguishing between different calculation methods. The

definitions of the respective methods are provided below.

In sentiment analysis classification research, specialised sentiment analysis programs are

commonly employed to compute the polarity and subjectivity of text. Three popular tools in

this domain are TextBlob [8], SentiWordNet [9], and AFINN sentiment [10]. TextBlob represent

a Python library that offers a straightforward API for determining the polarity and subjectivity

of text. SentiWordNet 3.0, on the other hand, constitutes a lexical resource based on the Eng-

lish language’s lexical taxonomy, WordNet, specifically designed for sentiment classification

and opinion mining. It comprises a list of words classified as positive, negative, or neutral,

and the overall sentiment of a given text is calculated as a weighted average of these words.

AFINN sentiment is a widely utilised sentiment lexicon developed by Finn Årup Nielsen, en-

compassing over 3300 words, each assigned a polarity score. In our research, we leverage the

built-in function for the AFINN sentiment lexicon, which is readily available in Python.

In our study, our attention is directed towards examining 12 distinct sentiment analysis
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(SA) indicators, which are concisely summarised in Table 2.2. These indicators are derived

from the polarity and subjectivity levels obtained using TextBlob, in addition to the sentiment

polarity extracted through SentiWordNet and AFINN sentiment. We conduct separate analyses

on the articles, titles, and summaries, culminating in a total of 12 SA indicators.

Table 2.2: Sentiment Analysis Indicators. The designation "TEXT" refers to the complete

article, "TITLE" pertains to the title of the respective article, and "SUMM" corresponds to the

summary extracted from the Google Search results for that particular article.

Analysis type Indicator

Sentiment Analysis (TextBlob) TEXTpol, TEXTsub

TITLEpol, TITLEsub

SUMMpol, SUMMsub

Sentiment Analysis (SentiWordNet) TEXTsenti, TITLEsenti, SUMMsenti

Sentiment Analysis (AFINN) TEXTafinn, TITLEafinn, SUMMafinn

ERC

All SA indicators were normalised between [−1, 1].

2.5 Technical Analysis

Technical analysis (TA) is a method used in financial markets to analyse and predict price

movements and trends by examining historical market data, primarily focusing on price and

trading volume. Unlike fundamental analysis, which looks at underlying economic and finan-

cial factors, technical analysis is based on the idea that historical price and volume patterns

can provide insights into future price movements. Traders widely use technical analysis, espe-
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cially in short-term and day trading, to make buying and selling decisions. Technical analysts

use various tools and techniques to identify potential entry and exit points for trading de-

cisions. The main concepts and components of technical analysis include price charts, trends,

chart patterns, volume analysis, and technical indicators, as in the case of our study.

In this research, thoroughly examine of six widely adopted technical analysis indicators:

Moving Average, Momentum, Rate of Change, Williams %R, Midprice, and Volatility. These

indicators are precisely defined in Equations (2.8) to (2.13), and their computations rely

on historical data obtained from selected companies, specifically the (adjusted) close prices,

highest and lowest daily prices. The datasets are sourced from Yahoo! Finance6, and fur-

ther elaboration on the datasets can be found in Section 5.3.1. Each indicator undergoes

evaluation using look-up windows of n = 5 and n = 10 days, ultimately culminating in a

comprehensive set of 12 TA indicators, as succinctly summarised in Table 2.3.

Table 2.3: Technical Analysis indicators. Each indicator is considered for two distinct lookup

windows denoted by the variable n.

lookup windows n = 5 and n = 10

Technical analysis indicators Moving Average

Momentum

ROC

Williams %R

Volatility

Midprice

6https://finance.yahoo.com. Last accessed: July 2023
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The Moving Average is a widely employed technical analysis indicator utilised to smooth

out stock price data, thereby facilitating the identification of trends by mitigating the influence

of noise. The adjusted closing price of the stock on the j-th day is denoted as pj .

Moving Average(n, j) =

∑j
i=j−n pi

n
, for j ≥ n. (2.8)

The Momentum indicator computes the difference between the most recent adjusted clos-

ing price and the adjusted closing price n days ago. It provides insights into the strength

or weakness of a price trend. Positive Momentum values suggest upward price momentum,

while negative values indicate downward momentum. For instance, if the Momentum is cal-

culated as 10, the current price is 10 units higher than the price n days ago.

Momentum(n, j) = pj − pj−n, (2.9)

while the Rate of Change (ROC) normalises the momentum.

ROC(n, j) =

(
pj

pj−n
− 1

)
· 100 (2.10)

Volatility is a statistical measure that quantifies the dispersion of returns over a specific

period of time. It helps traders assess the level of risk associated with an asset. High volatility

implies greater price fluctuations and risk, while low volatility suggests more stable prices. It

is worth noting that while high volatility can offer trading opportunities, it also carries higher

risk.

Volatility(n, j) =

√√√√√Var

{ pj−i

pj−n
− 1

}
i∈{0,...,n−1}

, (2.11)

where Var defines the sample variance over a dataset.

The Williams %R indicator, as defined in Equation (2.12), is designed to compare the most

recent closing price clj on day j to the highest high price hhn,j observed within the look-up
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window ending on day j. Additionally, it considers the lowest low price lln,j observed within

the same look-up window. Williams %R oscillates between −100 and 0, with readings below

−80 considered oversold and above −20 as overbought. This indicator helps traders identify

potential reversal points in price trends. For instance, if Williams %R reaches −85, the asset

may be oversold, indicating a possible buying opportunity. Conversely, a reading above −15

might signal an overbought condition, suggesting a potential time to sell.

Williams %R(n, j) = −100 · hhn,j − clj
hhn,j − lln,j

(2.12)

The Midprice, as defined in Equation (2.13), is computed as the midpoint value between

the highest high price, hhn,j , and the lowest low price, lln,j , observed across all days within

the look-up window ending at day j. The Midprice can provide insights into price equilibrium

within a given time frame. For instance, if the Midprice is closer to the high price within the

look-up window, it suggests bullish sentiment, indicating potential upward price movement.

Conversely, if the Midprice is closer to the low price, it may signal bearish sentiment and

potential downward movement.

Midprice(n, j) =
hhn,j − lln,j

2
(2.13)

All TA indicators were normalised between [−1, 1].

We generated 12 indicators from each analysis type to compare the algorithms fairly, and

the indicators were selected based on their use and popularity in previous research papers

and similar studies. The 36 indicators are used as individual and combined terminal sets

when run within the GP variants.
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Methods

This chapter provides background information on genetic programming (GP) techniques used

in literature and focuses on the ones used in the experiments of this PhD thesis. We are not

aiming to offer a long and extended review of genetic programming but rather to introduce

the GP concepts to the reader and also to present the main parts of the GP algorithms, which

we used to facilitate our experiments. The rest of this chapter is organised as follows: Section

3.1 presents general information about genetic programming and Section 3.2 discusses the

different GP representations. Section 3.3 introduces different initialisation methods, Section

3.4 presents the main GP operators, and Section 3.5 covers different breeding methods. Sec-

tion 3.6 introduces the evaluation process of genetic programming, Section 3.7 presents the

different selection strategies available, followed by Sections 3.8 and 3.9, showcasing the iter-

ation and termination process of the algorithmic set, respectively. Section 3.10 presents the

different data types a GP algorithm can utilise, and Section 3.11 briefly discusses the different

choices of grammar that a GP system can use. Finally, Section 3.12 concludes this chapter. It

needs to be noted that the specific methodology required for the experiments of each thesis

23
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contribution will be mentioned in the methodology parts of that specific chapter so as not to

confuse the reader with the mentioned methods.

3.1 General Information

Genetic programming is a computational technique inspired by the process of natural evolu-

tion that allows computers to evolve solutions to complex problems. It falls under the broader

umbrella of evolutionary computation and artificial intelligence. The main idea behind ge-

netic programming algorithms is to use principles of genetics and natural selection to auto-

matically generate computer programs or solutions to various problems, where said computer

programs act as the individuals of a population.

In GP, a population of candidate programs or solutions is evolved over multiple genera-

tions to find increasingly better solutions. This process mimics the way biological evolution

operates in nature. The steps the program follows are standard, while in-between operations

can be altered or added to further support the algorithms’ performance and their outputs.

During initialisation, the GP algorithm generates a random or semi-random population of

trees/individuals, which represent solutions to the problem the algorithm tries to solve. This

is achieved by using terminal sets and functions appropriate to the problem domain, where

the former are variables and constants of the algorithms, and the latter are responsible for

processing the values of the system (either terminals or other functions’ output). Functions

can be arithmetic operations (+, -, *, /), mathematical functions (sin, cos, exp, log), boolean

operations (AND, OR, NOT), a conditional operator (If-Then-Else), functions causing iteration

(Do-Until), comparison operators (>, <, =).

Next is the Evaluation phase, in which each individual in the population is evaluated based
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on a predefined fitness function that measures how well each individual in the population

solves the problem. The fitness function provides a quantitative measure of the individual’s

quality. After Evaluation, there is Selection, where individuals are chosen to produce new

offspring programs based on the problem the algorithm tries to solve. In our case, the fitness

function maximises of a specific financial metric (Sharpe ratio), which we will introduce in

detail in Chapter 5. Thus, during Selection, the individuals with the higher fitness scores are

more likely to be selected for reproduction, mirroring the concept of "survival of the fittest".

This step aims to promote the traits of the better performing individuals in the population.

The next step is using the operators in genetic programming, where the individuals are

manipulated by genetic operators such as crossover and mutation. These operations introduce

diversity and novelty into the population, while there are more operators a researcher can

implement or alter the current ones in order to create a GP architecture that works the best

for their problem. In this thesis, we also create a novel GP operator, introduced in Chapter 7.

Subsequently, there is the iteration of Evaluation and Selection for a set number of gen-

erations or until a stopping criterion is met. This is achieved by using the children produced

by the previous generation. As the generations progress, the population ideally evolves to-

wards better solutions to the problem as better performing traits become more prevalent.

Finally, there is Termination, where the evolution process concludes when a satisfactory solu-

tion is found or when the algorithm reaches a predetermined stopping point, in which the

final evolved individual is the solution to the problem [11]. The steps are better summarised

below:

• Initialisation of a random or semi-random population.

• Evaluation of each individual and fitness assignment.
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• Selection of individuals in order to produce new offspring by the means of different

operators. These offspring form the new population.

• Iteration of the steps until a number of generations has been reached or the problem

requirements have been achieved.

• Termination of the process with the generation of the final evolved solution.

Genetic programming can be applied to a wide range of tasks, including symbolic re-

gression (finding mathematical expressions that fit given data), machine learning algorithm

design and optimisation problems. It is a flexible technique that allows researchers and prac-

titioners to automate the creation of programs without needing to manually design them.

An important challenge in genetic programming is selecting suitable program representations

and a suitable fitness function to guide the evolution effectively. Additionally, managing the

balance between exploration (diversity) and exploitation (improving existing solutions) is

crucial for achieving optimal results. Overall, genetic programming is a powerful approach

that harnesses evolutionary principles to solve complex problems and create innovative solu-

tions in various fields.

3.2 Genetic Programming Representations

As mentioned above, genetic programming is a machine learning technique that involves

evolving populations of computer programs to solve complex problems. The process hinges

on the concept of representation, which refers to how the genetic makeup (genotype) of

individuals in the population is symbolised or encoded. This encoded form determines the

structure and behaviour of the evolved programs.
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Early in the history of GP, individuals were initially represented using LISP S-expressions,

which are specific types of tree-based representations. This representation includes the use of

the nested structure of the LISP programming language, represented within parentheses, with

functions and arguments enclosed within them. This way, the individuals or programs were

encoded using a combination of nested lists and symbols. Functions and operations were rep-

resented by symbols, and the nesting of expressions encodes the hierarchical relationship. It

was used to create programs as symbolic expressions, which were amenable to manipulation

and evolution. However, this representation had limitations in expressing complex structures,

and its direct translation to program semantics could be challenging. In the evolution of GP

representation, John Koza developed another tree-based representation with a function or

operation in each node and constants as the "leaves". This structure allows for more flexibil-

ity and the development of more complex program structures, as the tree’s branching could

capture intricate relationships between operations and inputs.

Thus, John Koza’s pioneering work in 1992 [12] better showcased the efficiency and

effectiveness of the tree-based representation, leading to its widespread adoption among re-

searchers. The tree-based GP representation has become a staple in the field due to its flexib-

ility and expressiveness. The main advantage is that it allows for the evolution of programs

with varying levels of complexity, which is crucial for tackling diverse problem domains. In

this work, we use this tree-based GP representation due to its popularity amongst researchers,

as it strikes a balance between capturing intricate program structures and being amenable to

genetic operations like crossover and mutation.

Another variant is the graph-based GP, where individuals are encoded as graphs; the pro-

grams are represented as directed acyclic graphs (DAGs), where nodes represent functions or

operations, and edges represent the data flow or control between nodes. This representation
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allows for more flexible and complex program structures than traditional tree-based GP, which

can be particularly beneficial when dealing with large and complex data [13]. A further in-

novation is the Cartesian GP, which was developed by Miller in 1999 ([14]). Cartesian genetic

programming can be considered an extension of the graph-based GP, and the algorithmic set

utilises a grid-like structure for representing programs. In Cartesian GP, a program is rep-

resented as a set of nodes arranged in rows and columns, a multi-dimensional grid, where

each node can perform a specific function, and the connections between nodes define the

program’s logic flow. The programs are executed by traversing this grid. This representation

can provide benefits in terms of efficiency and direct parallelism, making it particularly suited

for specific hardware implementations ([14], [15], [16], [17]).

Beyond the tree-based representation, several alternative representations have been ex-

plored in the literature. One such representation is linear GP, which arranges genetic material

sequentially. This representation is reminiscent of traditional genetic algorithms and can be

advantageous for certain types of problems ([18], [19]).

A more recent work the reader could refer to is that of [20], where the authors examine

the different GP representations, such as the Cartesian genetic programming, the Linear ge-

netic programming (LGP), evolving graphs through graph programming, and traditional GP.

The researchers empirically investigate and compare the performance of these techniques in

various configurations, with a focus on their interactions with three different Evolutionary

Algorithms (EAs): generational, steady-state, and (1 + λ), revealing that the choice of tech-

nique and algorithm depends on the problem type. It also exhibits the advantages of graph GP

methods, particularly in combination with specific evolutionary algorithms, and underscores

the significance of reusing intermediate results for solving complex problems effectively.

Moreover, a study that the reader would benefit from is that of [21], where the idea
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presented in the paper explores how genetic programming systems can evolve programs that

are not only solutions to specific tasks but also have the capacity to evolve new solutions

more easily or efficiently in the future, relating to the evolvability of the programs them-

selves. Evolvability has led to co-evolution, evolving populations of solutions together with

other populations; diversity, which can lead to more evolvable solutions; modularity, which

promotes the evolution of modular and reusable components within programs to support

evolvability by allowing easy recombination of parts to solve different problems.

Finally, as of [22], the authors present a novel way to integrate surrogate models with

genetic programming by using phenotypic characterisations instead of direct numerical rep-

resentations, especially for computationally expensive fitness evaluations. Surrogate models

are mathematical approximations of the fitness function that can be computed much more ef-

ficiently than the actual fitness evaluations. At the same time, they are usually created using

statistical or machine learning techniques based on samples of fully evaluated solutions. Sur-

rogate models typically require numerical representations, which do not align well with the

tree structure of GP, so the paper uses a phenotypic characterisation to provide an efficient

way to describe the traits or features of the evolved programs without relying on numerical

values. More specifically, it involves creating a decision vector for each rule, quantifying how

similar the rule’s decisions are to those of the reference rule. If a rule’s decisions match the

reference rule, the elements in the vector are set to 1. Suppose a rule consistently chooses the

job with the lowest priority according to the reference rule. In that case, the vector elements

are set to the maximum value, corresponding to the number of jobs waiting in the decision

situation. This approach abstracts away from the actual numeric values the rule produces,

focusing solely on the decisions.

In summary, the choice of representation in genetic programming profoundly influences
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the types of programs that can evolve and the efficiency of the evolutionary process. The

evolution of representations from LISP S-expressions to tree-based GP and the subsequent

exploration of linear GP, graph-based GP, and Cartesian GP highlight the ongoing efforts to

tailor GP to various problem domains and computational architectures.

3.3 Initialisation of the population

In genetic programming, the process of initialising the population is a critical step that sets the

stage for the evolutionary process to follow. Various methods have been devised to initialise

GP populations, and three prominent approaches have been widely adopted: Full, Grow, and

Ramped-Half-And-Half. These initialisation techniques were originally formalised by John

Koza in [12].

The first method, the Full initialisation, involves the systematic construction of trees with

a uniform and regular structure. The process begins by randomly selecting a function from

the available set of functions as the root of the tree. This chosen function serves as the parent

node, and additional functions are selected as its children. This process is repeated iteratively,

adding functions as internal nodes until one level before the maximum allowed depth for the

trees. Subsequently, terminal nodes are randomly selected to complete the leaves of the tree.

This method results in trees with a consistent depth and a uniform structure along any path

from the root to a leaf. This structured approach is beneficial for maintaining a certain level

of predictability in the initial population’s composition. An example of the Full initialisation

method can be found in Figure 3.1.

Conversely, the Grow initialisation method introduces more diversity and variability into

the population’s initial structure. Like the Full method, a tree root is randomly selected, but
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the choice can come from either the set of functions or the set of terminals. If a function is

chosen as the root, its arguments (child nodes) are then populated with random functions

or terminals. This process continues recursively, adding functions and terminals along the

branches until the tree reaches its maximum depth. As a result, the trees produced through

the Grow method can vary widely in their shapes and sizes, allowing for greater exploration

of the solution space. An example of the Grow initialisation method can be found in Figure

3.2.

The Ramped-Half-And-Half initialisation method is a hybrid approach that seeks to strike

a balance between the regularity of the Full method and the diversity of the Grow method. In

this approach, trees are initialised using both the Full and Grow methods, with a controlled

degree of variation in their shapes. Specifically, for each depth level within the range of two

to the maximum initial depth, half of the trees are created using the Full method, and the

other half are created using the Grow method. This combination ensures that the population

contains both trees with a predictable structure and trees with more varied configurations.

It is worth noting that beyond John Koza’s ([12]) established initialisation methods, other

approaches like the uniform initialisation have been proposed and studied in the literature;

however, they are not used in this thesis. In the uniform initialisation method, individuals

are generated uniformly at random, allowing maximum diversity but potentially needing

more structured guidance provided by the Full and Grow methods. To explore alternative

initialisation methods, interested readers can refer to the works of [23] and [24]. In the

context of generating initial populations for Grammar-Guided genetic programming (GGGP)

systems, [25] introduces a novel initialisation process in the generated individuals adhere to

the grammar of the problem and do not exceed a predefined maximum size. This approach

ensures computational savings and a more uniform distribution of individuals in terms of size
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and search space. Similarly, [26], presents their novel algorithm, which creates an initial

population of individuals that adhere to the grammar’s rules while maintaining uniformity

and controlling bloat. This process can help set a solid foundation for subsequent genetic

programming operations and improve the overall effectiveness of grammar-guided genetic

programming.

The choice of the initialisation method can significantly impact the performance and be-

haviour of the GP algorithm, influencing the population’s diversity, exploration capabilities,

and convergence speed.

Figure 3.1: The Full method of population initialisation, as illustrated in [6].

3.4 Genetic Operators

Genetic operators play a pivotal role in driving the evolutionary process by manipulating

individuals in the population to generate new offspring. According to [19], the primary

genetic operators are reproduction, crossover, and mutation. Each operator contributes to



3.4. GENETIC OPERATORS 33

Figure 3.2: The Grow method of population initialisation, as illustrated in [6].

the exploration and exploitation of the solution space in different ways.

Crossover is a key genetic operator that promotes the recombination of genetic material

from two parent individuals to create offspring, with many variations. In our research, we use

the subtree-crossover, which is a process that involves selecting two parents and a crossover

point within their genetic structures. This point, referred to as the cross-point, acts as the

division point in the parents’ genetic material. An illustration of the division point can be

found in Figure 3.3. By cutting the parents at this cross-point, two subtrees are obtained: the

subtree from the root to the cross-point and the subtree from the cross-point onward. Two

offspring are then generated. The first offspring combines the rooted subtree from the first

parent with the subtree after the cross-point from the second parent. The second offspring
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is formed by the remaining parts of the two parents. Crossover facilitates the exchange of

genetic material, potentially leading to the creation of novel and improved solutions. An il-

lustration of the crossover operator can be found in Figure 3.4. A lot of early information

related to different crossover variations (uniform crossover 1, one-point crossover 2 and vari-

ous combinations of these methods) can be found in [27]. Finally, one more variation can

be found in [28], where the smooth uniform crossover is introduced, in which two parents

combine in a way that aims to produce offspring with less disruption to the structure of their

genetic makeup.

Mutation involves altering a single individual by making small changes in its genetic

makeup, such as altering a subtree. Unlike crossover, which involves two parents, muta-

tion requires only one parent. The process begins by selecting a node within the individual’s

genetic structure. A randomly generated subtree then replaces the subtree rooted at this

selected node. Mutation introduces small-scale variations in the population, enabling the

exploration of nearby regions in the solution space. Furthermore, a variation of mutation

is the one-point mutation, where only one node within the individual’s genetic structure is

altered. Unlike the standard mutation, which might replace any node in the structure, one-

point mutation focuses on making a single change, often limited to a specific node, as seen

in [29]. An illustration of the mutation operator can be found in Figure 3.5. Further muta-

tion variations include the multi-mutation, introduced by [30], which involves introducing

multiple mutations to an individual’s genetic material. This approach aims to inject a higher

degree of diversity into the population by evolving programs through mutation and selective

1Uniform crossover combines genetic material from both parents with a certain probability for each gene
2One-point crossover combines two parent chromosomes by selecting a random crossover point and exchan-

ging the genetic material between the parents at that point.
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reproduction. Moreover, there is the Lévy mutation by [31], which applies a Lévy distribution

(a probability distribution used to model heavy-tailed, long-range dependence phenomena)

to mutate an individual’s genetic material. This mutation strategy offers an innovative way

to explore the solution space.

Elitism is the simplest of the genetic operators. It involves copying the best performing in-

dividual directly from the current population to the population of the new generation without

any modifications. In other words, the individual remains unchanged. While this operator

does not introduce diversity or variation, it ensures the preservation of well-performing indi-

viduals in subsequent generations. In our research, we use elitism in all thesis contribution

chapters as part of all GP algorithms.

Moreover, the work of [32] extends on Langdon’s work ([33]) and introduces size control,

where the authors investigate different operators and aim to produce offspring with similar

sizes to their parents, thereby addressing issues related to program bloat in genetic program-

ming. The "Size Fair" mutation operator described is a modification of an existing operator

that produces mutations of length 1/4 of the original subtree length. The "Fair Crossover"

operator is introduced to ensure that the average size of children resulting from crossover

remains similar to the parents. Considering size limitations, this operator attempts to replace

subtrees from the first parent with suitable subtrees from the second parent.

Additionally, a breeding method known as broad-selection, as proposed by [21], show-

cases a distinct approach to selecting individuals for reproduction, potentially yielding unique

results compared to the previously discussed technique. Another mechanism someone can

apply to the GP operators is by [34], introducing the self-adaptation concept of genetic oper-

ators, meaning for the operators to change their behaviour over time. Hence, the algorithms

eventually learn how to improve themselves while working.
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Finally, [35] offers a comprehensive discussion of the aforementioned breeding methods

and their respective merits, providing an in-depth discussion of their strengths, limitations,

and applications.

While these additional variations of the genetic operators are not discussed in the context

of the mentioned thesis, they highlight the ongoing efforts to design effective methods for

evolving populations in genetic programming. Thus, in addition to the three main genetic

programming operators, this thesis introduces a novel operator, which is made to solve the

problem at hand, and it is introduced and explained in the methodology section of Chapter

7.

Figure 3.3: The cross-point in a tree, as illustrated in [6].
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Figure 3.4: The crossover operator between two parents, as illustrated in [6].

3.5 Breeding Methods

Breeding methods in genetic programming involve the strategies that determine which indi-

viduals are allowed to mate and how genetic operators are applied to generate offspring. Two

primary criteria are used to classify and differentiate among various breeding methods.

The first criterion is the mating restrictions between population members because breed-

ing methods can exhibit different levels of restrictions on mating among individuals in the

population. Based on [36] and [37], there are two different categories. The first one is that
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Figure 3.5: The mutation operator, as illustrated in [6].

breeding can be either generational or steady. In generational breeding, generations do not

overlap. Offspring are generated in a separate intermediate population, entirely replacing

the old population. In contrast, steady state breeding involves a continuous influx of new

offspring into the existing population. New offspring can immediately become parents to

generate new individuals. To maintain a constant population size in steady state breeding,

an existing member is usually replaced by each new offspring. Continuing with the first cri-

terion, based on [38] and [33], breeding can be either panmictic or be under some form of

restricted mating. In panmictic breeding, any individual from the population is allowed to

mate with any other individual from the population. Contradictory, in restricted mating there

are limitations on mating choices. Various strategies fall under restricted mating, such as

Demic Sub-Populations, where the population is divided into demes or sub-populations, and

most recombination occurs within these demes. This promotes local exploration [39].

Expanding on the previous methods of the first criterion, another technique is of [40] in-



3.5. BREEDING METHODS 39

troducing pygmy algorithms, in which the population is partitioned into two sub-populations,

and crossover is only permitted between individuals from different sub-populations. This

strategy encourages diversity by preventing excessive crossover within sub-populations. Moreover,

the Genetic Lineage Strategies are introduced in [41], in which parents are selected based on

their genetic lineage, which refers to their evolutionary history. This approach emphasises

retaining successful genetic lineages. More different breeding strategies can be studied in

[42], where the authors created three different breeding strategies: the "Clones", the "Free",

and the "Restricted".

The second criterion is the use of different types of operators, which are used depending

on some probability settings [11]. This happens to balance exploration and exploitation of

the solution space. By adjusting the probabilities of applying various operators, GP algorithms

can tailor their behaviour to the problem at hand and the specific goals of the optimisation

process. Genetic operators, such as crossover and mutation, are applied to individuals to

create offspring. The distinction here is whether an operator involves a single parent (as in

mutation) or a set of parents (as in crossover). Different operator setups can be employed

based on probability settings. In [12], Koza introduces one widely used breeding method,

the crossover, extended with mutation. This approach involves selecting two parents for cros-

sover, applying crossover to produce offspring, and then applying mutation to the offspring.

The offspring inherit genetic material from both parents through crossover, and mutation in-

troduces small-scale variations. This method balances the exploration of new solutions (cros-

sover) and fine-tuning existing solutions (mutation). A work that introduces an alternative to

the traditional mutation operator is of [43], where the authors employ a deterministic proof

search in the sequent calculus to yield semantics-preserving transformations on algebraic data

types.
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This criterion can also be applied to operator selection (the algorithm controls the prob-

abilities of these operators so that it can emphasise different types of changes to the genetic

material), elitism and reproduction (preserving a random individual from one generation to

the next), and for adaptive probabilities (the probabilities of using different operators can

be adjusted dynamically as the algorithm progresses, to monitor the algorithm’s performance

and adjust operator probabilities based on how well the current population is evolving).

These breeding methods can be combined and adapted to suit specific problem domains

and research objectives in GP. The choice of breeding method and operator setup significantly

influences the exploration-exploitation trade-off in the evolutionary process.

3.5.1 Combination of Subtree Crossover and Point Mutation

A commonly employed breeding strategy in genetic programming is John Koza’s crossover

operator ([12]), which is often paired with mutation. Even though John Koza’s initial ex-

periments in 1992 did not incorporate mutation, subsequent research has demonstrated the

advantages of introducing a small amount of mutation. This can be particularly helpful in

rejuvenating the genetic diversity within the population, based on [35]. Therefore, it has

become a prevalent practice to combine crossover and mutation techniques, where the likeli-

hood of applying crossover is set relatively high, for instance, around 90%, while the remain-

ing portion (usually around 10%) is allocated to the probability of mutation.

3.6 Evaluation of the individuals

The evaluation process in genetic programming constitutes an important step for assessing

the quality and efficacy of evolved solutions [12]. This process involves subjecting candidate
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solutions, represented as individuals within the population, to a battery of fitness criteria

[19]. The specific criteria are tailored to the problem domain and the overarching objectives

of the evolutionary process.

At the heart of the evaluation process lies the fitness function, which quantitatively as-

sesses the calibre of a candidate solution [11]. This function assigns a numerical value that

signifies how well an individual addresses the problem’s requirements. Notably, the fitness

values assigned to individuals profoundly influence the selection process, steering the al-

gorithm’s focus towards individuals with higher fitness scores for further reproduction and

evolutionary progression.

The formulation of the fitness function is a pivotal consideration, substantially impacting

the GP algorithm’s performance and the solutions it yields. Designing an effective fitness

function necessitates deep comprehending the problem domain, objectives, and any pertinent

constraints.

Several key factors need to be taken into consideration in the creation of a fitness func-

tion, such as the problem-relevant metrics, balancing trade-offs, mitigating premature conver-

gence, accounting for noise and robustness, and efficient evaluation. Firstly, problem-relevant

metrics should be used as part of the fitness function to emphasise the problem at hand.

For instance, in classification tasks, metrics like accuracy, precision, recall, or the F1-score

could hold relevance. Following, certain problems may entail trade-offs between multiple ob-

jectives. The fitness function must find an equilibrium between these competing objectives,

reflecting their relative significance. Additionally, it is important to avert premature conver-

gence, where the algorithm converges to sub-optimal solutions. Thus, the fitness function

should be devised to discourage such outcomes. Finally, given the computational expense of

evaluating individuals, particularly for intricate problems, the fitness function should find a
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balance between accuracy and computational efficiency.

Notably, the efficacy of the evaluation process significantly shapes the outcomes of the

GP algorithm. Since GP is employed across diverse domains, the evaluation process lacks a

one-size-fits-all approach, with researchers and practitioners customising the process to suit

the idiosyncrasies of their specific challenges [19].

3.7 Selection Strategy

The selection process within genetic programming holds a pivotal role in determining the

individuals to whom genetic operators are applied. This process centres around evaluating the

fitness of each program in comparison to their counterparts within the population [19]. This

important step essentially decides which individuals will contribute to the next generation’s

genetic makeup, which is critical in shaping the population’s genetic makeup and driving the

evolutionary progression.

Several selection methods are commonly employed in GP, each contributing to the al-

gorithm’s dynamics and outcomes. Two prominent selection strategies normally employed

in GP are roulette wheel selection and tournament selection. The roulette wheel selection

hinges on the principle that an individual’s probability of selection is directly proportional

to its fitness value. This mechanism mirrors the sections of a roulette wheel being sized

according to the chances of landing on each respective section [19]. This method is particu-

larly effective for emphasising the influence of higher-fitness individuals while still allowing

lesser-fitness individuals to be chosen. Tournament selection, the second widely embraced

strategy we employ in our study, involves assembling a subset of the population based on

a predefined tournament size. Within this subset, individuals engage in competitive evalu-
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ations. The individual with the highest fitness value within the tournament emerges as the

victor and is subsequently selected [12]. Worth noting is that this method does not involve

direct reproduction, but it does incorporate elitism. This implies that the most outstanding

individual from each generation is directly duplicated into the subsequent generation. This

helps maintain the strongest solutions in the population across generations and aids in pre-

serving the overall quality of the evolving population. Furthermore, this strategy introduces

an exploration element by allowing candidates of varying fitness levels to compete for selec-

tion. More specifically, larger tournament sizes may increase exploration, while smaller sizes

may increase exploitation. Overall, tournament selection is simple and effective in maintain-

ing diversity while favouring higher-fitness individuals.

The choice of selection method profoundly influences the convergence rate and the di-

versity of the evolving population. Tournament selection and proportional selection, among

others, strike different balances between exploration (diversification) and exploitation (con-

vergence). Selecting the most appropriate method depends on the problem characteristics,

the desired convergence rate, and the level of exploration required [33]. In their experi-

ments, [44] concluded that the variance of a selection method significantly impacts genetic

algorithm performance. Unbiased tournament selection is a technique that reduces this vari-

ance and improves algorithm results, particularly for small population sizes and tournament

sizes of 2.

The reader can learn more in [45], which offers a comprehensive review of tournament se-

lection within the topic of genetic programming. The paper discusses the significance of tour-

nament selection in GP algorithms, outlines its features and advantages, and explores issues

like multi-sampling and not-sampling. The article also addresses drawbacks related to selec-

tion pressure control, discussing methods for finer level control and automatic adjustments.
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By analysing these aspects, the authors highlight the importance of refining tournament se-

lection strategies, and they provide an insightful examination of tournament selection’s role

in GP, offering potential directions for enhancing its effectiveness.

The tournament selection method, which, as said, has been adopted as the preferred se-

lection strategy in this thesis, aligns with the overarching goal of selecting candidates with

superior fitness values to steer the evolutionary process toward improved solutions. Tour-

nament selection ensures a balanced synergy between exploration and exploitation, and its

effectiveness is showcased by its widespread application across diverse problem domains.

3.8 Iteration

The iteration process in GP forms the core of the evolutionary algorithm, driving the gradual

refinement and improvement of candidate solutions across successive generations [19]. The

iteration process in GP holds great significance due to its central role in achieving optimisa-

tion and problem-solving objectives. This is achieved by search and exploration, where the

iteration process enables a systematic search through the solution space. By repeatedly gen-

erating new candidate solutions through crossover and mutation, GP explores a wide range

of potential solutions. Moreover, the iteration process allows the evolving population to adapt

to the problem’s requirements and changing conditions. Over successive generations, genetic

material is refined and diversified, leading to solutions that are better suited to addressing

the problem at hand, and the algorithm progresses toward improved results. By selecting in-

dividuals with higher fitness values as parents, the algorithm guides the population towards

solutions that possess desirable traits. The iteration process aids in escaping local optima that

might otherwise trap an algorithm, as the genetic diversity can help the algorithm "escape"
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stagnation points and explore new regions of the solution space.

Overall, the iteration process is well-suited to navigating problem spaces and finding satis-

factory solutions, allowing for the incorporation of domain-specific knowledge and striking a

balance between exploration (searching for new solutions) and exploitation (refining known

solutions).

3.9 Termination

The termination criterion in genetic programming is the stopping point for an algorithm’s

iteration process. It determines when the evolutionary process should conclude, indicating

that the algorithm has either sufficiently converged to a satisfactory solution or has reached

a point where further iterations are unlikely to yield substantial improvements. The choice

of termination criterion depends on the quality of the solution, which is based on achieving

a specific level of solution quality, where the algorithm halts once a solution surpasses a

predetermined fitness threshold or meets a desired objective, in which case domain-specific

insights guide the termination criteria. Similarly, it can be based on convergence criteria,

where the Termination is triggered when the population’s fitness values stabilize or show

minimal improvement over several generations, indicating that further iterations are unlikely

to lead to significant enhancements. In these cases, early stopping can be applied, where

the algorithm may halt if there is a lack of progress or improvement in solution quality over

a defined number of generations, preventing unnecessary computational efforts. In some

instances, if GP continues to evolve for too many generations, it might overfit the training

data, reducing its ability to generalize to new, unseen data. Early stopping helps prevent

this by terminating the algorithm before overfitting occurs. Since computational resources
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may play a role, too, Termination might occur when a specified time limit or computational

budget is reached, which is particularly important for resource-intensive problems. Following,

a common termination criterion is applying an iteration limit, where the algorithm halts after

a certain number of generations, allowing a limited number of iterations to refine solutions.

Selecting an appropriate termination criterion involves a trade-off between achieving op-

timal solutions and computational efficiency. Terminating too early might lead to suboptimal

solutions, while prolonging the process unnecessarily might waste computational resources.

In this thesis, the termination criterion is the reach of a specific number of independent runs,

meaning we applied an interaction limit, which was tuned as part of the parameter tuning

(Section 5.3, Chapter 5) and found out to be 50 runs.

3.10 Data Types in Genetic Programming

Data types are an important concept in genetic programming [19]. Like in traditional pro-

gramming, data types define the values that can be represented and manipulated within the

GP framework. They determine the kind of operations that can be performed on individu-

als and play a crucial role in ensuring the correctness and functionality of evolved solutions.

However, in GP, the concept of data types is often more flexible and dynamic compared to

traditional programming languages.

In traditional programming, data types like integers, floating-point numbers, characters,

and strings are well-defined and fixed. In contrast, GP allows for the evolution of programs

where the data types are not predefined but emerge from the evolutionary process itself [12].

In [12], John Koza states that in order for GP to be applied to a specific problem, the concept

of closure must be satisfied. This means that the arguments for functions and the values
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returned from these functions must be of the same data type. In this way, all functions can

deal with any values that they receive as input. As a result, early works in this area required

only one type of function to generate trees. For instance, all functions should only return and

accept boolean values.

In order to address the issue of closure, John Koza ([12]) suggested using constrained

syntactic structures. These syntactic rules describe the terminals and non-terminals that can

be used as the children nodes of each non-terminal. The author then applied these syn-

tactic constraints during tree initialization and while genetic operations took place. Similarly,

structure-preserving crossovers make sure that any crossover between trees is legal. For in-

stance, once the point of crossover from the first parent is chosen, the crossover point from

the second parent is randomly chosen among points of the same type. In this way, subtrees

that are going to be exchanged are going to be of the same type, and thus, any offspring

derived from this crossover will be valid.

Soon after, more research took place in order to introduce further constraints in the data

types to improve the performance of GP. Montana [46] extended the idea of John Koza [12]

by proposing the strong typed genetic programming (STGP). As Montana states in the study,

John Koza’s GP and STGP are similar approaches, with the difference that the latter does

not need to specify directly which children each non-terminal can have. Instead, this is done

indirectly in STGP by specifying the data types of the arguments of each non-terminal and

the data types returned by terminals and non-terminals. This flexibility meant that functions

could operate on any input received, where arguments and return values had the same data

type. Early GP implementations often limited themselves to a single data type, like boolean

values.

Strongly-typed genetic programming algorithms’ key distinction lies in its ability to en-
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force data type constraints more explicitly and systematically, ensuring that only valid data

types can interact within a program. This approach enhances the robustness of evolved solu-

tions by preventing incompatible data types from causing errors. Additionally, STGP makes

designing GP systems for complex problem domains with intricate data type requirements

easier, ensuring that evolved programs adhere to these requirements. Overall, STGP strikes a

balance between GP’s evolutionary flexibility and the need for structured data typing, making

it a valuable tool in various applications of GP.

Finally, other works on data typing include branch typing and strong typing. More inform-

ation about both can be found in [47].

For data types in grammar-based GP, [48] presents a novel approach to improve embed-

ding grammars within the target programming language using object-oriented types. This

enhances development through type-checking, integration with tools, and better ergonomics.

Introducing "Meta-Handlers" further extends the algorithm’s expressive power by allowing

controlled value generation.

In this thesis, we use both GP and STGP to generate trading strategies in algorithmic

trading.

3.11 Grammar-based Genetic Programming

Grammar-based genetic programming (GGP) is a variant of genetic programming that em-

ploys formal grammars to guide the generation and evolution of program structures. In

GGP, the syntax and structure of programs are defined using a context-free grammar, which

specifies the valid combinations of functions, terminals, and their arrangement within the

evolving solutions [49], [50], [51]. This approach adds structure and constraints to the ge-
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netic programming process, allowing for more controlled and structured evolution.

In GGP, the grammar defines the syntax rules that dictate how various elements (functions

and terminals) can be combined to form valid solutions. The grammar serves as a blueprint

for generating individuals and ensures that they adhere to syntactic correctness. Further-

more, GGP enforces a hierarchical structure in evolved programs, ensuring that the resulting

solutions are well-structured and semantically meaningful. This contrasts with traditional GP,

where the structure of individuals is determined solely by tree-based representations. Gram-

mar rules specify which functions or terminals can be used at different positions within the

program. This enables GGP to generate solutions with predefined patterns or structures,

which can be particularly advantageous in domains where specific structures are important.

By constraining the space of possible solutions through grammatical rules, GGP can guide the

search towards more relevant and meaningful solutions. This controlled exploration can lead

to faster convergence and improved solutions. Following, it can be customised for specific

problem domains by designing grammars tailored to the problem’s characteristics. This al-

lows for the incorporation of domain-specific knowledge into the search process. In GGP, the

grammar itself can also evolve over the generations. Genetic operators such as crossover and

mutation can be applied to the grammar rules, allowing the evolution of both the program

structures and the grammar that defines them.

Grammar-based genetic programming has been applied to a variety of domains, including

symbolic regression, program synthesis, image processing, and more. It is particularly useful

in domains where grammar rules can naturally capture the problem structure. However, the

choice of grammar in GGP can influence the types of solutions generated. While grammar

provides advantages like closure and controlled exploration, it can also limit the diversity of

solutions. The reader can accumulate more information in the work of [52].
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Strongly-typed genetic programming can be considered a part of grammar-based genetic

programming (GGP) since Both STGP and GGP involve the use of formal grammar to guide

the evolution of programs. However, they emphasize different aspects of the programming

process. The strongly-typed architecture can be seen as a specific instance of GGP where the

grammar is designed to enforce strong type checking, ensuring that only operations compat-

ible with specific data types are allowed.

3.12 Chapter Summary

In this chapter, we introduced the concept of genetic programming algorithms, a technique

that serves as the foundation for all chapters in this thesis. Our exploration commenced

with a comprehensive overview of the algorithm’s core principles, exploring specific facets

of this set of algorithms. The information outlined specific topics within the GP framework,

including representations, operators, breeding methods, selection strategies, data types, and

grammar. Each area contributes distinct insights to the broader understanding of how GP

operates and evolves solutions to complex problems. This overview of genetic programming

algorithms provides the necessary groundwork for the subsequent research chapters, where

we build upon these concepts to investigate and propose innovative solutions in the financial

domain.



Chapter 4

Literature Review

Incorporating fundamental, sentiment, and technical analysis within algorithmic trading, in-

dividually and as a combination, has revolutionised the financial markets by enabling market

participants to navigate the complexities of the modern digital era. As markets become in-

creasingly complex and competitive, the need for algorithmic trading strategies that swiftly

adapt to changing conditions has never been more pronounced. Each financial analysis type

has become a subject of intense research and innovation, especially within the algorithmic

trading domain. This literature review will explore the evolving landscape of algorithmic

trading, focusing on the advancements made in incorporating these three financial analytical

domains.

In the following sections, we introduce the latest research, developments, and insights,

aiming to provide a nuanced understanding of how algorithmic trading strategies, leveraging

fundamental, sentiment, and technical analysis, are reshaping the financial markets and pav-

ing the way for a data-driven future in trading.

51
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4.1 Fundamental analysis

Fundamental analysis is a crucial approach used by investors to evaluate the intrinsic value

of a stock, analysing various factors that can impact a company’s financial performance and,

consequently, its price. It focuses on the objective and quantitative aspects of a company’s

overall performance and external economic events. It is the earliest form of studying the stock

market and a company’s values. Researchers have recognised the importance of incorporating

fundamental company information into predicting its future stock value through traditional

and machine learning techniques. The scientific papers shown in this section are presented

based on their topic and research focus.

There have been studies underlying the importance of fundamental analysis in stock mar-

kets and its potential for generating significant returns, such as [53] and [54]. There are

also many machine learning applications in fundamental analysis, as we see from [55], in

which the authors address data accessibility challenges and employ machine learning models

to forecast one-year-ahead earnings changes and stock returns.

Artificial Neural Networks (ANN) are a popular domain when exploring the use of fun-

damental analysis indicators. An early paper for value-based stock selection criteria is of

[56], in which the authors conclude that value-based stock selection can lead to superior risk-

adjusted returns. Moreover, the study of [57] explored the application of Neural Networks

in stock selection, demonstrating its consistent outperformance of market benchmarks over

time by effectively identifying top-performing stocks, and they managed to achieve positive

compounded excess returns. Similarly, the authors of [58] also used an ANN, but this time

to predict daily foreign exchange rates, implementing interest rates, Gross Domestic Product

(GDP), quarterly trade balance numbers and the Consumer Price Index (CPI). In [59], the au-
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thors utilised 25 indicators, like Book-to-market ratio, Earnings-to-price ratio, Sales-to-price

ratio and Cash flow-to-price ratio. They showed that the accuracy increases when using more

layers in a Deep Learning Model. Hybrid models are also popular. For example, in [60],

the authors proposed a fusion of linear regression and an XGBoost model that, firstly, serve

as base models individually and later are fused. The researchers showed the high perform-

ance of their fusion model and improved accuracy with data from the Balance Sheet, Income

Statement and Cash Flow Statement of companies.

Moreover, fuzzy systems have also been used as well, such as in [61], where the au-

thors used feed-forward neural networks (FNN) and adaptive neural fuzzy inference systems

(ANFIS) for stock selection, evaluating three soft-computing models. More specifically, the

evaluation included multi-layer perceptrons (MLP), ANFIS, and general growing and pruning

radial basis function (GGAP-RBF), considering fundamental attributes while also introducing

the concept of using relative operating characteristics (ROC) to systematically select equities

based on the strength of predicted output values from the neural network models. In the use

of FNN and ANFIS models, [62] evaluated their performance in predicting stock performance

using fundamental financial ratios. Both models effectively distinguish winning and losing

stocks and outperform the benchmark index, with FNN displaying superior performance in

constructing "Buy" and "Sell" portfolios.

Many popular algorithms have been used in algorithmic trading implementation, as well

as novel algorithms. One such algorithm is that of [63], which incorporated an agent-based

simulation model to explore algorithmic trading strategies using fundamental analysis to pre-

dict financial asset price movements. The model features five types of agents representing

various trading behaviours and successfully replicates statistical properties of high-frequency

order-driven markets, including extreme price spikes and volatility clustering.
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The effect of fundamental indicators has also been studied. [64] reported that the high

fundamental ratio stocks, such as price-to-earnings (P/E), have higher average returns than

the stocks with low ratios due to their growth rating in the stocks. Based on the F-tests

in the later research of [65], indicators like Debt to Equity Ratio (DER), Return on Assets

(ROA), Current Ratio (CR), Price Earnings Ratio (PER), and Total Assets Turnover (TATO)

were found to affect the fluctuations in the stock prices, while based on the t-statistic test

results ROA and TATO partially influence the share price. Similarly, [66] analysed the Return

on Assets (ROA), Earning Per Share (EPS), Price Earning Ratio (PER), and Debt To Equity

Ratio (DER) on stock prices. Their findings suggested that EPS, PER, and DER have a positive

and significant effect. For accounting ratios, [67] used financial statement information and

predicted one-year returns with an accuracy of 76.6% using multiple logic models. [68]

addresses the prediction of stock performance using machine learning methods with a focus

on long-term predictions based on fundamental analysis. A substantial dataset of 22 years’

worth of stock financial data is used, and three machine learning algorithms are experimented

with, with Random Forest (RF) achieving the best performance. The aggregated model shows

promising results, suggesting the potential for using historical financial data.

4.2 Sentiment analysis

Macroeconomic factors, global events, and human behaviour can influence the stock market

movement. Hence, estimating the stock market can be a challenging task. Many researchers

have studied the importance of events and news in predicting the stock market by developing

sophisticated algorithms, combining neural networks, fuzzy systems and evolutionary com-

putation with news and events happening in a local and global spectrum. The publications
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in this section will be presented based on their machine learning applications on algorithmic

trading as a topic.

One of the most important and earliest papers to dive into the overall idea of sentiment

analysis was [69], which searched for ways of increasing the predictive power of multivari-

ate models for financial forecasting with prior knowledge from newspaper headlines and

neural networks. More recently, [70] produced a model from event-driven stock market pre-

diction. They extracted events from news and used a deep convolutional neural network

(CNN) to model the short-term and long-term influences on price movements. Similarly, [71]

used DNNs to predict stock price movements through historical prices and online financial

news, showing that adding financial news into a standard financial data set can improve

the model’s accuracy. Furthermore, [72] used RNN - LSTM (Recurrent Neural Network with

Long Short-Term Memory) and Facebook Prophet 1, in conjunction with news sentiment ana-

lysis for enhancing stock price prediction accuracy. The authors emphasised the significant

correlation between stock price movements and the publication of news articles, highlight-

ing the inadequacy of predicting stock prices using historical data or textual information in

isolation. The same year, [73] investigated the predictive potential of historical news sen-

timents derived from financial market performance for forecasting future market behaviour,

utilising recurrent neural networks (RNN) with long short-term memory (LSTM) units.They

employed a combination of deep learning methods to extract news sentiments (positive or

negative) and utilised them as inputs for their model. [74] proposed algorithm that leverages

public sentiment, opinions, news, and historical stock prices to forecast future stock prices.

The study highlighted the effectiveness of sentiment analysis (SA) in predicting stock price

1Facebook Prophet, also known as Prophet, is an open-source tool from Facebook used for forecasting time

series data which helps businesses understand and possibly predict the financial market.
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changes and emphasised the relationship between public sentiment and stocks, employing

the LSTM (Long Short-Term Memory) deep learning technique combined with social media

and financial news data. [75] also uses a comprehensive dataset that includes financial news

headlines, and it aims to predict the sentiment score of the news headlines in the financial

domain while discussing the impact of COVID-19 on financial events and the use of sentiment

analysis for collective risk detection.

Support Vector Machines have been widely used in the algorithmic trading domain. An

example is the work of [76], where the authors explored using semantic frame parsers to

generalise sentences to scenarios. This way, they could detect a company’s role, either positive

or negative. Another one is of [77], which demonstrated a Principal Component Analysis

(PCA) and Support Vector Machines (SVM) combination model into China A-share and Hong

Kong stock data. They extracted the events from internet news and the sentiment from social

media to study the stock price changes. [78] used Twitter, international newspapers, and

hacker forums on both the dark web and the surface web to explore the prediction of stock

price direction using various machine learning techniques and sentiment analysis (e.g. SVMs,

LSTMs, CNNs, ARIMA). Their findings suggested that incorporating sentiment variables can

lead to up to 18% better predictions of stock price direction. The study also discussed the

influence of sentiment analysis on stock market prediction during health crises such as H1N1

and COVID-19, highlighting the potential links between social media posts and closing stock

prices at specific time horizons.

Researchers also resort to Open Information Extraction techniques, like [79] and [80].

The authors compared SVM and Deep Neural Networks with bag of words technique and

event features in 3 different intervals, 1 day, 1 week and 1 month. The concluded that event

features are better predictors than bag of words in the stock market domain and that Deep
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NN are better than the SVM. Futhermore, that the quality of information is better than the

quantity of information, as well as the relativity of information. [81] delved into sentiment

analysis of news headlines and its link to stock price prediction. The paper introduces an

efficient prediction model that assesses emotions from real-time publicly available news. The

research employed various classifiers for emotion classification, including Naive Bayes, k-

Nearest Neighbours (KNN), and Support Vector Machines (SVM). The study underscored the

significance of artificial intelligence and data mining techniques in analysing stock market

data. In a similar manner, [82] implemented text mining technology to quantify social me-

dia opinions on stock-related news and incorporated them into a logistic regression model

for improved prediction. Following, the study of [83] explored stock price forecasting in

an emerging market using data mining techniques, specifically decision tree analysis. While

traditional models are utilised for predictions, data mining methods showed promise for im-

proving forecasting accuracy.

In the topic of Evolutionary computation, [84], [85], [5] and [4] are among the few stud-

ies that have utilised sentiment analysis indicators as inputs to a GP algorithm for algorithmic

trading. While their implementation and trading strategies differ, all studies successfully

demonstrated the financial profitability of sentiment analysis. Hybrid models also exist. For

example, [86] introduced the integration of genetic algorithms with artificial neural net-

works to enhance stock market forecasting, with potential applications in algorithmic trad-

ing strategies. [87] introduced an innovative approach that integrates social media senti-

ment analysis, a hybrid genetic algorithm (HGA), and deep learning using Long Short-Term

Memory (LSTM) to predict stock price changes. The study notably used chip-based indicators

from the semiconductor industry and sentiment variables extracted from social media data in

its predictive model.
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Previously, [88] proposed their algorithm, ExpertRank, to evaluate news based on its con-

tent and the authority of the source, stating that the origin of the news source matters; if

the news comes from an official source, is leaked or rumoured. Findings that were also es-

tablished as part of [89] research. The paper of [90] explored the use of sentiment analysis

through news articles to predict stock prices. It involved constructing a sentiment dictionary

and establishing a correlation between news articles’ positive index and the subsequent day’s

stock price returns. For Twitter news sentiment, [91] explored the correlation between public

sentiment on Twitter and stock market movements, specifically focusing on the Dow Jones

Industrial Average (DJIA). Similarly, [92] investigated the use of sentiment analysis and ma-

chine learning to predict the stock market based on Twitter comments. The study introduced

a hybrid predictive model called SentAMaL, which combined sentiment analysis with ma-

chine learning algorithms like decision trees, neural networks, and support vector machines,

aiming to leverage the instantaneous impact of social media comments on stock markets.

[93] also investigated the relationship between sentiments expressed on Twitter and stock

price fluctuations, highlighting a robust correlation, where positive news and tweets related

to a company were found to drive investment and boost stock prices. The sentiment ana-

lyser demonstrated its effectiveness using machine learning algorithms like Random Forest,

Logistic Regression, and Sequential Minimal Optimization (SMO). Furthermore, [94] sugges-

ted a connection between media sentiment and Bitcoin’s price, revealing that investors tend

to react strongly to news in the short term. The study employed sentiment analysis of news

articles and blog posts to determine sentiment scores based on the articles’ positive and neg-

ative language. Most recently, [95] focused on predicting stock market movements during

the COVID-19 pandemic by analysing public sentiments from various online sources. The

authors utilised a variety of data sources for sentiment analysis and stock market prediction,
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including headlines, tweets, financial news, Facebook comments, stock Tweets for tweets of

Bitcoin, asset-related news from media, and sentiment scores from different web scraped data

sources. The findings indicated that the sentiment scores from the different sources signific-

antly impact stock market movement prediction.

[96] compared sentiment from blogs and news and used a large-scale Natural Language

Processing text analysis system to study how a company’s media presence reflects on its stocks’

trading volumes and returns. They concluded that data obtained from the internet are highly

informative and confirm their performance. Moreover, in [97], the authors highlighted the

significant impact of intra-day company-specific news on high-frequency trading activity, af-

fecting returns, volatility, trading volumes, and bid-ask spreads. Using a high-frequency Vec-

tor Autoregressive (VAR) model that accounts for the high proportion of zero variables, the

authors analyse the relationship between high-frequency trading activity and intra-day volatil-

ity dynamics in financial markets, offering insights into the dynamics and cross-dependencies

underlying market reactions to news events. In the topic of news sources, [98] showed that

different finance news sources have different characteristics, because of their business prin-

ciples, the Review’s team knowledge and specialisation on the topic, the different writing and

wording style of their journalists, and the sensitivity of market trends of the media.

4.3 Technical analysis

Technical analysts rely on historical prices to find future stock price changes to earn high

returns, and most short-term traders use this method. It is the technique that estimates the

price movement of assets using historical prices in the form of tendencies and charts. Machine

learning algorithms have been applied to technical analysis, enabling the identification of
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complex patterns and the development of predictive models that adapt to changing market

conditions based on technical analysis indicators. In this section, we will refer to previous

research on technical analysis, which will be presented based on their methods.

Developed by [99], Support Vector Machines (SVM) are supervised learning models for

classification and regression analysis problems. In [100], the authors proposed a SVM model

with a principal component analysis (PCA) feature selection method, wanting to predict the

stock price movements in the Korean and Hong Kong stock market, using 10 years’ worth

of data for 1 day ahead estimations. They found high hit ratios in the movements’ pre-

dictions and they were able to verify a co-movement effect between these markets and the

American stock market. Similarly, [101] used PCA in an SVM model in order to extract the

low-dimensional and efficient feature information because of the sensitivity of the SVM ac-

curacy on the quality of the training set. [102] explored the idea of the Least Square Support

Vector Machine (LSSVM) and tested it in the estimation of the daily movement of the China

Security Index 300 (CSI 300). They selected 10 Technical Indicators as input variables and

compared their model with a Probabilistic Neural Network (PNN) and two Discriminant Ana-

lysis models. Moreover, [103] conducted a comparative analysis of five supervised machine

learning algorithms (Support Vector Machine, Random Forest, K-Nearest Neighbors, Naive

Bayes, and Softmax) for stock market trend prediction. The results highlighted that the Ran-

dom Forest algorithm excels with large datasets, while the Naive Bayes algorithm performs

best with smaller datasets. The accuracy of each algorithm is influenced by the number of

technical indicators used for feature extraction.

Neural Networks have allowed researchers to conduct a wide scale of experiments in fin-

ancial forecasting. The earliest NNs approach in the stock market estimation was produced

by [104], who created a Fead Forward NN (FFNNs) to decode undetected occurrences in the
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price movements, such as their fluctuations. Other Neural Network models, except FFNNs,

were also Backprogation models (BPNNs) and Recurrent Neural Networks (RNNs) used in

financial forecasting. In their research, [105]used a Long Short Term Memory model due to

its usefulness in time series classification, and especially financial time series. Furthermore,

[106] proposed a novel hybrid model for estimating that combines the ARIMA model and a

self-organising fuzzy neural network (SOFNN). The authors evaluated their model with dif-

ferent data sets, including financial data, concluding that the performance of a hybrid model

is effective for time series forecasting. The same year, [107] compared the ARIMA model with

ANN, finding that ANN outperforms the ARIMA model in the New York Stock Exchange stock

data. Moreover, [108] concluded the same results when they compared the ARIMA model

with a Multilayer Perceptron NN and Elman NN on copper spot prices from the New York

Commodity Exchange. The key findings of [109] indicated that integrating machine learn-

ing techniques with technical analysis indicators enhances the generation of trading signals,

resulting in a more robust and profitable trading strategy. The hybrid approach combines

machine learning methods like Multivariate Linear Regression, Artificial Neural Networks,

Support Vector Regression, and Random Forest. In their research, the authors of [110] ap-

plied NNs in high-frequency trading and [111] highlighted the effectiveness of combining

LSTM with various deep learning methods, like DNN and reinforcement learning, for stock

price prediction. Interestingly, the application of technical indicators in stock price forecasting

by CNN has indicated no discernible positive impact. At the same time, LSTM-based models

have consistently outperformed other approaches, including MLP, Random Forest, and SVM

models.

The authors of [112] used a LSTM model in order to predict stock returns in the Chinese

market, transforming the data into 30-days-long sequences with 10 learning features and 3-



62 CHAPTER 4

day earning rate labelling. They showed that the accuracy increased by adding the indices

and that different data sets showed different accuracy values. Following, [113] proposed

a hybrid LSTM model with various generalised autoregressive conditional heteroscedasti-

city (GARCH)-type models of stock price volatility. They enhanced this predictive power

by combining NN with multiple econometric models. Their GEW-LSTM and LSTM models

with three GARCH-type models had the lowest prediction errors. [114] used price history

and technical indicators as inputs in a LSTM model to forecast the future trends of stock

prices. They compared their model with a Multi-Layer Perceptron, Random Forest, and a

pseudo-random model, as well as investment strategies. More specifically, Buy and hold (buy

at the first time step and sell at the latest), Optimistic (if prices went up on the previous

time step, then perform a buy and sell it on the following step) and Pseudo-random (per-

form a trading operation based on probabilities according to the class distribution). [115]

showed the results of 5 different models in predicting the stock returns in 24 markets that

had categorised in 3 groups, selecting daily closing prices of 19 years. These models were lin-

ear, which was Autoregressive Integrated Moving Average (ARIMA), nonlinear Self-exciting

threshold autoregressive (SETAR), Artificial Intelligence with Neural Networks, frequency

domain, which is the Singular Spectrum Analysis (SSA) and a hybrid model. From these

models, none of them can be used uniformly for all the markets in the groups chosen by

the researchers, but SETAR and ARIMA perform well in most of the markets. Finally, [116]

used machine learning, specifically LSTM models, to predict cryptocurrency prices. The study

found that three prediction methods outperformed a basic strategy, with LSTM consistently

yielding the best results. [117] used a Deep Stock-trend Prediction Neural Network (DSPNN)

model, which combines transaction records and market information with knowledge graph

and graph embedding techniques. [118] used technical indicators on the application of al-
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gorithmic trading with an LSTM neural network for stock market prediction, and it provided

evidence of the effectiveness of technical indicators in the topic. [119] and [120] both ex-

plored many algorithms, such as SVM, MLP, RNN, and LSTM algorithms, finding all of them

indicating promising results.

In evolutionary computation, the study of [121] demonstrated that GP algorithms could

outperform commonly employed technical techniques. Similar results were achieved in other

studies such as [122, 123, 124]. As demonstrated in [125] and [126], GP algorithms can

develop trading strategies, generate solutions that survive extreme market conditions, and

create new solutions while optimising the solution parameters. Similarly, [127] showed that

genetic programming provides profitable results and outperforms 9 other machine learning

benchmarks in terms of risk and Sharpe ratio. In [128], the authors presented a novel GP

algorithm using directional change based indicators for trading strategies, able to outperform

physical time strategies and the buy and hold strategy. In the same topic, [129] presen-

ted a multi-objective genetic programming approach for trading strategy optimisation and

demonstrated its effectiveness in achieving higher cumulative returns and rates of return com-

pared to single-objective optimisation and financial strategies. More recently, [130] presented

an evolutionary hyperparameter optimal genetic programming-based framework for a-day-

ahead trend forecasting in the ISE100 and BIST100 datasets. Gene expression programming

has also been used, especially in [131], where the model outperformed traditional statistical

techniques, neural networks, and autoregressive integrated moving average (ARIMA) models

in predicting oil prices.

The topic of evolutionary computation has been used in combination with other models,

such as in [132], where the authors predicted the Korea Composite Stock Price Index 200

(KOPSI200) by combining genetic algorithms and neural networks, achieving 82% of accur-
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acy in estimating weekly fluctuations in the stock market. More recently, [133] used Genetic

Fuzzy Systems with Artificial Neural Networks for predicting stock market prices to create a

system that wanted to use minimum required input data and the least complex stock market

model. [134] used a Genetic Deep Neural Network (GDNN) with different activation func-

tions to optimise the parameters and selected the best activation function combination for

different neurons that can perform better than one using a single activation function. Fur-

thermore, [135] proposed a Genetic Network Programming (GNP) and Mean Conditional

Value-at-Risk Model (GNP–CVaR), combining evolutionary algorithms and a statistical model

that is useful for investors that have different risk attitudes. Experimenting on five stock

indices, the GNP and maximum Sharpe Ratio model performs the best in a bull market, con-

tradicting the GNP and the global minimum risk portfolio that performed the best in a bear

market. The system they proposed improved the efficiency of the original GNP. A hybrid

deep learning model was created in [136] that incorporated technical analysis for financial

forecasting, using two stocks in their experiments. [137], proposed a genetic algorithm (GA)

optimisation-based deep learning technique (CNN-LSTM) for predicting the next day’s closing

stock price. The findings indicated that the GA-based CNN-LSTM model outperforms single

CNN and LSTM models and the CNN-LSTM model without GA optimisation regarding predic-

tion accuracy. Moreover, [138] used various data to investigate the feasibility of leveraging

the synergistic effect of a hybrid system for stock market prediction. The study explored

the integration of neural networks and genetic algorithms to create a hybrid system for stock

market prediction. Overall, the results suggested that the hybrid system is capable of learning

and exhibiting promising behaviour for stock market prediction.
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4.4 Combinations

In addition to the individual applications of FA, TA, and SA, there have also been some limited

works that have combined these techniques and will be presented next. In most cases, news

sentiment are used as input alone, less often imported along with technical analysis indicat-

ors, and even more rarely combined with fundamental analysis. In earlier years, researchers

would primarily focus on fundamental or technical analyses to generate profit, usually com-

paring them with each other or sticking to one of them based on their investment style. Only

recently have traders and researchers started to analyse the stock market using fundamental

and technical analyses. At the beginning of the research, sentiment analysis was used as the

only method of production in a paper, along with the historical prices, in order to prove the

efficiency of the technique. In recent years, sentiment analysis has been used in combination

with the other two methods.

4.4.1 Fundamental Analysis and Sentiment Analysis

Most papers examine the movements of quantitative information to determine the value of

an investment and its returns. In their reports, though, companies also provide written in-

formation in detail, information that can be added to the news about the companies. Apart

from the fundamental analysis indicators, researchers also try to analyse the sentiment of

annual reports based on how each company produces 10-K filings. This is the primary way

researchers have implemented sentiment analysis within fundamental analysis, while there

are exceptions that have used indicators derived from news articles, too. This section will

present the papers based on the machine learning algorithms they used.

An example is that of [139], where the authors examined how often managers were



66 CHAPTER 4

using ethics-related terms in the 10-K annual reports of their companies ,in order to find a

correlation between the accuracy of the words and how possible is for these companies to be

a "sin" stock. They found that companies that used ethics-related terms were more likely to

be the object of class action lawsuits and to score poorly on corporate governance measures.

Later, [140] presented a new approach in order to quantify document tone. They obtained

10-K filings using a web crawler, resulting in a sample of 45, 860 filings from 7, 606 unique

firms, with a mean market value of $3.09 billion and a book-to-market ratio of $0.65 billion.

Also, they used a set of variables to reflect recent events: the size (the natural logarithm of

the market before the 10-K filing), BM (ratio of the book value of equity of the fiscal year

end in the 10-K), the volatility (standard deviation of the firm, estimated by using 60 months

worth of returns as of the end of the month before the filing). Their research discovered a

relationship between their tone measurements in the 10-K filings and how the market reacts

to negative and positive words.

Regarding the challenges of sentiment analysis in the financial domain, [141] show that

negative words, commonly used in other studies to measure the tone of a text, misclassify

common words in the financial domain. They examined 10-K filings , where more than half

of the words were identified as negative by the Harvard Dictionary that has been commonly

used, but these words are not considered as negative in finance. They considered that tone

could be used simultaneously with accounting numbers to drive information. Textual analysis

can help understand the influence of information on stock returns. If the tone does not

directly cause returns, it can be used as an additional way to capture information.

Corporate annual reports and sentiment analysis are a popular combination, as evident

from [142] that created variables extracted from the "Management’s Discussion and Analysis"

section of 10-K filings, and [143] which stated that corporate annual reports are more in-
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formative than it was found in previous studies. They trained an RNN model using 8,000

manually labelled sentences that got selected randomly from 10-K filings, and they achieved

an in-sample accuracy of 91%. They separated the effects of negative and positive sentiment

and observed that the market overreacted to negative sentiment and underreacted to the

positive one during that period.

An interesting addition is that of [144], where the authors utilised 1278 earnings confer-

ence calls of the 40 largest US companies. The data included linguistic indicators, vocal cues

extracted from these earnings conference calls, and traditional financial indicators from cor-

porate financial statements. The study proposes a deep learning architecture that combines

managerial emotional states extracted from speech emotion recognition with FinBERT-based

sentiment analysis. The study’s findings suggested that managerial emotions are essential in

predicting financial distress, even when compared with sentiment indicators obtained from

text.

4.4.2 Fundamental Analysis and Technical Analysis

The comparison of fundamental and technical analysis has been the most seen application of

the two analysis types in studies. However, there have been researchers who have combined

the two. This section presents the papers that only combine fundamental and technical ana-

lyses based on the machine learning algorithms they use for algorithmic trading and finance.

To begin with the comparison element of the two financial analysis types, many research-

ers have examined their different performances, such as in the work of [145], where the

authors observed that technical analysis performs better in terms of short-term trading. In

contrast, fundamental analysis outperforms technical analysis regarding long-term invest-

ments. Likewise, [146] and [147] observed that technical analysis outperformed fundamental
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analysis in short-term predictions, and that technical analysis rules are robust for modelling

specifications.

There are fewer articles that combine technical analysis and fundamental analysis in con-

trast to those that compare them. One such study is by [148], which confirmed the comple-

mentary nature of these techniques and concluded that while they perform well in isolation,

models combining the techniques had greater explanatory power. In fuzzy systems, [149]

incorporated fundamental and technical indicators into a type-2 fuzzy rule-based expert sys-

tem to estimate stock price movements accurately. Through the experiments, their model

accurately estimated the stock prices of different sectors and showed its robustness, flexibility

and error minimisation. Similarly, in [150], where the authors combined technical analysis

and fundamental analysis within a fuzzy system to make trading more rewarding and [151]

which highlighted the advantages of algorithmic trading over traditional discretionary meth-

ods, emphasising the potential for enhanced efficiency and profitability.

The study of [152] compared the individual and combined performances of the two ana-

lysis types by using ANN and SVR, where it was found that fundamental analysis indicators

outperformed those of technical analysis. In contrast, their combination outperforms the in-

dividual ones 95% of the cases with lower RMSE. Additionally, the authors demonstrated

the differences among industries, highlighting that Health Care and Information Techno-

logy companies performed better when tested with fundamental indicators, but this trend

was not as prominent for financial and energy companies. In evolutionary computation,

[153] utilised fundamental and technical analysis indicators for stock market prediction, us-

ing ANN, Fuzzy NN, genetic algorithms, and the firefly algorithm. The results indicated

that the proposed combined algorithm, utilising the firefly algorithm and genetic algorithm,

demonstrated higher prediction accuracy than previous algorithms.
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4.4.3 Sentiment and Technical Analysis

Although not many studies have delved into the advantages of combining sentiment and

technical analysis, this section presents notable papers that have done so. The papers are

presented based on the machine learning algorithms they implement in algorithmic trading.

The most popular method of combining these analysis types is by integrating their indic-

ators, as demonstrated in [154]. The authors employed text mining on Reuters news related

to the S&P500 index in a hybrid RNN and CNN model to predict prices and intra-day dir-

ectional movements. Using financial news articles and a set of technical indicators in their

hybrid model, they showed that it performed better than CNN in the exact implementation.

Furthermore, the authors showed how functional both technical and sentiment analysis are

in financial forecasting. Similarly, [155] explored the application of deep learning techniques

to stock market prediction, focusing on algorithmic trading strategies. The authors compared

two models for stock market forecasting: SI-RCNN, a hybrid model combining a Convolu-

tional Neural Network (CNN) for processing financial news titles and a Long Short-Term

Memory (LSTM) network for technical indicators, and I-RNN, a LSTM network that uses only

technical indicators. The study finds that SI-RCNN outperforms I-RNN in terms of accuracy

and profitability.

Another example is provided by [156], where the authors indicated that information ex-

tracted from news sources is more effective in anticipating shifts in market volatility direction

than predicting asset price movements. The authors developed machine learning models

employing Latent Dirichlet Allocation (LDA) to represent information from news feeds and

straightforward naïve Bayes classifiers for predicting movement directions. Moreover, the

paper underscored the significance of considering the temporal aspect of news data, imple-
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menting a decay function to weigh the importance of past news articles and assign greater

significance to recent ones, given their likely relevance for predicting market movements.

[157] used sentiment analysis in news articles to predict stock prices, emphasising the con-

struction of a specialised sentiment dictionary tailored for stock news. The study reveals a

meaningful correlation between the positive index derived from news articles and subsequent

day’s stock price returns, considering the complexities of stock data and analysing the Korean

language. The paper underlined the potential of sentiment analysis in the stock market and

the superiority of a domain-specific sentiment dictionary. The paper of [158] explored the

utilisation of news sentiment, historical stock prices, technical indicators, and news text as

data sources for stock market prediction, showing the significant enhancement in machine

learning model performance achieved through sentiment analysis of news articles when pre-

dicting stock market trends. LSTM (Long Short-Term Memory) models, particularly when

incorporating a substantial number of news headlines, have consistently exhibited superior

performance compared to other deep learning models. Furthermore, [159] used various data

for stock market forecasting, including historical stock data, technical indicators, sentiment

analysis, Google search trends, COVID-19 cases, and domestic and foreign market behaviour.

The study explored the use of deep learning models for predicting stock prices and iden-

tified various influential factors such as sentiment analysis and exceptional situations like

epidemics. The authors of [160] proposed a 3-phase hybrid model for stock trending pre-

diction, incorporating technical indicators and sentiments from social media text. The model

leveraged machine learning algorithms such as XGBoost, LSTM, and CNN, demonstrating the

proposed method’s effectiveness. The results also indicated that integrating social opinions

with technical indicators is a promising direction for enhancing stock market predictions.

Another way of combining the two analyses is an interesting concept, and it is implemen-
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ted by creating probable scenarios, such as in [161]. The authors used event knowledge and

standard company information in the paper to create a specific scenario. This information

is available in their system, and the users can express their specific interests in companies

with similar characteristics. The fusion of the events and the background knowledge assists

in their event processing so they can know more about incoming events. The authors pro-

posed an external knowledge base to provide information on the events so these events can

be detected based on reasoning. The query from the user is pre-processed and rewritten into

a single new query, so the user can define event queries without caring for some details. The

authors created a lightweight ontology for the companies in the system, and the information

about them comes from DBpedia, which extracts the wanted knowledge from Wikipedia. The

events of the companies can be seen in the company’s characteristics.

In the field of evolutionary computation and genetic programming, [5] showed that sen-

timent analysis produced better and statistically significant average results than technical

analysis in terms of Sharpe ratio and risk. When it comes to combining technical and senti-

ment analysis indicators for algorithmic trading, the authors of [4] showed that the GP using

the combined analysis types statistically outperformed the individual performance of the tech-

nical and sentiment analysis under several different financial metrics, as well as the financial

benchmark of buy and hold. Another combination of examples are those presented in [85]

and [3]. In [85], the authors found that using news and Twitter for sentiment analysis is

more financially profitable than performing technical analysis alone or combining TA and SA

indicators while considering a simple GP architecture. Nevertheless, [3] demonstrated that

combining technical and sentiment analysis indicators under a strongly-typed genetic pro-

gramming framework is more financially profitable. Another study is that of [87], where the

authors proposed a method that combines social media sentiment analysis, genetic algorithm,
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and deep learning to predict changes in stock prices, achieving higher accuracy after adding

the sentiment analysis method.

4.4.4 Fundamental Analysis, Technical Analysis and Sentiment Analysis

Finally, the publications on all the methods combined will be presented based on the al-

gorithms used during the research.

In the study by Weng et al. in [162], the authors used information on publicly traded

companies while checking the public’s interest by web traffic statistics. Combining online

data sources with traditional time series and technical indicators for stocks can be essential

for more effective trading. They evaluated their data fusion using Decision trees, Neural

Networks, and SVM.

Following, [163] used many models with variables from fundamental analysis, technical

analysis and behaviour analysis from Google trends regarding Nvdia, along with its marketing

news. The authors used SVR, KNN, XGBoost, LightGBM, LSTM models and the econometric

methods ARIMA and ARMAX. Another example is that of [164] who, through Machine Learn-

ing techniques, produced more than 80% annualised return when running a high-frequency

trading simulation.

In evolutionary computation, the authors of [1] used a novel genetic programming al-

gorithm to combine the three financial analysis types and showcased the financial advantages

of the combination.

Finally, [165] provided a comprehensive overview of findings and indicators related to

various finance and machine learning topics, as discussed in different research papers. Key

findings include the effectiveness of combining stock market and trader information for pre-

diction, the impact of community sentiments and economic/political conditions on stock mar-
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ket volatility, and the rapid response to positive news compared to delayed reactions to neg-

ative news. The paper highlighted the utility of LSTM models in stock market prediction and

mentioned using machine learning models like Random Forest, SVM, and Decision Trees for

various financial predictions.

4.5 Critical Review

From the investigation on algorithmic trading with machine learning, we concluded that

technical analysis serves as a better short-term trading indicator, and fundamental analysis

is more advantageous for long-term investments. This can be because of the timeline the

researchers examined, the indicators, and what they aimed to find. One approach could

involve using fundamental analysis to identify promising companies with strong indicators

and then applying technical analysis to exploit arbitrage opportunities. This approach appears

logical, as the stock market accommodates various types of investors and traders, some risk-

averse, while others are not. Some investors may have higher incomes than others, thus, to

afford more risk. The showcased publications show that stocks with good fundamental rates

can be appropriately timed into investing with technical analysis to generate higher profits.

There have been many ways to conduct sentiment analysis, mostly on social media or

based on news articles. Since there is a need for more data on classified lengthy news art-

icles, most researchers follow the dictionary-based approach. When using natural language

processing tools, researchers focus on only one of these techniques and do not use their com-

bined results. Recognising this as a gap in the literature, this study aims to combine the results

of these tools to enhance accuracy and leverage additional indicators to achieve higher profits.

Although many machine learning algorithms have been used to experiment with sentiment
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analysis indicators, the involvement of genetic programming has not been researched in that

much depth.

There has been extended work on technical analysis, the best indicators, and the best

models to use, while less work has been done on fundamental and sentiment analysis. Even

fewer researchers have used the three methods as combinations, which allows us to explore

their benefits even more, especially since the research on their fusion has been found to

be more effective than their individual use. Considering the profitability of these methods

individually and the possibilities that arise from combining them, we identify the above as

gaps in the literature. Thus, we aim to create novel genetic programming algorithms to

leverage the advantages of fundamental, sentiment, and technical analysis by examining their

individual properties and their combination.

Finally, the most popular state-of-the-art models, especially for technical analysis indic-

ators, seem to be LSTM models, which will be one of the benchmarks used in this thesis

to compare the novel GP algorithms in Chapters 5 and 6. Of course, as mentioned in the

literature review, hybrid models can increase accuracy. Furthermore, there has been less re-

search on genetic programming related to sentiment analysis and fundamental analysis data,

which we can experiment with since the technical analysis indicators have proven financially

profitable.
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Chapter 5

Combination of the financial analysis

types

5.1 Chapter motivation

In this chapter, we will investigate the outcomes generated by genetic programming al-

gorithms that utilise three distinct financial analysis types: fundamental, sentiment, and

technical analysis. Considering the efficacy of each individual analysis type in identifying

profitable trading strategies from the literature review in Chapter 4, our motivation be-

hind this chapter lies in exploring the potential enhancement of financial profitability that

can be achieved by combining their respective indicators. Thus, our underlying objective is

to demonstrate the financial benefits arising from the fusion of these three analysis types,

thereby establishing the foundation of our research.

Hence, we propose a novel genetic programming (GP) algorithm that integrates the afore-

mentioned three analysis types. We exhibit the advantages resulting from their combination,
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as measured by three key financial metrics: the Sharpe ratio, rate of return, and risk. Our

experimental investigations utilise information from 42 companies, and we present the results

in the following sections.

The chapter’s structure is as follows: Section 5.2 introduces the methodological frame-

work employed in our study, including model representation, genetic programming operat-

ors, the trading strategy of the algorithms, and the fitness function. Section 5.3 presents the

experimental setup of the research, wherein we introduce the data and its extraction, the

benchmarking algorithms, and the parameter tuning. Following, Section 5.4 presents the em-

pirical findings and analysis, offering an evaluation of the GP algorithms’ performance and

an assessment of the efficacy of combining the three financial analysis types. Finally, Section

5.5 summarises the research findings, the contribution of this chapter and the motivation for

future research.

5.2 Methodology

GP algorithms have been widely adopted in various financial tasks, including algorithmic

trading [126]. In this chapter, we propose a novel genetic programming algorithm referred

to as GP-FASATA. In this nomenclature, "FA" stands for fundamental analysis, "SA" denotes

sentiment analysis, while "TA" signifies technical analysis.

For the remainder of this section, we will first present the model representation in Section

5.2.1, followed by introducing the GP operators used in our experiments in Section 5.2.2,

and an explanation of the trading process in Section 5.2.3. Finally, we will discuss the fitness

function of the proposed GP algorithm, along with the metrics utilised to evaluate the GP

individuals in Section 5.2.4.
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5.2.1 Model representation

When constructing the individuals (trees) used in this study, the internal nodes are comprised

of logical functions such as AND, OR, Greater than (GT), and Less than (LT), as we see in the

first part of Table 5.1. The terminal set, found in the second part of Table 5.1, combines all

the indicators from the three analysis types, in addition to an Ephemeral Random Constant

(ERC). The ERC assumes random real values ranging from −1 to 1 and serves as a threshold

for the indicators. Specifically, the algorithm assesses whether the indicator’s value surpasses

(or falls below) this arbitrary value, thereby contributing to the maximisation of the Sharpe

ratio.

The sample of the evolved GP tree in Part 1 of Figure 5.1 begins with the root node AND,

while the first branch starts with the node of GT, meaning greater than, and the SA indicator

and the ERC. The second branch of the tree compromises the node OR, followed by the node

LT, less than, in both parts, along with the FA and TA indicators and their corresponding ERC

values.

Each GP individual undergoing evolution is incorporated into another tree, wherein an

If-Then-Else (ITE) statement functions as the root. The first branch of this composite tree

represents the evolved GP tree (Part 1). The second and third branches correspond to the buy

(1) and hold (0) actions, respectively, which will be further explained in Section 5.2.3.

Notably, Part 2 of Figure 5.1 remains unaltered throughout the evolutionary process, ren-

dering its inclusion within the GP algorithm unnecessary.
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Table 5.1: Function and Terminal sets

Function set

GP-FASATA root node AND, OR

GP-FASATA function nodes AND, OR, LT, GT

Terminal set

FA Net Profit ratio, Return on Equity,

Quick ratio, P/E ratio, P/B ratio, P/S ratio

Debt to Equity, Total Revenues, EBITDA,

Levered free Cash Flow, Diluted EPS,

R&D Expenses,

ERC

SA-textBlob TEXTpol, TEXTsub, TITLEpol,TITLEsub

SUMMpol,SUMMsub

SA-SentiWordNet TEXTsenti, TITLEsenti, SUMMsenti

SA-AFINN TEXTafinn, TITLEafinn, SUMMafinn

ERC

TA (for 5 and 10 days) Moving Average, Momentum, ROC

Williams’ %R, Volatility, Midprice,

ERC
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Figure 5.1: The depicted individual is a sample GP tree highlighting the combination of

FA, SA, and TA indicators, showcasing a tree generated by the GP-FASATA algorithm. More

specifically, there is an AND statement that, at its root, requires both branches of Part 1 to be

TRUE for a trade to occur. This means the tree checks if the first branch with the SA indicators,

TEXTpol, is greater than 0.7 and if the second branch with the FA and TA indicators, P/E and

ROC over a 10-day period, are less than the ERC of 0.5 and 0.3, respectively.
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5.2.2 GP operators

To remind the reader, in our research, the chosen individual undergoes sub-tree crossover

with a probability denoted p, while point mutation is applied with a probability of 1− p. Ad-

ditionally, we incorporate elitism, a strategy whereby the best individual from each generation

is preserved and directly copied to the next generation. This ensures that the fittest individual

continues contributing to the evolving population in subsequent generations. These operat-

ors were selected due to their popularity and results in genetic programming research. More

information can be found in Chapter 3.

5.2.3 Trading algorithm

When the GP tree (Part 1) produces a TRUE value, it corresponds to the second branch (1)

of the ITE tree, signalling a buy recommendation. Consequently, the STGP algorithm initiates

the purchase of the stock. To determine the optimal selling time, the algorithm applies a

predefined rule based on a fixed reference increase rate r and a specified time period of d

days. If the stock price during the next d days yields a return that exceeds the threshold r, the

stock is sold on that particular day. However, if the return does not surpass r within d days,

the stock is sold at the end of the specified period. For instance, with d = 30 and r = 0.05,

the rule can be interpreted as follows: "If the stock price increases by more than 5% of the

buying price within the next 30 days, sell the stock on that day. Otherwise, sell the stock at

the end of the 30-day period."

It should be noted that the parameters d and r are fine-tuned during the validation phase

and remain constant for all GP algorithms considered. However, these parameters can vary

across different companies, as discussed in Section 5.3.3.
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We maintain a list of returns to evaluate the trading performance, as indicated by Equation

5.1. From this record, we calculate essential metrics such as the Sharpe ratio (Equation 5.2),

rate of return, and risk. The trading algorithm’s effectiveness assessment is based on these

metrics, and their results are compared accordingly. Further details and the presentation of

these results can be found in Section 5.4.

5.2.4 Fitness function and Metrics

In the subsequent sections, we introduce the metrics of rate of return, risk, and the Sharpe

ratio, which are defined as follows:

The returns denoted R, measure the profitability of a trade as a percentage of the amount

invested. The calculation of profit considers the transaction cost, which amounts to 0.025%

of the selling price (ct). Specifically, the return of a trade is determined using Equation (5.1),

where Vf represents the final value or the price at which the stock was sold, and Vi represents

the initial value or the price at which the stock was bought.

R =
(1− ct)Vf − Vi

Vi
. (5.1)

The rate of return denoted RoR, represents the sample mean of the returns obtained

from all trades during a specific time period under consideration. The risk is quantified as the

standard deviation of the returns, calculated as the square root of the variance of R, denoted

as
√
var[R].

The Sharpe ratio denoted Sa, is a metric that compares the expected value of the excess

return over the risk-free return, Rf , to the level of risk. It is formally defined as follows:
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Sa =
E[R−Rf ]√

var[R]
, (5.2)

,where E[R − Rf ] represents the expected value of the excess return, and
√
var[R] de-

notes the risk, as previously defined. The Sharpe ratio measures the risk-adjusted return and

provides insights into the performance of a trading strategy by considering both the expected

return and the associated risk.

The fitness function employed in the GP-FASATA algorithm is defined as the maximisation

of the Sharpe ratio. The Sharpe ratio, a well-known financial concept, assesses the return

an investment strategy achieves in relation to its associated risk. By considering the risk

of a particular stock or company, the Sharpe ratio helps investors make informed decisions

by determining whether the potential return justifies the level of risk involved. As such, it

maximises the Sharpe ratio as the fitness function aims to identify trading strategies that offer

favourable risk-adjusted returns, thereby assisting in the selection of potentially profitable

investment approaches.

5.3 Experimental Setup

This section will remind the reader of the experimental setup steps of data collection in Sec-

tion 5.3.1. We will introduce the GP benchmark algorithms, the four machine learning bench-

marks and one financial strategy in Section 5.3.2, and we will present the parameter tuning

process in Section 5.3.3.
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5.3.1 Data

In our research, we conducted an analysis on a dataset comprising 42 international companies

listed on various stock exchanges. The dataset incorporated information from 10K-filings, his-

torical stock prices, and relevant news articles. The research period we spanned 5 years, com-

mencing on January 1st, 2015, and concluding on January 31st, 2020. Notably, the period

excluded the COVID-19 pandemic to maintain consistency between the training/validation

sets and the test set, thereby ensuring reliable parameter tuning.

To gather fundamental analysis data, we obtained 10K-filings from Seeking Alpha. We re-

trieved daily closing price data from Yahoo! Finance for technical analysis. Sentiment analysis

was performed by utilising a Python scraper in conjunction with the Google Search Console

API to scrape articles, titles, and summaries. Once all the necessary data was collected, we

generated a total of 36 relevant indicators, with 12 indicators corresponding to each analysis

type, as outlined in Section 5.2.1. Subsequently, we partitioned the dataset for the 42 com-

panies into three sequential parts: 60% for training, 20% for validation, and 20% for testing

purposes.

5.3.2 Benchmarks

The proposed GP-FASATA algorithm is benchmarked against three other GP algorithms em-

ployed in this study:

• GP-FA: A GP algorithm that only includes fundamental analysis indicators in its terminal

set. This benchmark aims to evaluate the trading performance of a GP algorithm that

solely uses fundamental analysis indicators.

• GP-SA: A GP algorithm that only includes sentiment analysis indicators in its terminal
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set. Similar to the previous benchmark, the motivation here is to evaluate the perform-

ance of a GP algorithm using only sentiment analysis indicators.

• GP-TA: A GP algorithm that only includes technical analysis indicators in its terminal set.

Similar to the previous benchmarks, the motivation here is to assess the performance of

a GP algorithm using only technical analysis indicators.

Additionally, the study includes four additional algorithmic benchmarks:

• Multilayer perceptron (MLP)

• Support vector machine (SVM)

• eXtreme Gradient Boosting (XGBoost)

• Long short-term memory (LSTM)

All of the machine learning benchmark algorithms were applied to address a binary clas-

sification problem: predicting whether the stock price will increase by a certain percentage

(r%) within the next d days. A Class 1 prediction indicates a buy action, while a Class 0

prediction represents a hold action. As mentioned in Section 5.2.3, the sell action is executed

as part of the trading strategy.

Finally, the proposed GP-FASATA is evaluated against the following financial benchmark:

• Trading-Strategyd, r (TSd, r): Buy at the beginning of every trading period. Sell when

the price increases by more than the rate of reference r or after d days have passed,

whichever happens sooner.

The TSd,r benchmark is a baseline trading strategy without the learning component. It
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allows us to examine the added value of our GP algorithm when it is separated from the pure

trading element of the strategy.

5.3.3 Parameter tuning

A two-step grid search conducted on the validation set determined the optimal GP parameters

for the proposed algorithm and the other GP variants. The grid search involved adjusting

several parameters, including the population size, number of generations, tournament size,

maximum depth of the trees, and the crossover probability (p)1. During the tuning process,

the trading parameters, specifically d (number of days) and r (percentage increase), were kept

constant at 30 and 0.05, respectively. This was done to reduce the time required for parameter

tuning. After conducting the grid search, a set of parameters performed equally well for all

GP variants on the validation set was identified without observing any statistical differences.

These parameters were then used in all runs for all GP algorithms and companies. The specific

GP parameters used in the experiments are provided in Table 5.2. These parameters remained

consistent across all runs for all GP algorithms and companies.

To enhance the trading performance, the parameters d and r of the trading strategy were

adjusted independently for each company. These parameters were selected based on their

overall performance across all GP algorithms, and this process was carried out using the

validation set.

In addition to the GP algorithms, the machine learning benchmarks (MLP, SVM, XGBoost,

and LSTM models) were also tuned separately using binary classification. The performance

of each model was evaluated on the validation set, and the best model was selected based on

1Since the mutation probability can be calculated as 1-p, it was not required to include it as a separate para-

meter during the tuning process.
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Table 5.2: GP Parameters for GP-FASATA

GP Parameters

Population size 1000

Crossover probability 0.95

Mutation probability 0.05

Generations 50

Tournament size 4

Maximum tree depth 6

its predictive ability. The predicted class from the selected model was then used as signals for

the trading strategy, employing the same d and r parameters as the GP variants. The tuning

process for these machine learning algorithms for trading was based on the methodology

described in [127].

5.4 Results and Discussion

In this section, we present the results of our experiments, which involved comparing the

performance of GP-FASATA with the benchmarks discussed in Section 5.3.2. To assess the

effectiveness of GP-FASATA, we conducted 50 independent runs on the training set of each

of the 42 companies for each algorithm. Each run represented a distinct trading strategy

derived from the respective algorithm. Subsequently, these trading strategies were applied to

the test set for further analysis and evaluation. Tables 5.3 and 5.4 showcase the mean Sharpe

ratio values of the runs in each company, separated into the first and last 21 companies

for increased readability. Moreover, the mean Sharpe ratio values of all the runs across all
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companies can be found in Table 5.5. Similarly, the mean values for rate of return and risk

can be found in Sections 5.4.2 and 5.4.3, respectively.

To ensure the accuracy of our statistical analysis and avoid distortions, we implemented

certain exclusion criteria for calculating the mean values presented in Tables 5.5, 5.9, and

5.13. Specifically, runs in which the GP algorithms did not execute any trades due to po-

tential losses were not considered when calculating the mean values for the Sharpe ratio,

rate of return, and risk. Additionally, runs with only one trade were excluded from the risk

calculation, as a minimum of two trades is required. The tables provide each algorithm’s

mean, median, standard deviation, maximum, and minimum values across the 42 compan-

ies. However, certain algorithms did not generate any results for specific companies in some

cases, resulting in rows with mean values of 0. These cases indicate that the corresponding

algorithm did not perform trades for those companies.

We performed a two-sample Kolmogorov-Smirnov (KS) test on all runs across companies

for each algorithm to validate our findings. At the same time, we excluded values of 0, which

are runs that did not result in any trading action. We chose the KS test because it is sensitive

to differences in the shape of the empirical cumulative distribution of two samples and reports

the maximum difference arising between the samples’ respective distributions.

To account for the issue of multiple comparisons, we applied the Holm-Bonferroni cor-

rection. This correction method helps control the overall Type I error rate when conduct-

ing multiple hypothesis tests. We conducted three separate comparisons for each financial

metric, comparing the GP-FASATA algorithm with three different GP benchmarks. The Holm-

Bonferroni correction involves determining the minimum p-value threshold for statistical sig-

nificance at a 5% significance level, considering the number of comparisons being made. For

each rank, which represents the magnitude order of the p-values (with 1 being the smal-



5.4. RESULTS AND DISCUSSION 89

lest and k being the largest), the minimum acceptable p-value threshold is calculated using

the formula α(rank) = 0.05
k−rank+1 . Here, the denominator k represents the total number of

comparisons being performed. By applying the Holm-Bonferroni correction, we adjust the

significance threshold for each comparison, ensuring that the overall Type I error rate is con-

trolled within the desired range.

To assess the statistical significance of differences between two samples at a 5% signific-

ance level, we compared the p-values obtained from each comparison to the corresponding

minimum acceptable p-value for its rank. In this part of the analysis, where we compare one

control algorithm to 3 other GP variants, the denominator k has the value of 3. More specific-

ally, the first-ranked p-value should be less than 0.0166, the second-ranked p-value should be

less than 0.025, and the third-ranked p-value should be less than 0.05. This approach ensures

that the probability of obtaining a false positive result is maintained below a predetermined

threshold, resulting in more reliable statistical findings.

5.4.1 Sharpe ratio

Tables 5.3 and 5.4 present the average Sharpe ratio values over the 50 runs for the 42 compan-

ies. A zero (0) value for a company means that the relevant algorithm decided not to trade at

all to avoid losses. As we can observe, the algorithm which has the highest occurrence with

the best Sharpe ratio values is GP-SA with 18 companies, followed by GP-TA (9) companies,

GP-FA (8), whereas GP-FASATA (7) is last. However, it must be noted that the mean Sharpe

ratio values are not that far away in some cases. It is also worth mentioning that GP-SA,

GP-TA, and GP-FASATA have three 0 Sharpe ratio values, indicating that they are slightly more

conservative algorithms than GP-FA. As mentioned above, this enables these algorithms to

avoid losses by not trading at all in situations they consider to be unfavourable. As a result,
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this can positively affect their average and median performance, as we will see next.

Table 5.3: Averages for Sharpe ratio per company. Boldface is used to denote the best value

for the particular dataset. First 21 companies.

Company GP-FA GP-SA GP-TA FASATA

AAPL 5.5915 2.9952 6.2435 6.0608

ADIDAS 0.0455 -0.8810 0.1087 0.1709

ALIBABA 1.3241 12.8724 2.7733 4.4762

AMAZON 1.1791 1.7928 14.7694 5.5078

ASUS -1.3757 3.4320 0.5216 0.8423

ATVI 0.5347 2.5614 3.5067 0.7391

BLACKB -1.2496 -0.0329 2.8176 1.3741

COKE 8.7271 -0.5819 0.6859 1.2089

EBAY 0.6157 6.3670 0 -0.5972

ESTEE 0.2138 2.0982 1.2340 0.7858

FORD -0.1341 8.3010 -0.5957 0.1256

FUJIFILM 1.0442 0.5517 -1.5904 -0.5409

FUJITSU 0.7533 3.7077 13.7997 15.5743

GM 1.0112 4.0144 -20.9106 -0.2385

GOOGL 0.0520 2.4776 2.3801 3.7570

HITACHI -0.1452 0.2454 0 0.0971

HONDA 1.2830 6.6325 2.5088 1.6852

HSBC 2.8015 2.9204 0.1729 0.0370

HYUNDAI 2.4618 0.7194 -0.6452 31.4885

IBM 0.4644 0.9346 10.5784 1.8172

INTC 0.8131 1.9789 1.4645 0.9523
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Table 5.4: Averages for Sharpe ratio per company. Boldface is used to denote the best value

for the particular dataset. Last 21 companies.

Company GP-FA GP-SA GP-TA FASATA

KERING 0.5836 0.7536 0.9268 0.7333

KODAK 1.1804 1.4972 1.6641 0.4966

MCDON -0.0502 0.9143 -4.3046 0

NESTLE -0.0649 2.3210 -0.0132 2.6653

NFLX 8.0428 17.8119 0.9170 6.6686

NINTENDO 0.1078 1.1302 -0.1277 0.4118

NYT 0.3141 3.2256 -0.7486 0.1152

PANASONIC 0.1002 2.5060 3.9634 2.3647

SAINSBURY 14.9238 2.2750 2.0274 5.3955

SHISEIDO -0.6942 4.9143 0.5602 -2.4178

SUBARU 0.6109 -0.1824 7.7342 0

SUZUKI 5.5550 -1.0981 2.6771 0.6488

TENCENT 0.3319 0 -0.5544 15.8820

TESCO 0.1186 0.9316 2.2420 -0.2571

TESLA 0.7089 3.5859 2.1825 2.0695

TOYOTA 3.0496 1.1699 0 -0.3441

UBISOFT 1.0275 0 1.5272 4.0745

WALMART 2.8774 1.1366 1.9536 0.2454

XEROX 6.4406 0.1473 -0.8290 2.3401

YAMAHACO 0.5634 1.3774 0.4464 0.7569

YAMAHAMO 1.6966 0 0.6509 0
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Table 5.5 presents the statistical measures of each algorithm’s mean and median Sharpe

ratio, along with the corresponding standard deviation, maximum, and minimum values.

The table encompasses the results obtained from 50 independent runs conducted for each

company, considering all eight GP algorithms.

Table 5.5: Summary statistics of Sharpe ratio across all 50 GP runs and all 42 companies.

Boldface is used to denote the best value for each statistic.

Algorithm Average Median StDev Maximum Minimum

GP-FA 2.18 0.67 10.37 83.59 -52.54

GP-SA 2.65 0.57 10.75 173.13 -14.16

GP-TA 2.32 0.70 5.62 31.47 -20.9

GP-FASATA 2.99 0.58 12.1 206.25 -9.21

When considering Sharpe ratio results, it is important to remember that this metric can be

sensitive to the number of trades and can experience large values (either positive or negative)

if very few trades are performed. This is because the risk, calculated as the standard devi-

ation of returns experienced within a given period, can be extremely small if an algorithm

performs very few trades (e.g. 2− 4 trades throughout the test set). Given that the risk is the

denominator of the Sharpe ratio, a minimal decimal number of risks can lead to a very high

value for the Sharpe ratio.

The results presented in Table 5.5 show that the proposed GP-FASATA algorithm exhibits

the highest mean value for the Sharpe ratio. However, it is worth noting that it does not yield

the highest median value among all the algorithms considered. The median represents the

middle value when the Sharpe ratios are arranged in ascending order, providing a measure
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of central tendency less affected by extreme values. That being said, we do notice that the

median values of the GP algorithms are not that far apart, either.

Regarding the variability of the algorithms’ performances, GP-FASATA stands out with the

highest standard deviation. A higher standard deviation indicates greater dispersion or vari-

ability across the runs in the Sharpe ratio values. Alongside GP-SA, GP-FASATA also exhibits

the highest maximum values, indicating the presence of runs with exceptionally high Sharpe

ratio values. Conversely, these algorithms also have the lowest minimum values, suggesting

the existence of runs with relatively poor trading performance.

The KS test assesses the statistical differences between two samples, with the null hypo-

thesis stating that the two samples are drawn from the same population. A p-value below

the predetermined significance level indicates a rejection of the null hypothesis, suggesting

that the two samples are statistically different. In our analysis, GP-FASATA is chosen as the

control algorithm, as it exhibits the highest mean Sharpe ratio value. The KS test compares it

pairwise with the other GP variants.

The results in Table 5.6 reveal that the distribution of the control algorithm GP-FASATA

is statistically significant different than the distributions of the benchmark algorithms, as

indicated by the significantly lower p-values (second column) compared to the corresponding

significance level values (fourth column). These p-values are calculated by comparing the

two samples and assessing whether they are drawn from the same population.

5.4.2 Rate of Return

Tables 5.7 and 5.8 showcase the average rate of return values over the 50 runs for the 42

companies. Again, a zero (0) value for a company means that the relevant algorithm decided

not to trade to avoid losses. As we can see, the algorithm that has the highest occurrence
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Table 5.6: Kolmogorov-Smirnov test p-values on Sharpe ratio of the proposed GP-FASATA

algorithm against the 3 GP benchmarks. Statistical significance changes are based on the

Holm-Bonferroni correction. Statistically significant differences at the 5% level are indicated

in boldface.

Algorithm GP-FASATA p-values Rank Significance level

GP-FA 8.45e-07 2 0.025

GP-SA 1.10E-08 1 0.05

GP-TA 7.10E-06 3 0.016

with the best rate of return values is GP-SA (with 14 companies), followed by GP-FA (12),

GP-TA (11), and GP-FASATA (5) comes last. Again, it must be noted that in more cases than

previously observed, the mean rate of return values are close to each other. Again, GP-SA,

GP-TA, and GP-FASATA have three 0 Sharpe ratio values, while GP-FA has zero 0 observations.

Table 5.9 presents the statistical summary of the rate of return for each algorithm, includ-

ing the mean, median, standard deviation, maximum, and minimum values. These values are

calculated based on 50 independent runs for each company across the eight GP algorithms.

The summary statistics in Table 5.9 indicate less variability in the performance of the al-

gorithms when considering the rate of return metric. GP-FASATA, GP-FA, and GP-TA exhibit

higher mean and median values, suggesting relatively better performance in generating re-

turns. Additionally, GP-SA and GP-FASATA show lower standard deviation values, indicating

less variability in the returns generated by these algorithms. The maximum rate of return

is the same for GP-SA, GP-TA, and GP-FASATA, suggesting that these algorithms have the po-

tential to achieve higher returns in certain cases. On the other hand, GP-TA has the lowest
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Table 5.7: Averages for rate of return per company. Boldface is used to denote the best value

for the particular dataset. First 21 companies.

Company GP-FA GP-SA GP-TA FASATA

AAPL 0.0116 0.0135 0.0237 0.0243

ADIDAS 0.0014 0.0014 0.0050 0.0023

ALIBABA 0.0200 0.0304 0.0146 0.0229

AMAZON 0.0295 -0.0013 0.0205 0.0223

ASUS -0.0339 0.0009 0.0191 -0.0107

ATVI 0.0103 0.0099 0.0157 0.0080

BLACKB 0.0062 -0.0089 0.0344 0.0146

COKE 0.0163 -0.0403 0.0085 0.0095

EBAY 0.0094 0.0016 0 -0.0295

ESTEE 0.0028 0.0095 0.0091 0.0054

FORD -0.0038 0.0140 -0.0285 0.0006

FUJIFILM 0.0317 0.0308 -0.0257 0.0005

FUJITSU 0.0355 0.0646 0.0932 0.0894

GM -0.0007 0.0237 -0.0894 -0.0125

GOOGL 0.0015 0.0060 -0.0071 0.0019

HITACHI -0.0027 0.0125 0 0.0054

HONDA 0.0111 0.0085 0.0012 0.0128

HSBC -0.0026 0.0099 0.0023 0.0095

HYUNDAI 0.0130 0.0124 -0.0205 0.0268

IBM 0.0150 0.0100 0.0315 0.0041

INTC 0.0251 -0.0093 0.0016 -0.0092
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Table 5.8: Averages for rate of return per company. Boldface is used to denote the best value

for the particular dataset. Last 21 companies.

Company GP-FA GP-SA GP-TA FASATA

KERING 0.0217 0.0179 0.0132 0.0056

KODAK 0.0115 0.0535 0.0293 0.0113

MCDON -0.0019 0.0123 -0.0003 0

NESTLE -0.0025 0.0082 -0.0024 0.0004

NFLX 0.0608 0.0033 -0.0105 0.0598

NINTENDO 0.0036 0.0143 -0.0124 0.0147

NYT 0.0127 0.0326 -0.0015 0.0059

PANASONIC 0.0011 0.0260 0.0160 0.0147

SAINSBURY 0.0348 0.0167 0.0154 0.0257

SHISEIDO -0.0480 -0.0106 0.0208 -0.0399

SUBARU -0.0057 -0.0155 0.0338 0

SUZUKI 0.0355 -0.0365 0.0007 0.0140

TENCENT 0.0069 0 -0.0543 0.0163

TESCO 0.0039 0.0164 0.0088 -0.0097

TESLA 0.0505 0.0550 0.0751 0.0433

TOYOTA 0.0172 0.0087 0 -0.0029

UBISOFT -0.0044 0 0.0281 0.0267

WALMART 0.0034 -0.0028 0.0047 -0.0004

XEROX 0.0315 0.0058 -0.0175 0.0223

YAMAHACO -0.0001 0.0049 -0.0069 0.0024

YAMAHAMO 0.0160 0 0.0063 0
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Table 5.9: Summary statistics of rate of return across all 50 GP runs and all 42 companies.

Boldface is used to denote the best value for each statistic.

Algorithm Average Median StDev Maximum Minimum

GP-FA 0.014 0.015 0.038 0.069 -0.30

GP-SA 0.009 0.010 0.028 0.10 -0.12

GP-TA 0.013 0.014 0.033 0.10 -0.089

GP-FASATA 0.015 0.014 0.029 0.10 -0.10

minimum rate of return, indicating a relatively lower downside risk than other algorithms.

For the KS tests, GP-FASATA is, again, the control algorithm for the rate of return res-

ults, showing the difference in the distributions of GP-FASATA and the distributions of the

benchmarks. In contrast, the former’s average and median performance values are close to

GP-FASATA.

Table 5.10: Kolmogorov-Smirnov test p-values on rate of return of the proposed GP-FASATA

algorithm against the 3 GP benchmarks. Statistical significance changes are based on the

Holm-Bonferroni correction. Statistically significant differences at the 5% level are indicated

in boldface.

Algorithm GP-FASATA p-values Rank Significance level

GP-FA 3.23E-10 1 0.016

GP-SA 1.10E-08 3 0.05

GP-TA 7.10E-06 2 0.025
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5.4.3 Risk

Tables 5.11 and 5.12 present the average risk values for all runs of the 42 companies. As we

can observe, the algorithm with the highest occurrence in best risk values is GP-SA with 14

companies 2, GP-FA (12), followed by GP-TA (11), and GP-FASATA (5). However, we observe

that the risk values between the algorithms are similar and much closer than for the Sharpe

ratio and rate of return.

2Zero (0) risk values, which indicate that an algorithm performed no trading, are not taken into account when

comparing values to identify the best performing algorithm.
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Table 5.11: Averages for risk per company. Boldface is used to denote the best value for the

particular dataset. First 21 companies.

Company GP-FA GP-SA GP-TA FASATA

AAPL 0.0076 0.0236 0.0082 0.0089

ADIDAS 0.0270 0.0148 0.0264 0.0276

ALIBABA 0.0280 0.0040 0.0308 0.0239

AMAZON 0.0248 0.0311 0.0022 0.0179

ASUS 0.0248 0.0219 0.0362 0.0137

ATVI 0.0212 0.0043 0.0083 0.0239

BLACKB 0.0429 0.0869 0.0280 0.0387

COKE 0.0070 0.0701 0.0125 0.0084

EBAY 0.0185 0.0288 0 0.0523

ESTEE 0.0230 0.0044 0.0168 0.0211

FORD 0.0295 0.0057 0.0482 0.0334

FUJIFILM 0.0302 0.0554 0.0291 0.0235

FUJITSU 0.0515 0.0173 0.0170 0.0147

GM 0.0418 0.0166 0.0043 0.0532

GOOGL 0.0253 0.0146 0.0466 0.0198

HITACHI 0.0488 0.0565 0 0.0534

HONDA 0.0100 0.0080 0.0082 0.0175

HSBC 0.0179 0.0054 0.0088 0.0064

HYUNDAI 0.0231 0.0216 0.0446 0.0163

IBM 0.0326 0.0674 0.0038 0.0488

INTC 0.0300 0.0446 0.0317 0.0704
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Table 5.12: Averages for risk per company. Boldface is used to denote the best value for the

particular dataset. Last 21 companies.

Company GP-FA GP-SA GP-TA FASATA

KERING 0.0378 0.0258 0.0343 0.0411

KODAK 0.0463 0.0356 0.0361 0.0753

MCDON 0.0432 0.0397 0.0299 0

NESTLE 0.0237 0.0034 0.0173 0.0139

NFLX 0.0075 0.0622 0.0898 0.0113

NINTENDO 0.0310 0.0357 0.0491 0.0353

NYT 0.0413 0.0190 0.0406 0.0399

PANASONIC 0.0426 0.0109 0.0204 0.0259

SAINSBURY 0.0196 0.0272 0.0229 0.0304

SHISEIDO 0.0699 0.0864 0.0585 0.0417

SUBARU 0.0349 0.0559 0.0170 0

SUZUKI 0.0324 0.0686 0.0561 0.0455

TENCENT 0.0260 0 0.0987 0.0088

TESCO 0.0361 0.0189 0.0224 0.0415

TESLA 0.0407 0.0474 0.0346 0.0550

TOYOTA 0.0127 0.0184 0 0.0276

UBISOFT 0.0466 0 0.0277 0.0297

WALMART 0.0116 0.0176 0.0074 0.0244

XEROX 0.0300 0.0612 0.0213 0.0340

YAMAHACO 0.0314 0.0242 0.0374 0.0263

YAMAHAMO 0.0243 0 0.0175 0
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Table 5.13 presents the summary statistics for the risk values obtained from 50 independ-

ent runs for each company across the four GP algorithms. The table includes the mean,

median, standard deviation, maximum, and minimum values.

Table 5.13: Summary statistics of risk across all 50 GP runs and all 42 companies. Boldface is

used to denote the best value for each statistic.

Algorithm Average Median StDev Maximum Minimum

GP-FA 0.029 0.026 0.024 0.21 0.0007

GP-SA 0.034 0.022 0.034 0.25 0.0003

GP-TA 0.027 0.018 0.025 0.18 0.0006

GP-FASATA 0.030 0.023 0.027 0.17 0.00007

In terms of summary statistics, we can observe that GP-TA has the lowest mean and median

values. Furthermore, GP-FA has the lowest standard deviation value, closely followed by the

remaining algorithms. The lowest maximum and minimum risk values, however, are observed

for GP-FASATA. Thus, GP-TA is the control algorithm for risk.

For the risk results, the control algorithm is GP-TA, having the lowest mean and median

values. The KS test does reveal that the distributions of GP-TA and the benchmarks are stat-

istically significant different at level of 5% significance level.

5.4.4 Results of each market

Given that the data for all 42 companies originates from the same time period, it is worth not-

ing that considerable variation exists among their respective price series. Certain companies

demonstrate a tendency towards positive price movements, while others exhibit an overall
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Table 5.14: Kolmogorov-Smirnov test p-values on risk of the proposed GP-TA algorithm

against the 3 GP benchmarks. Statistical significance changes are based on the Holm-

Bonferroni correction. Statistically significant differences at the 5% level are indicated in

boldface.

Algorithm GP-FASATA p-values Rank Significance level

GP-FA 7.10E-06 2 0.025

GP-SA 6.88E-05 1 0.05

GP-FASATA 3.68E-05 3 0.016

negative movement. In light of these divergent market profiles, we also assess the perform-

ance of GP algorithms across these distinct scenarios. We can gain valuable insights into the

algorithms’ robustness and adaptability by examining their effectiveness in navigating diverse

market conditions.

To facilitate the analysis, we employed a methodology that involved examining the initial

and final prices of the test set for each company and calculating the corresponding return

value. Based on these return values, we subsequently categorised the companies into three

distinct groups:

• Group 1, which includes those companies whose price experienced a long-term increase

of at least 20%.

• Group 2, which includes those companies whose price experienced a long-term increase

between 0% and 19.99%.

• Group 3, which includes those companies whose price experienced a long-term de-
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crease. , i.e. had a negative return.

After defining the above groups, 19 companies were placed in Group 1, 14 in Group 2, and

9 in Group 3.

We proceeded to report the average values of three key metrics, namely the Sharpe ratio,

rate of return, and risk, for each GP algorithm across the datasets within each group. Examin-

ing Table 5.15, we observe that in Group 1, characterised by robust positive price movements,

there is no outright winner in terms of rate of return or risk. However, GP-TA demonstrates

the highest mean Sharpe ratio. In Group 2, GP-FASATA exhibits the highest Sharpe ratio value

and the lowest level of risk, alongside GP-FA. Despite underperforming in terms of rate of

return for both Group 2 and Group 3, GP-SA displays the highest average rate of return in

Group 1. In Group 3, GP-FA attains the best performance in terms of both the Sharpe ratio

and rate of return, while GP-TA exhibits the lowest level of risk.

This indicates that the GP-FASATA algorithm demonstrates favourable performance in cer-

tain aspects. In Group 2, GP-FASATA algorithm exhibits the highest Sharpe ratio value, which

indicates a potentially attractive risk-adjusted return, while showcasing the lowest level of

risk among the considered algorithms in the same group, suggesting a potentially more stable

investment strategy. However, it is important to note that GP-FASATA underperforms in terms

of the rate of return for both Group 2 and Group 3, implying that while it may provide a more

balanced risk-return profile, it may not generate the highest returns when compared to other

algorithms under those particular market conditions.



104 CHAPTER 5

Table 5.15: Separated average results per metric per trend group.

Market Algorithm Sharpe ratio Rate of return Risk

Group 1 (>20%) GP-FA 1.63 0.016 0.028

GP-SA 2.2 0.013 0.029

GP-TA 2.7 0.012 0.029

GP-FASATA 2.49 0.014 0.029

Group 2 (0% - 19.99%) GP-FA 1.09 0.003 0.031

GP-SA 3.8 0.010 0.034

GP-TA 1.89 0.0035 0.039

GP-FASATA 4.86 0.006 0.030

Group 3 (<0%) GP-FA 2.99 0.010 0.030

GP-SA 2.26 0.001 0.036

GP-TA -1.32 -0.001 0.025

GP-FASATA 1.43 0.006 0.035

5.4.5 Non-GP Benchmarks

GP-FASATA compared to machine learning benchmarks

In addition to the GP variants, we also incorporated the MLP, SVM, XGBoost, and LSTM

algorithms from the scikit-learn and TensorFlow libraries in Python for further benchmarking

purposes.

Upon analysing Table 5.16, we observed that the average values of MLP across the 42
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companies were as follows: 0.30 for the Sharpe ratio, 0.009 for the rate of return, and 0.041

for the risk. These values stand in contrast to those obtained from the GP algorithms, which

exhibited significantly higher values for the Sharpe ratio and risk. To ascertain the statistical

significance of these differences, we conducted Kolmogorov-Smirnov tests. The results of

Chapter 6.17 indicated that the distribution of GP-FASATA was statistically significant different

from MLP for the Sharpe ratio and risk values while not statistically significant different for

the rate of return.

Similarly, the SVM algorithm yielded average values of 0.37 for the Sharpe ratio, 0.01

for the rate of return, and 0.038 for the risk. Once again, there were disparities between the

performances of the novel GP algorithm and SVM. The KS tests confirmed that the distribution

of the GP-FASATA algorithm was statistically significant different from SVM for the Sharpe

ratio values. At the same time, there are not statistically significant differences in terms of the

rate of return and risk.

The XGBoost algorithm had average values of 0.36 for the Sharpe ratio, 0.010 for the rate

of return, and 0.041 for the risk. GP-FASATA does perform better in the financial metrics,

while the novel GP algorithm’s distribution is statistically significant different to XGBoost

for the Sharpe ratio values (as shown in Table 6.17), while the difference is not statistically

significant for the rate of return and risk.

The LSTM algorithm had average values of 0.23 for the Sharpe ratio, 0.006 for the rate of

return, and 0.043 for the risk. GP-FASATA does perform better the algorithm in each of the

three financial metrics. However, based on the KS tests in Table 6.17, the distributions are

only statistically significantly different for the Sharpe ratio values, as before, and not for the

rate of return or risk.

These results suggest that the GP-FASATA algorithm performs better than the four ma-
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chine learning benchmarks in terms of the Sharpe ratio, rate of return, and risk, showing

there is a disadvantage of these four algorithms compared to GP algorithms when it comes

to algorithmic trading and creating strategies using metrics that consider both the returns

and the risk. However, there is no statistical difference between the distributions of the GP

algorithm regarding the rate of return and risk values of the machine learning benchmarks.

Table 5.16: Comparison of average values for GP-FASATA and algorithmic benchmarks.

Algorithm Sharpe ratio Rate of return Risk

MLP 0.30 0.009 0.041

SVM 0.37 0.010 0.038

XGBoost 0.36 0.010 0.041

LSTM 0.23 0.006 0.043

GP-FASATA 2.99 0.015 0.030

GP-FASATA compared to the financial trading strategy

As explained in Section 5.2.3, the TSd,r trading strategy involves purchasing one unit of stock

on the first trading day and selling it when there is a specific price increase of r% within a

period of d days, or at the end of the d days period.

When comparing GP-FASATA and TSd,r, the first thing we observe is that the latter per-

forms on average many more trades (240), while the former performs only 29, while it is

evident from Table 5.18 that GP-FASATA achieves superior values across all three metrics.

Notably, GP-FASATA outperforms the TSd, r strategy regarding the Sharpe ratio and risk. The

differences in the distributions observed are statistically significant, as confirmed by the KS

test, with p-values of 1.3e− 10 for the Sharpe ratio, 0.004 for the rate of return and 3.8e− 05
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Table 5.17: Kolmogorov-Smirnov test p-values on all financial metrics of the proposed

GP-FASATA algorithm against the 4 machine learning benchmarks. Statistical significance

changes are based on the Holm-Bonferroni correction. Statistically significant differences at

the 5% level are indicated in boldface.

Financial Metric Algorithm GP-FASATA p-values Rank Significance level

Sharpe ratio MLP 3.9e-6 1 0.05

SVM 1.27e-05 3 0.016

XGBoost 1.25e-05 4 0.0125

LSTM 3.68E-05 2 0.025

Rate of return MLP 0.79 4 0.0125

SVM 0.29 1 0.05

XGBoost 0.43 3 0.016

LSTM 0.035 2 0.025

Risk MLP 0.0089 1 0.05

SVM 0.064 4 0.0125

XGBoost 0.018 2 0.025

LSTM 0.035 3 0.016
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for risk. No Holm-Bonferroni correction took place, as there is only one pairwise comparison.

These findings suggest that GP-FASATA performs better than the TSd,r strategy regard-

ing risk-adjusted returns, as indicated by the higher Sharpe ratio and lower risk. While the

difference in the distribution of rate of return is not statistically significant, GP-FASATA still

maintains an advantage across all three metrics. Therefore, based on the statistical analysis

and the observed performance, it can be concluded that GP-FASATA offers a more favourable

trading strategy as compared to the TSd,r approach, considering both risk and return.

Table 5.18: Average values of STGP-FASATA-SD and TSd, r.

Algorithm/Metric Sharpe ratio Return Risk

TSd, r 0.10 0.006 0.067

GP-FASATA 2.99 0.15 0.030

5.4.6 Summary of findings

In conclusion, as seen in Tables 5.5 - 5.18 and focusing on the findings from GP-FASATA, the

results have been summarised into 2 categories based on the GP variants’ results and those of

other benchmarks.

When comparing the GP variants, it is evident that:

• GP-FASATA has higher mean values regarding the Sharpe ratio and rate of return,

though not the median. At the same time, the distributions of the algorithms are stat-

istically different, as exhibited by the KS-tests. On the other hand, GP-TA has the lowest

values in risk compared to the other GP algorithms, from which its distribution is also

statistically significant different.

• Developing trading strategies that incorporate information from multiple indicator types



5.4. RESULTS AND DISCUSSION 109

(fundamental analysis, sentiment analysis, and technical analysis) can lead to more

profitable and less risky strategies as compared to strategies that rely solely on a single

indicator type (such as GP-FA, GP-SA, or GP-TA).

• While the GP-FASATA results in terms of the Sharpe ratio and rate of return were encour-

aging, it was not always clear that GP-FASATA was the best algorithm across all metrics,

while the algorithm showcases limitations. A particular limitation is that the current GP

representation might not allow for all three analysis types (FA, SA, and TA) to be used

in a tree, which might potentially mean that the GP is not taking full advantage of these

types. Thus, we are motivated to look for better ways to allow the GP algorithm to use

all three types. We will do this in Chapter 6.

Regarding the comparison of GP-FASATA to the non-GP benchmarks, we observe the fol-

lowing:

• That the GP-FASATA algorithm demonstrates superior performance compared to four

commonly used algorithmic benchmarks, namely MLP, SVM, XGBoost and LSTM, and its

distribution shows statistical significance compared to theirs. Furthermore, the higher

risk associated with all algorithms is evident through their low Sharpe ratio values,

which are below 0.4. In contrast, the novel GP algorithm exhibits a rate of return value

twice as high as that obtained from the four algorithmic benchmarks.

• The GP-FASATA algorithm offers greater financial advantages compared to the trading

strategy TSd,r. The distribution of the algorithm is statistically significant different, and

in addition with the higher mean and median values we can state that it outperformed

TSd,r in terms of key financial metrics such as the Sharpe ratio, rate of return, and risk.
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5.5 Conclusion and Further Experiments

This chapter delves into the performance evaluation of a genetic programming algorithm that

integrates fundamental, sentiment, and technical analysis indicators. The experimentation on

a dataset encompassing 42 companies reveals that combining these three data types produces

competitive outcomes compared to individual analyses or algorithms that combine only two

analysis types.

In particular, the GP-FASATA algorithm surpasses the benchmark measures across the

Sharpe ratio and rate of return, but not in terms of risk. This finding underscores the ad-

vantages derived from the amalgamation of indicators from fundamental analysis (FA), senti-

ment analysis (SA), and technical analysis (TA), especially when addressing the Sharpe ratio.

While each analysis type can generate favourable trading results independently, the outcomes

can be further enhanced by combining all three terminal sets. This observation suggests that

while there may be individual advantages in utilising the aforementioned analysis types, the

true advantages emerge when incorporating all three, as they exhibit complementary charac-

teristics.

In the next chapter, we develop a strongly typed GP, wherein each FA, SA, and TA terminal

set will be assigned a distinct branch. This approach will enable the search process to focus on

each indicator type separately, aiming to refine the search quality and yield even more favour-

able trading outcomes. Furthermore, we will introduce a novel fitness function that focuses

not only on the whole tree’s fitness but also on the performances of each tree component,

meaning the FA, SA, and TA indicators. This investigation aims to uncover the specific bene-

fits arising from integrating these three analysis types, shedding light on potential synergies

and the complementarity arising between them.
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Non-strongly and strongly-typed

genetic programming

6.1 Chapter motivation

The combination of individual analysis types has generated optimism regarding the potential

for achieving improved performance. However, as seen in the previous chapter, while GP-

FASATA demonstrated better mean results in terms of Sharpe ratio and rate of return, its

median results were not as good. In addition, in terms of risk, GP-TA was the algorithm with

the lowest risk value. Thus, there seem to be limitations when integrating all 36 indicators

into a non strongly-typed GP algorithm.

To address these limitations, this chapter proposes a novel strongly-typed genetic pro-

gramming algorithm, one which integrates fundamental analysis (FA), sentiment analysis

(SA), and technical analysis (TA). To remind the reader, a strongly-typed genetic program-

ming (STGP) architecture ensures that only operations compatible with specific data types

111
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are allowed, meaning that the grammar explicitly defines and enforces data types of vari-

ous elements within a program. STGP ensures that only "valid" combinations (combinations

of the same analysis type) of functions and terminals are generated and that the resulting

programs adhere to a predefined type structure.

The strongly-typed nature of GP enforces the use of FA, SA, and TA indicators into distinct

branches or subtrees within the GP model. Consequently, each GP tree incorporates a dedic-

ated branch exclusively focused on FA indicators, another dedicated branch for SA indicators,

and a third dedicated branch addressing TA indicators. This type of constraint facilitates

targeted exploration within each indicator type’s search space, thereby promoting more ef-

fective exploration and exploitation. Type constraints are incorporated during crossover and

mutation operations to ensure the validity of generated trees.

Moreover, we introduce a new fitness function, one which considers not only the perform-

ance of a given individual (tree), as it usually happens in evolutionary algorithms, but also

the performance of the FA, SA and TA subtrees. As a result, the GP evolves individuals, which

ensures that all analysis indicators contribute to the overall performance of a GP individual.

This is particularly important because it guarantees good performance for each component of

an individual (FA, SA, and TA subtrees) and also good performance for the overall individual,

which contains the aforementioned FA, SA, and TA subtrees.

The primary objective of this chapter is to demonstrate the efficacy of the strongly-typed

GP architecture when combining the three financial analysis types, as well as to introduce a

novel fitness function whereby all components are equally taken into consideration. To as-

sess its performance, a comparative analysis is conducted, pitting the proposed GP algorithm

against the GP-FASATA and GP-TA algorithms introduced in the preceding chapter. The exper-

imental evaluation is conducted on the same dataset as in the previous chapter, comprising
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stock data from 42 international companies and evaluating the same three financial metrics

(i.e., Sharpe ratio, rate of return, and risk) that are employed to assess and report the per-

formance of the algorithms.

The rest of this chapter follows the structure of Chapter 5 and it is organised as follows:

First, we present the methodology we follow (Section 6.2), followed by the experimental

setup (Section 6.3), and, finally, we present the results and the analysis (Section 6.4) before

the conclusion and future works (Section 6.5).

6.2 Methodology

This chapter presents the STGP-FASATA-S, an innovative genetic programming (GP) algorithm

that incorporates a strongly-typed architecture capable of distinguishing between fundamental,

sentiment, and technical analysis types. We contend that the adopting such an architecture

enhances the algorithm’s capacity to explore each search space effectively, leading to models

that fully exploit the data type indicators.

The research methodology comprises three main components. Firstly, Section 6.2.1 offers

an overview of the STGP methodology and the model representation, while the GP operators

are introduced in Section 6.2.2. Subsequently, Section 6.2.3 reminds the reader of the trading

signals and the trading strategy utilised in the thesis. Finally, Section 6.2.4 details the fitness

function and metrics that will be taken into consideration during the evaluation process,

which are novel in this thesis contribution.
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6.2.1 Model representation

Part 1 of Figure 6.1 illustrates a representative tree structure generated by the STGP-FASATA

algorithm. The algorithm’s strongly-typed architecture imposes specific constraints on the

tree’s composition. Specifically, the root node of the tree is configured to have three children,

each corresponding to a distinct category, specifically fundamental analysis (FA) indicators,

sentiment analysis (SA) indicators, and technical analysis (TA) indicators. To enforce this

structure, the root node is consistently set as a 3-AND function that serves as the junction

point for the three branches. Notably, the first branch of the 3-AND function is exclusively

dedicated to FA-related indicators. In contrast, the second branch is solely designated for

SA-related indicators, and the third branch is exclusively assigned to TA-related indicators.

The function nodes are based on a 3-input AND function with a Boolean output (we call it

3-AND), as well as binary AND, OR, Greater than (GT) and Less than (LT) functions, each with

different variants allowing for each indicator type. In particular, our algorithm uses ANDFA,

ORFA, GTFA, LTFA function nodes in the FA branch, ANDSA, ORSA, GTSA, LTSA function nodes

in the SA branch and it uses ANDTA, ORTA, GTTA, LTTA function nodes in the TA branch.

The 3-AND function takes 3 children. The first is of type FA, the second is of type SA, and

the third is of type TA. Thus, the first branch can take any of the relevant FA-type functions,

i.e. ANDFA, ORFA, GTFA, or LTFA. The same principle applies to the second (SA) and third (TA)

branches. All three branches of the 3-AND function need to evaluate TRUE in order for the

function to yield a TRUE outcome.

The function set used in our algorithm is summarised in Table 6.1. This carefully designed

function set ensures that the algorithm generates models that fully utilise all indicator types

(i.e., FA, SA, and TA) while enforcing type consistency at the same time. In doing so, we can
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prevent type errors and enhance the exploration of the search space.

Table 6.1: Function set for the ActTrade algorithm.

Explanation Function nodes

Root node 3-AND

FA, SA and TA type for AND ANDFA, ANDSA, ANDTA

FA, SA and TA type for OR ORFA, ORSA, ORTA

FA, SA and TA type for Greater Than GTFA, GTSA, GTTA

FA, SA and TA type for Less Than LTFA, LTSA, LTTA

The terminal sets consist of the same indicators as in Chapter 5, which can be found in

Table 5.1. However, the key change is that different sets are allowed at different branches

of the corresponding trees. In the FA branch (Table 2.1), the terminal set consists of specific

indicators permitted to be used within that branch. Similarly, the SA branch (Table 2.2) and

the TA branch (Table 2.3) have their own terminal sets of permissible indicators. Additionally,

all terminal sets include an Ephemeral Random Constant (ERC) variable, which serves as a

threshold value for the indicators and consists of random values between −1 and 1.

Compared to a non-strongly typed GP, our proposed algorithm has the advantage of fully

utilising the search space of each individual indicator type. The three branches corresponding

to the FA, SA and TA indicators are connected using the 3-AND function at the root of the

tree. This integration creates a foundation for better exploration and exploitation of the

search space. Consequently, our algorithm can generate a broader range of trading strategies,

which are not only diverse but also more effective and adaptable.
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6.2.2 GP operators

As in Chapter 5, our novel algorithm again utilises elitism, as well as subtree crossover and

one-point mutation. The difference of this novel algorithm’s GP architecture, though, is that

the subtree crossover does not allow the indicators to "interact" and exist within the same

branch but ensures the exchanged nodes must be of the same type (e.g., a terminal node with

another terminal node) and data type (e.g., FA branch with FA branch). This is implemented

to maintain the validity of the tree. To ensure the legality of the tree exchange, we first

exchange the FA branches of the two selected parents, and once that process is complete, we

exchange the SA branches of the two trees, followed by the exchange of TA branches.

Finally, we use point mutation in a strongly-typed setting, where specific limitations are,

again, in place. For example, a function node such as ORSA can only be changed to ANDSA,

while a function node like GTTA can be replaced only with LTTA (and similarly for other

function nodes), an ERC can only be replaced with another ERC, and a terminal variable can

only be replaced with another variable of the same indicator type. The algorithm ensures

that valid data types replace the mutated nodes. Point mutation occurs in one of the three

branches per tree.

The individuals selected as parents for these operators are determined through tourna-

ment selection. A selected individual will undergo crossover with a probability of p and will

undergo mutation with the remaining probability of 1− p.

6.2.3 Trading signals and trading strategy

Trading signals are generated using the STGP-FASATA-S trees, where the outcome of the root

3-AND function, which evaluates to either TRUE or FALSE, is utilised to provide a recom-
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mendation regarding whether to buy a stock or hold it. As mentioned in Chapter 5, this

signal is determined by employing an If-Then-Else (ITE) node as the root of a separate tree

structure. An example STGP-FASATA-S tree can be found in Figure 6.1.

The evolved tree within Part 1 of Figure 6.1, the root node is denoted as 3-AND. The FA

branch commences with the LTFA node, as indicated by orange-coloured nodes. Similarly, the

SA branch begins with the GTSA node, also represented by orange-coloured nodes. Finally,

the TA branch corresponds to the LTTA node, distinguished by yellow-coloured nodes.

The rest of the trading strategy is the same as in the first as in Chapter 5. To remind the

reader, each evolving STGP model is integrated into a tree structure, wherein an If-Then-Else

(ITE) node serves as the root. The second and third branches of this ITE statement are static

and represent the decisions to buy (1) and hold (0) stock, respectively, as depicted in Figure

6.1. The trading strategy examines whether the price exhibits an increase of r% within the

subsequent d days, or if the price does not meet this condition, the strategy opts to sell the

stock on the dth day. The parameters d and r are fine-tuned during the validation phase and

remain constant for all considered GP algorithms, as discussed in Section 5.3.3.

6.2.4 Fitness function and Metrics

As seen in the previous chapter (Chapter 5) in Section 5.2.4, our analysis considers the metrics

of rate of return, risk and Sharpe ratio.

To remind the reader, the return, R, of a trade, captures the profit made as a percentage

of the amount invested. The rate of return (RoR) represents the sample mean of the returns

of all trades , and the risk is measured as the standard deviation of the returns. The Sharpe

ratio, Sr, is the expected value of the excess return compared to the risk free return, Rf , over

the risk, as introduced in Chapter 5, Equation 5.2.
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Figure 6.1: Sample tree of STGP-FASATA-S. The first child of the 3-AND function is enforced

to be FA-related, while the second child is SA-related, and the third is enforced to be TA-

related. This sample tree checks if the P/E indicator is less than the ERC of 0.5 if the TEXTpol

indicator is greater than the ERC 0.7, and if the ROC10 indicator is less than the ERC 0.3. If

all three of them are TRUE, then the recommendation will be to buy (1) otherwise it will be

to hold (0).

The difference with Chapter 5 lies in the fact that the new fitness function does not aim

to maximise the Sharpe ratio of the complete tree solely. Instead, the new fitness function is

the summation of the Sharpe ratio, SC
r , of the complete tree, which combines FA, SA and TA

indicators; the Sharpe ratio, SFA
r of the subtree with FA indicators, SSA

r , the Sharpe ratio of

the subtree with only SA indicators, the Sharpe ratio, STA
r , of the substree that considers only

TA indicators, with weights wc, wfa, wsa, and wta. Formally,
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fsum = wc · SC
r + wfa · SFA

r + wsa · SSA
r + wta · STA

r (6.1)

For example, in Figure 6.1, SC
r corresponds to the subtree with root node 3-AND (i.e.

Part 1), SFA
r corresponds to the subtree with root node LTFA (orange-coloured nodes), SSA

r

corresponds to the subtree with root node GTSA (blue-coloured nodes), and STA
r corresponds

to the subtree with root node LTTA (yellow-coloured nodes).

The advantage of using this fitness function is that it allows us to evolve trees that maxim-

ise all four Sharpe ratios. As a result, the GP can guide the search towards trading strategies

that exhibit strong performance across all four components of the fitness function. This is

particularly important because if, for example, the fitness function was only the Sharpe ratio

of the whole tree (as it usually happens in such cases in the literature), then the GP would

be able to identify well-performing trees, but would not necessarily take advantage of its

strongly typed nature that ensures that there are always FA, SA, and TA indicators present.1

To conclude, the proposed GP algorithm is a strongly typed GP which aims to maximise

the Sharpe ratio. The fitness function is determined by the weighted sum of the FA, SA, and

TA subtrees and the complete tree comprising the three subtrees. The strongly typed structure

of the GP enables more effective exploration and utilisation of all three indicator types. At

the same time, the fitness function emphasises each indicator’s contribution to enhancing the

1In fact, early experiments have indicated exactly this: when the fitness function was only the Sharpe ratio

of the whole tree, very frequently, the best tree would have a large and well-performing subtree on a single

analysis type, e.g. the SA side, but a small and bad-performing subtree on the FA and TA sides. In addition, the

performance of the overall tree was no better than the performance of a non-strongly typed GP that allowed the

presence of FA, SA, and TA indicators, thus making the use of the strongly typed feature redundant. Our proposed

fitness function overcomes this limitation.
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algorithm’s trading performance.

6.3 Experimental Setup

As in Chapter 5, in the experimental setup section, we will quickly mention the data collection

steps again, Section 6.3.1, introduce the GP benchmarks of this chapter in Section ??, and we

will finally remind the reader of the parameter tuning process in Section 6.3.3.

6.3.1 Data

The data collection process is the same as in Chapter 5, and can be found in detail in Section

5.3. As mentioned before, we gathered data from 42 international companies, derived from

different stock exchanges, between January 1st, 2015, and concluding on January 31st, 2020.

The fundamental analysis data were gathered from "Seeking Alpha". A web scraper was used

for the sentiment analysis data collection, and Yahoo! Finance was the tool employed to

collect the daily closing prices to create the technical analysis data. With these tools, we

obtained 36 indicators in total, 12 from each analysis type, which we subsequently divided

into three sequential portions.

6.3.2 Benchmarks

While GP-FASATA outperformed GP-FA, GP-SA, and GP-TA in the mean values of Sharpe ratio

and rate of return, it did not outperform them in terms of the median values. This is why we

cannot consider GP-FASATA to be the outright winner of Chapter 5. Thus, we will benchmark

the proposed STGP-FASATA-S algorithm against all four non strongly-typed algorithms from

Chapter 5 and the strongly-typed version of GP-FASATA, namely STGP-FASATA. We remind
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the reader of the following algorithms:

• GP-FA is a GP algorithm that only includes fundamental analysis indicators in its ter-

minal set. The motivation for this benchmark is to evaluate the trading performance of

a non strongly-typed GP that only uses fundamental analysis indicators.

• GP-SA is a GP algorithm that only includes sentiment analysis indicators in its terminal

set. As mentioned above, the motivation for this benchmark is to evaluate the perform-

ance of a GP using only SA indicators.

• GP-TA is a GP algorithm that only includes technical analysis indicators in its terminal

set. The motivation here is similar to the use of GP-FA and GP-SA.

• GP-FASATA is a (non-strongly typed) GP algorithm that combines indicators of funda-

mental, sentiment and technical analysis. The motivation for using this algorithm is

to evaluate the GP’s trading performance when it uses all three indicator types in its

terminal set, albeit in a non strongly-typed manner. As there are no branch types, the

GP can choose any and as many indicators as it sees fit, regardless of whether they are

derived from fundamental, sentiment, or technical analysis.

• STGP-FASATA is a strongly-typed GP algorithm that combines fundamental, sentiment

and technical analysis indicators. This algorithm does not use our novel fitness function,

and thus, it acts as a valuable benchmark to enable us to understand the added value of

the aforementioned innovations of the proposed GP. This is essentially the algorithm’s

divergence from the proposed STGP-FASATA-S algorithm.

The motivation behind using these algorithms is to assess the trading performance of a GP

model when all three indicator types are available in its terminal set without the constraints
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of type enforcement and with the constraints of the strongly-typed GP architecture.

The STGP-FASATA-S algorithm employs the same strongly-typed architecture as the STGP-

FASATA algorithm yet uses a novel fitness function. By comparing the STGP-FASATA-S al-

gorithm with both GP-FASATA and STGP-FASATA algorithms, we can evaluate the impact of

type enforcement on the GP models’ trading performance and establish the advantages of

a more elaborate fitness function. These comparisons provide insights into the advantages

and limitations of employing a strongly-typed GP in utilising different indicator types and

generating effective trading strategies.

Furthermore, as seen in Chapter 5, the study also included four additional algorithmic

benchmarks with the same prediction strategy, namely, the Multilayer perceptron (MLP),

Support vector machine (SVM), eXtreme Gradient Boosting (XGBoost), and Long short-term

memory (LSTM), as well as a financial benchmark, (TSd,r). However, the proposed STGP-

FASATA-S will only be compared against the machine learning benchmarks, as the financial

benchmark has already been statistically outperformed across all financial metrics by GP-

FASATA and will not be included in this chapter.

6.3.3 Parameter Tuning

As in Chapter 5, a two-step grid search was conducted using the validation set to determine

the optimal parameters for the GP algorithm. The steps of the parameter tuning have been

described in Chapter 5, while the parameters remain the same and can be found in Table 6.2.

Again, tuning the trading strategy parameters (d and r) is conducted independently for

each company across the algorithms employed in the study.
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Table 6.2: GP Parameters for the eight GP algorithms.

GP Parameters

Population size 1000

Crossover probability 0.95

Mutation probability 0.05

Generations 50

Tournament size 4

Maximum tree depth 6

6.4 Results and Discussion

In this section, we present the experimental results of our study, focusing on the comparison

between the strongly-typed GP algorithms, STGP-FASATA-S and STGP-FASATA, and the non

strongly-typed algorithms, GP-FA, GP-SA, GP-TA, and GP-FASATA. To assess the performance

of each algorithm, we conducted 50 independent runs on the training set for each of the

42 companies, resulting in a total of 50 distinct trading strategies for each algorithm. As in

Chapter 5, we include Tables 6.3 and 6.4 to showcase the mean Sharpe ratio values of the runs

in each company, separated in the first and last 21 companies. Moreover, the mean Sharpe

ratio values of all the runs across all companies can be found in Table 6.5. Similarly, the mean

values for rate of return and risk can be found in Sections 6.4.2 and 6.4.3, respectively.

As in Chapter 5, to ensure the accuracy and reliability of our statistical analysis, certain

runs were excluded from the calculation of mean values presented in Tables 6.5, 6.9, and

6.13. Again, this exclusion was done to avoid distortions in the results and maintain the

integrity of the statistical measures. More specifically, runs where the GP and STGP algorithms
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did not make any trades due to potential losses were not considered in calculating the mean

values of the Sharpe ratio, rate of return, and risk. The provided tables present the mean,

median, standard deviation, maximum, and minimum values for each algorithm across the

42 companies.

Again, to validate our findings, we employed the non-parametric Kolmogorov-Smirnov

(KS) test, which is suitable for comparing two independent groups, and applied it to all runs

across companies for each algorithm. The KS test helps to ensure the robustness and reliability

of our results.

Since the comparisons made are between the STGP-FASATA-S, STGP-FASATA, and the non-

strongly GP algorithms, we, again, need to take into consideration the multiple comparisons.

Therefore, there is a need for the application of a correction method, such as the Holm-

Bonferroni correction. In this section, we conducted five separate comparisons for each fin-

ancial metric, comparing the STGP-FASATA-S algorithm with the three other GP benchmarks

studied herein.

For each rank, which represents the magnitude order of the p-values (in this case, with

1 being the smallest and 5 being the largest), the minimum acceptable p-value threshold

is calculated using the formula α(rank) = 0.05
5−rank+1 . To assess the statistical significance

of differences between two samples at a 5% significance level, we compared the p-values

obtained from each comparison to the corresponding minimum acceptable p-value for its

rank. Specifically, the first-ranked p-value should be less than 0.01, the second-ranked p-

value should be less than 0.0125, the third-ranked p-value should be less than 0.016, the

fourth-ranked p-value should be less than 0.025, and the fifth-ranked p-value should be less

than 0.05.
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6.4.1 Sharpe ratio

Tables 6.3 and 6.4 present the average Sharpe ratio values over the 50 runs for the 42 com-

panies. As we can observe, the algorithm that has the most optimal Sharpe ratio values is

GP-SASA with 14 companies, followed by STGP-FASATA with 8 companies, GP-TA and STGP-

FASATA-S with 6 companies each, GP-FA with 5 companies, and GP-FASATA with 3 companies.

As mentioned in Chapter 5, it needs to be noted that in some cases, the mean Sharpe ratio

values are close. In this chapter, we observe that STGP-FASATA-S has more companies with

0 Sharpe ratio values, indicating that this is a more conservative algorithm than the bench-

marks.

Table 6.5 displays the mean and median Sharpe ratio for each algorithm, as well as the

standard deviation and maximum and minimum values of 50 runs for each company across

the eight GP algorithms.

As has been noted before, when examining the results of the Sharpe ratio, it is crucial to

bear in mind that when analysing the Sharpe ratio’s results, one must account for its sensit-

ivity to the number of trades. When the number of trades is limited, the risk calculation can

produce exceptionally small values, potentially resulting in significantly high Sharpe ratios,

as risk serves as the denominator in the ratio.

Referring to Table 6.5, it is evident that STGP-FASATA and GP-FASATA have similar average

Sharpe ratios, while the median Sharpe ratio of STGP-FASATA slightly outperforms that of the

GP-FASATA and the rest of the non-strongly typed GP variants. On the other hand, STGP-

FASATA-S outperforms all other algorithms in the mean and median values for the Sharpe

ratio. However, the standard deviations of the algorithms differ, indicating a variance in the

distribution of Sharpe ratios around the respective means, wherein the GP-TA has the lowest
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Table 6.3: Averages for Sharpe ratio per company. Boldface is used to denote the best value

for the particular dataset. First 21 companies.

Company GP-FA GP-SA GP-TA FASATA STGP-FASATA STGP-FASATA-S

AAPL 5.5915 2.9952 6.2435 6.0608 2.6744 8.4403

ADIDAS 0.0455 -0.8810 0.1087 0.1709 0.6694 0

ALIBABA 1.3241 12.8724 2.7733 4.4762 2.7338 2.3999

AMAZON 1.1791 1.7928 14.7694 5.5078 3.7653 0

ASUS -1.3757 3.4320 0.5216 0.8423 -0.2138 -0.5439

ATVI 0.5347 2.5614 3.5067 0.7391 3.0072 0.3750

BLACKB -1.2496 -0.0329 2.8176 1.3741 1.6736 1.0647

COKE 8.7271 -0.5819 0.6859 1.2089 1.8917 2.6953

EBAY 0.6157 6.3670 0 -0.5972 -0.0702 0.4302

ESTEE 0.2138 2.0982 1.2340 0.7858 1.8651 8.7272

FORD -0.1341 8.3010 -0.5957 0.1256 5.2550 0

FUJIFILM 1.0442 0.5517 -1.5904 -0.5409 1.0232 -1.7277

FUJITSU 0.7533 3.7077 13.7997 15.5743 9.9302 24.6731

GM 1.0112 4.0144 -20.9106 -0.2385 -0.6598 0

GOOGL 0.0520 2.4776 2.3801 3.7570 1.1243 -0.1268

HITACHI -0.1452 0.2454 0 0.0971 -1.2785 0

HONDA 1.2830 6.6325 2.5088 1.6852 2.0304 2.4846

HSBC 2.8015 2.9204 0.1729 0.0370 1.9430 0

HYUNDAI 2.4618 0.7194 -0.6452 31.4885 10.8667 1.1241

IBM 0.4644 0.9346 10.5784 1.8172 6.8871 3.2115

INTC 0.8131 1.9789 1.4645 0.9523 2.2122 0
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Table 6.4: Averages for Sharpe ratio per company. Boldface is used to denote the best value

for the particular dataset. Last 21 companies.

Company GP-FA GP-SA GP-TA FASATA STGP-FASATA STGP-FASATA-S

KERING 0.5836 0.7536 0.9268 0.7333 1.1841 0.3960

KODAK 1.1804 1.4972 1.6641 0.4966 1.1869 1.0455

MCDON -0.0502 0.9143 -4.3046 0 -0.0126 0

NESTLE -0.0649 2.3210 -0.0132 2.6653 9.8132 0.1730

NFLX 8.0428 17.8119 0.9170 6.6686 3.1125 5.0024

NINTENDO 0.1078 1.1302 -0.1277 0.4118 3.8835 0.7198

NYT 0.3141 3.2256 -0.7486 0.1152 -0.0254 -2.3197

PANASONIC 0.1002 2.5060 3.9634 2.3647 1.3352 3.6128

SAINSBURY 14.9238 2.2750 2.0274 5.3955 1.0712 15.2586

SHISEIDO -0.6942 4.9143 0.5602 -2.4178 -1.0828 1.8925

SUBARU 0.6109 -0.1824 7.7342 0 -0.5199 0.0901

SUZUKI 5.5550 -1.0981 2.6771 0.6488 0 6.3275

TENCENT 0.3319 0 -0.5544 15.8820 4.7378 0.3920

TESCO 0.1186 0.9316 2.2420 -0.2571 15.6728 0

TESLA 0.7089 3.5859 2.1825 2.0695 0.9962 1.6463

TOYOTA 3.0496 1.1699 0 -0.3441 3.0060 0

UBISOFT 1.0275 0 1.5272 4.0745 5.7834 -0.4325

WALMART 2.8774 1.1366 1.9536 0.2454 1.5732 0.1634

XEROX 6.4406 0.1473 -0.8290 2.3401 1.4751 0

YAMAHACO 0.5634 1.3774 0.4464 0.7569 1.7156 2.1979

YAMAHAMO 1.6966 0 0.6509 0 6.6631 -0.1101
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Table 6.5: Summary statistics of Sharpe ratio across all 50 GP runs and all 42 companies.

Boldface is used to denote the best value for each statistic.

Algorithm Average Median StDev Maximum Minimum

GP-FA 2.18 0.67 10.37 83.59 -52.54

GP-SA 2.65 0.57 10.75 173.13 -14.16

GP-TA 2.32 0.70 5.62 31.47 -20.9

GP-FASATA 2.99 0.58 12.1 206.25 -9.21

STGP-FASATA 3 0.64 9.9 144.32 -8.81

STGP-FASATA-S 3.78 1.07 11.57 83.59 -27.80

standard deviation value.

When conducting the Kolmogorov-Smirnov tests we compare the distribution of STGP-

FASATA-S, as the control algorithm, with the distributions of the other benchmarks. In this

case the p-value of the KS test, found in Table 6.6, suggesting that there are statistically

significant differences in the distributions of STGP-FASATA-S and the benchmark algorithms.

6.4.2 Rate of Return

Tables 6.7 and 6.8 showcase the average rate of return values over the 50 runs for the 42

companies. The algorithm with the most best rate of return values is again GP-SA with 12

companies, followed by STGP-FASATA-S with 8 companies, GP-FA and GP-TA with 7 companies

each, STGP-FASATA with 6 companies, and GP-FASATA with 2 companies. As indicated, in

many cases, the mean rate of return values are closer.

Table 6.9 presents the mean, median, standard deviation, maximum, and minimum values
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Table 6.6: Kolmogorov-Smirnovtest p-values on Sharpe ratio of the proposed STGP-FASATA-S

algorithm against the 5 GP benchmarks. Statistical significance changes are based on the

Holm-Bonferroni correction. Statistically significant differences at the 5% level are indicated

in boldface.

Algorithm STGP-FASATA-S p-values Rank Significance

level

GP-FA 1.70E-45 4 0.025

GP-SA 3.34E-38 5 0.05

GP-TA 1.03E-48 3 0.016

GP-FASATA 1.82E-84 1 0.01

STGP-FASATA 4.31E-65 2 0.0125

of the rate of return obtained from 50 iterations for each company, considering the application

of the six genetic programming (GP) algorithms.

Upon reviewing the summary statistics presented in Table 6.9 and the statistical tests

of Table 6.10, it is evident that STGP-FASATA-S does demonstrate better mean and median

values for the rate of return. At the same time, GP-FASATA performs slightly better than the

remaining GP benchmarks. Moreover, GP-FA has the same median value as STGP-FASATA-S,

followed by GP-TA. However, the standard deviation value of STGP-FASATA-S is higher than

that of GP-FASATA and STGP-FASATA, which are similar and fall closer to that of the GP-

TA algorithm. Furthermore, STGP-FASATA-S exhibits a higher maximum value and a lower

minimum value.

Based on the statistical tests presented in Table 6.10, we again compare the distribution of
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Table 6.7: Averages for rate of return per company. Boldface is used to denote the best value

for the particular dataset. First 21 companies.

Company GP-FA GP-SA GP-TA FASATA STGP-FASATA STGP-FASATA-S

AAPL 0.0116 0.0135 0.0237 0.0243 0.0227 0.0277

ADIDAS 0.0014 0.0014 0.0050 0.0023 0.0082 0

ALIBABA 0.0200 0.0304 0.0146 0.0229 0.0210 0.0244

AMAZON 0.0295 -0.0013 0.0205 0.0223 0.0187 0

ASUS -0.0339 0.0009 0.0191 -0.0107 -0.0022 0.0009

ATVI 0.0103 0.0099 0.0157 0.0080 0.0124 0.0079

BLACKB 0.0062 -0.0089 0.0344 0.0146 0.0281 0.0144

COKE 0.0163 -0.0403 0.0085 0.0095 0.0131 0.0111

EBAY 0.0094 0.0016 0 -0.0295 -0.0059 0.0102

ESTEE 0.0028 0.0095 0.0091 0.0054 0.0094 0.0092

FORD -0.0038 0.0140 -0.0285 0.0006 0.0102 0

FUJIFILM 0.0317 0.0308 -0.0257 0.0005 0.0131 -0.0321

FUJITSU 0.0355 0.0646 0.0932 0.0894 0.0689 0.1016

GM -0.0007 0.0237 -0.0894 -0.0125 -0.0354 0

GOOGL 0.0015 0.0060 -0.0071 0.0019 0.0099 -0.0033

HITACHI -0.0027 0.0125 0 0.0054 -0.0184 0

HONDA 0.0111 0.0085 0.0012 0.0128 0.0141 0.0139

HSBC -0.0026 0.0099 0.0023 0.0095 0.0052 0

HYUNDAI 0.0130 0.0124 -0.0205 0.0268 0.0191 0.0344

IBM 0.0150 0.0100 0.0315 0.0041 0.0134 0.0467

INTC 0.0251 -0.0093 0.0016 -0.0092 0.0185 0
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Table 6.8: Averages for rate of return per company. Boldface is used to denote the best value

for the particular dataset. Last 21 companies.

Company GP-FA GP-SA GP-TA FASATA STGP-FASATA STGP-FASATA-S

KERING 0.0217 0.0179 0.0132 0.0056 0.0273 0.0192

KODAK 0.0115 0.0535 0.0293 0.0113 0.0158 0.0228

MCDON -0.0019 0.0123 -0.0003 0 -0.0126 0

NESTLE -0.0025 0.0082 -0.0024 0.0004 0.0052 -0.0021

NFLX 0.0608 0.0033 -0.0105 0.0598 0.0349 0.0470

NINTENDO 0.0036 0.0143 -0.0124 0.0147 0.0061 0.0069

NYT 0.0127 0.0326 -0.0015 0.0059 0.0053 0.0113

PANASONIC 0.0011 0.0260 0.0160 0.0147 0.0068 0.0061

SAINSBURY 0.0348 0.0167 0.0154 0.0257 0.0118 0.0270

SHISEIDO -0.0480 -0.0106 0.0208 -0.0399 -0.0292 0.0283

SUBARU -0.0057 -0.0155 0.0338 0 -0.0256 0.0036

SUZUKI 0.0355 -0.0365 0.0008 0.0140 0 0.0646

TENCENT 0.0069 0 -0.0543 0.0163 -0.0013 0.0099

TESCO 0.0039 0.0164 0.0088 -0.0097 0.0419 0

TESLA 0.0505 0.0550 0.0751 0.0433 0.0413 0.0596

TOYOTA 0.0172 0.0087 0 -0.0029 0.0333 0

UBISOFT -0.0044 0 0.0281 0.0267 -0.0118 -0.0443

WALMART 0.0034 -0.0028 0.0047 -0.0004 0.0038 0.0029

XEROX 0.0315 0.0058 -0.0175 0.0223 0.0405 0

YAMAHACO -0.0001 0.0049 -0.0069 0.0024 0.0076 0.0140

YAMAHAMO 0.0160 0 0.0063 0 -0.0091 -0.0025
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Table 6.9: Summary statistics of rate of return across all 50 GP runs and all 42 companies.

Boldface is used to denote the best value for each statistic.

Algorithm Average Median StDev Maximum Minimum

GP-FA 0.014 0.015 0.038 0.069 -0.30

GP-SA 0.009 0.010 0.028 0.10 -0.12

GP-TA 0.013 0.014 0.033 0.10 -0.089

GP-FASATA 0.015 0.013 0.029 0.10 -0.10

STGP-FASATA 0.014 0.0125 0.028 0.10 -0.18

STGP-FASATA-S 0.021 0.015 0.035 0.11 -0.087

the control algorithm STGP-FASATA-S with the distributions of the benchmarks. All boldfaced

p-values signify statistical significance at the 5% level after applying the Holm-Bonferroni

correction, as an adjustment for controlling the family-wise error rate in multiple tests. Based

on the results, the distribution of the STGP-FASATA-S algorithm demonstrated statistically

significant differences in the rate of return compared to the distributions the GP benchmarks.

6.4.3 Risk

Tables 6.11 and 6.12 showcase the average rate of return values over the 50 runs for the

42 companies. The algorithm with the most best rate of return values is again GP-TA with

11 companies, followed by GP-SA with 9 companies and STGP-FASATA-S with 8 companies,

STGP-FASATA with 7 companies, GP-FASATA with 4 companies, and GP-FA with 3 companies.

Again, as indicated in many cases, the mean risk values are close to each other.

Table 6.13 presents the summary statistics for the risk values obtained from 50 iterations
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Table 6.10: Kolmogorov-Smirnovtest p-values on rate of return of the proposed STGP-FASATA-

S algorithm against the 5 GP benchmarks. Statistical significance changes are based on the

Holm-Bonferroni correction. Statistically significant differences at the 5% level are indicated

in boldface.

Algorithm STGP-FASATA-S p-values Rank Significance

level

GP-FA 4.35E-51 3 0.025

GP-SA 1.34E-44 5 0.05

GP-TA 3.51E-49 4 0.016

GP-FASATA 7.97E-84 1 0.01

STGP-FASATA 1.74E-64 2 0.0125

for each company, considering the four algorithms introduced in Chapter 5 and the two GP

algorithms introduced in this chapter.

When examining the summary statistics presented in Table 6.13, along with the statistical

tests between the control algorithm STGP-FASATA-S and the other five GP benchmarks in

Table 6.14, a similar observation to that of the rate of return emerges. The STGP-FASATA-

S algorithm demonstrates lower mean and median values for risk while exhibiting similar

standard deviation values with the other algorithms, except GP-SA, while GP-TA performs

with the lowest standard deviation. These results are followed by STGP-FASATA, which has a

lower mean and median risk than the GP-FA, GP-SA, and GP-FASATA algorithms but not from

GP-TA, in contrast to the rate of return results.

Table 6.14 shows the KS results when control algorithm is again STGP-FASATA-S in com-
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Table 6.11: Averages for risk per company. Boldface is used to denote the best value for the

particular dataset. First 21 companies.

Company GP-FA GP-SA GP-TA FASATA STGP-FASATA STGP-FASATA-S

AAPL 0.0076 0.0236 0.0082 0.0089 0.0174 0.0059

ADIDAS 0.0270 0.0148 0.0264 0.0276 0.0261 0

ALIBABA 0.0280 0.0040 0.0308 0.0239 0.0264 0.0256

AMAZON 0.0248 0.0311 0.0022 0.0179 0.0196 0

ASUS 0.0248 0.0219 0.0362 0.0137 0.0131 0.0162

ATVI 0.0212 0.0043 0.0083 0.0239 0.0168 0.0201

BLACKB 0.0429 0.0869 0.0280 0.0387 0.0352 0.0411

COKE 0.0070 0.0701 0.0125 0.0084 0.0091 0.0060

EBAY 0.0185 0.0288 0 0.0523 0.0455 0.0234

ESTEE 0.0230 0.0044 0.0168 0.0211 0.0139 0.0028

FORD 0.0295 0.0057 0.0482 0.0334 0.0147 0

FUJIFILM 0.0302 0.0554 0.0291 0.0235 0.0237 0.0193

FUJITSU 0.0515 0.0173 0.0170 0.0147 0.0324 0.0079

GM 0.0418 0.0166 0.0043 0.0532 0.0530 0

GOOGL 0.0253 0.0146 0.0466 0.0198 0.0203 0.0279

HITACHI 0.0488 0.0565 0 0.0534 0.0145 0

HONDA 0.0100 0.0080 0.0082 0.0175 0.0176 0.0127

HSBC 0.0179 0.0054 0.0088 0.0064 0.0078 0

HYUNDAI 0.0231 0.0216 0.0446 0.0163 0.0320 0.0304

IBM 0.0326 0.0674 0.0038 0.0488 0.0483 0.0145
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Table 6.12: Averages for risk per company. Boldface is used to denote the best value for the

particular dataset. Last 21 companies.

Company GP-FA GP-SA GP-TA FASATA STGP-FASATA STGP-FASATA-S

INTC 0.0300 0.0446 0.0317 0.0704 0.0083 0

KERING 0.0378 0.0258 0.0343 0.0411 0.0294 0.0478

KODAK 0.0463 0.0356 0.0361 0.0753 0.0615 0.0347

MCDON 0.0432 0.0397 0.0299 0 0 0

NESTLE 0.0237 0.0034 0.0173 0.0139 0.0101 0.0160

NFLX 0.0075 0.0622 0.0898 0.0113 0.0271 0.0310

NINTENDO 0.0310 0.0357 0.0491 0.0353 0.0206 0.0505

NYT 0.0413 0.0190 0.0406 0.0399 0.0405 0.0297

PANASONIC 0.0426 0.0109 0.0204 0.0259 0.0262 0.0302

SAINSBURY 0.0196 0.0272 0.0229 0.0304 0.0344 0.0198

SHISEIDO 0.0699 0.0864 0.0585 0.0417 0.0487 0.0625

SUBARU 0.0349 0.0559 0.0170 0 0.0515 0.0380

SUZUKI 0.0324 0.0686 0.0561 0.0455 0 0.0102

TENCENT 0.0260 0 0.0987 0.0088 0.0227 0.0246

TESCO 0.0361 0.0189 0.0224 0.0415 0.0027 0

TESLA 0.0407 0.0474 0.0346 0.0550 0.0665 0.0590

TOYOTA 0.0127 0.0184 0 0.0276 0.0110 0

UBISOFT 0.0466 0 0.0277 0.0297 0.0460 0.0817

WALMART 0.0116 0.0176 0.0074 0.0244 0.0153 0.0225

XEROX 0.0300 0.0612 0.0213 0.0340 0.0272 0

YAMAHACO 0.0314 0.0242 0.0374 0.0263 0.0241 0.0142

YAMAHAMO 0.0243 0 0.0175 0 0.0206 0.0229
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Table 6.13: Summary statistics of risk across all 50 GP runs and all 42 companies. Boldface is

used to denote the best value for each statistic.

Algorithm Average Median StDev Maximum Minimum

GP-FA 0.029 0.026 0.024 0.21 0.0007

GP-SA 0.034 0.022 0.034 0.25 0.0003

GP-TA 0.027 0.018 0.025 0.18 0.0006

GP-FASATA 0.030 0.023 0.027 0.17 0.00007

STGP-FASATA 0.028 0.022 0.026 0.19 0.000067

STGP-FASATA-S 0.026 0.017 0.026 0.126 0.00046

parison to the five other GP benchmarks. The p-values generated when comparing the

distribution of STGP-FASATA-S to the distribution of the benchmarks signify a significantly

statistical difference in risk performance between the algorithms, accounting for the Holm-

Bonferroni correction.

6.4.4 Results of each market

Similar to the previous chapter, it is crucial to assess the performance of each algorithm across

different market groups due to the considerable variation in price series among companies

and analyse the performance of the genetic programming (GP) algorithms across diverse

market profiles.

In order to achieve this, we used the market groups mentioned in Chapter 5, wherein

we examined the initial and final prices of the test set for each company and calculated the

corresponding return value, creating three distinct groups. To remind the reader, the first
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Table 6.14: Kolmogorov-Smirnovtest p-values on risk of the proposed STGP-FASATA-S al-

gorithm against the 5 GP benchmarks. Statistical significance changes are based on the

Holm-Bonferroni correction. Statistically significant differences at the 5% level are indicated

in boldface.

Algorithm STGP-FASATA-S p-values Rank Significance

level

GP-FA 1.34E-44 4 0.025

GP-SA 2.16E-37 5 0.05

GP-TA 7.38E-47 3 0.016

GP-FASATA 1.82E-84 1 0.01

STGP-FASATA 1.55E-64 2 0.0125

group (Group 1) includes companies whose price experienced a long-term increase of at least

20%, the second group (Group 2) includes companies whose price experienced a long-term

increase of between 0% and 19.99%. In contrast, the last group (Group 3) includes those

companies whose price experienced a long-term decrease.

Following the aforementioned classification criteria, we assigned 19 companies to Group

1, 14 companies to Group 2, and 9 companies to Group 3.

We proceeded to calculate the average values of each metric (Sharpe ratio, rate of return,

and risk) for each GP algorithm across the datasets of each group. Table 6.15 illustrates the

results. Upon examining the table, it is evident that the proposed STGP-FASATA-S algorithm

demonstrates strong performance in terms of the aggregate metric of the Sharpe ratio for

Group 1 and Group 3. Conversely, in Group 2, the GP-FASATA algorithm emerges as the
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frontrunner. Regarding the rate of return, the strongly typed algorithms achieve the highest

value for Group 1, while STGP-FASATA-S continues to be the winning algorithm in Groups

2 and 3. On the other hand, STGP-FASATA’s performance in Group 3 is close to zero and

negative, as is the case for GP-TA. Finally, in terms of risk, STGP-FASATA consistently exhibits

the lowest value across the two first groups. GP-TA performs with the lowest risk in Group 3,

with the greatest disparity observed when compared to the risk value of GP-FASATA.

Table 6.15: Separated average results per metric per trend group.

Market Algorithm Sharpe ratio Rate of return Risk

Group 1 (>20%) GP-TA 2.7 0.012 0.029

GP-FASATA 2.49 0.014 0.029

STGP-FASATA 2.55 0.017 0.023

STGP-FASATA-S 3.3 0.017 0.024

Group 2 (0% - 19.99%) GP-TA 1.89 0.0035 0.039

GP-FASATA 4.86 0.006 0.030

STGP-FASATA 3.7 0.008 0.029

STGP-FASATA-S 1.8 0.02 0.029

Group 3 (<0%) GP-TA -1.32 -0.001 0.025

GP-FASATA 1.43 0.006 0.035

STGP-FASATA 2.26 -0.001 0.033

STGP-FASATA-S 3.5 0.011 0.030

Overall, it is worth noting that STGP-FASATA-S and STGP-FASATA, the strongly-typed ge-
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netic programming architectures, exhibit better performance when there are positive price

movements in the market. This observation aligns with the finding that STGP-FASATA-S and

STGP-FASATA are performing strongly in terms of the aggregate metric of the Sharpe ratio,

which combines the rate of return and risk. In conclusion, STGP-FASATA-S demonstrates a

competitive performance, particularly in those scenarios with more extreme market condi-

tions (favourable or negative), showcasing its potential as a promising algorithm for generat-

ing positive returns while managing risk effectively.

6.4.5 Non-GP Benchmarks

STGP-FASATA-S compared to machine learning benchmarks

In Chapter 5, GP-FASATA statistically outperformed the MLP (Multi-Layer Perceptron) al-

gorithm in Sharpe ratio and risk but not in rate of return. Moreover, the GP algorithm did not

statistically outperform the SVM (Support Vector Machine), eXtreme Gradient Boosting (XG-

Boost), and Long short term memory (LSTM) algorithms in terms of rate of return and/or

risk, either. Thus, we investigate the results arising between the MLP, SVM, XGBoost, and

LSTM against STGP-FASATA-S to find if the latter can statistically outperform the machine

learning benchmarks. We again present the performance results in Table 6.16.

Upon examining Table 6.16, it is evident that the average values of MLP for the 42 com-

panies yield a Sharpe ratio of 0.30, a rate of return of 0.009 and for risk 0.041. Notably,

these values contrast significantly with those obtained from the GP algorithms, which exhibit

considerably higher values for the Sharpe ratio and risk values. Statistical analysis using

the Kolmogorov-Smirnov test reveals that the distribution of the STGP-FASATA-S algorithm is

statistically different than MLP’s distribution regarding Sharpe ratio, rate of return, and risk
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values.

As mentioned in the Chatper 5, the average Sharpe ratio is 0.37, the rate of return is 0.01,

and the risk is 0.038. This time, the KS tests confirm that the distribution of STGP-FASATA-S

is statistically different than the distribution of SVM in all financial metrics assessed.

For the XGBoost algorithm, again, we observe average values of 0.36 for the Sharpe ratio,

0.010 for the rate of return, and 0.041 for the risk. STGP-FASATA-S performs better in the

financial metrics and its distribution is statistically significant different than XGBoost in all

financial metrics.

Regarding the LSTM algorithm, we recall the average values of 0.23 for the Sharpe ratio,

0.006 for the rate of return, and 0.043 for the risk. STGP-FASATA-S does outperform the

algorithm in the three key financial metrics, while the novel GP algorithm’s distribution is

statistically different than LSTM’s distribution for Sharpe ratio, rate of return, and risk.

In summary, the results again indicate that all algorithms, namely MLP, SVM, XGBoost,

and LSTM, exhibit lower average values for the financial metrics than the GP algorithms. The

statistical tests further support the conclusion that the distributions of the ML benchmarks

are statistically significant different than the distribution of the STGP-FASATA-S algorithm

regarding the Sharpe ratio, rate of return, and risk, something GP-FASATA did not achieve in

Chapter 5.

This observation highlights the relative disadvantage(s) of the machine learning bench-

marks when it comes to algorithmic trading and the development of strategies that consider

both returns and risk metrics. The GP algorithms, specifically STGP-FASATA-S, outperforms

the ML benchmarks in these aspects, making it more suitable for generating effective trading

strategies.
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Table 6.16: Comparison of average values for STGP-FASATA-S and algorithmic benchmarks.

Algorithm Sharpe ratio Rate of return Risk

MLP 0.30 0.009 0.041

SVM 0.37 0.010 0.038

XGBoost 0.36 0.010 0.041

LSTM 0.23 0.006 0.043

STGP-FASATA-S 3.78 0.021 0.026

6.4.6 Summary of findings

In conclusion, based on the findings presented in Tables 6.5 - 6.15, the results can be summar-

ised into two categories in relation to the performance of GP variants and their performance

in relation to other benchmark algorithms.

When comparing the GP variants amongst themselves, we observe that:

• The proposed STGP-FASATA-S algorithm demonstrates strong performance across all

three financial metrics, namely the Sharpe ratio, rate of return, and risk. Additionally,

it outperforms the benchmark GP algorithms in terms of the performance metrics.

• The strongly-typed architecture of the proposed STGP-FASATA-S and the STGP-FASATA

algorithms enable them to conduct a more effective search of the space encompassing

fundamental analysis, sentiment analysis, and technical analysis indicators. This ad-

vantage is not present in the GP-TA and GP-FASATA algorithms, which allow all indicator

types in its terminal set without the strongly-typed architecture.

• The novel fitness function of the STGP-FASATA-S algorithm can improve the financial

performance of the GP.
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Table 6.17: Kolmogorov-Smirnov test p-values for all financial metrics of the proposed STGP-

FASATA-S algorithm measured against the 4 machine learning benchmarks. Statistical signi-

ficance changes are based on the Holm-Bonferroni correction. Statistically significant differ-

ences at the 5% level are indicated in boldface.

Financial Metric Algorithm GP-FASATA p-values Rank Significance level

Sharpe ratio MLP 2.21e-11 1 0.05

SVM 2e-11 3 0.016

XGBoost 5.19e-14 4 0.0125

LSTM 5e-14 2 0.025

Rate of return MLP 0.0007 4 0.0125

SVM 0.0007 1 0.05

XGBoost 7.4e-10 3 0.016

LSTM 3.7e-9 2 0.025

Risk MLP 3.9e-6 1 0.05

SVM 0.008 4 0.0125

XGBoost 0.0001 2 0.025

LSTM 0.0003 3 0.016
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Regarding the comparison of STGP-FASATA-S to the non-GP benchmarks, we observe the

following:

• The STGP-FASATA-S algorithm outperforms MLP, SVM, XGBoost, and LSTM, and their

distributions are shown to be statistically significant different, as indicated by the Kolmogorov-

Smirnov tests. Furthermore, the algorithms show higher risk associated, something

evident from the lower Sharpe ratio values.

6.5 Conclusion and Further Experiments

In conclusion, this chapter aimed to investigate and compare the performance of the trad-

ing strategies developed by two GP algorithms that integrate fundamental, sentiment, and

technical analysis indicators. We introduced a novel strongly-typed GP algorithm that assists

where each of the FA, SA, and TA terminal sets will be assigned a distinct branch, allowing

for better exploration and exploitation within each indicator type’s respective search space.

This enhancement is anticipated to yield even more robust and efficient trading strategies,

ultimately contributing to advancing algorithmic trading techniques.

The results indicated that our proposed STGP-FASATA-S algorithm exhibited competitive

performance over the five GP benchmark algorithms and the four ML benchmark algorithms

in the three financial metrics. This finding underscores the potential effectiveness of our

approach in developing robust trading strategies.

Combining the indicators can enhance the models’ knowledge and create financially more

advantageous trading strategies. Moreover, based on our analysis, it is not profitable enough

to simply combine the different types of indicators, as GP-FASATA does, and a strongly-typed

architecture is essential in achieving improved performance in terms of Sharpe ratio, which
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combines both rates of return and risk. Finally, the use of the novel fitness function signific-

antly improved results across all three metrics of Sharpe ratio, rate of return, and risk.

Although STGP-FASATA-S demonstrated better results than the benchmark algorithms and

it is able to outperform all other GP algorithms (including individual analysis types, e.g. GP-

TA), we are now motivated to investigate whether we can further improve its performance

on rate of return and risk. In the next chapter, we will address by proposing a novel genetic

operator that encourages active trading.



Chapter 7

Strongly-typed genetic programming

variant

7.1 Chapter motivation

Considering the effectiveness of STGP-FASATA and STGP-FASATA-S in Chapter 6, we are mo-

tivated to investigate the creation of operators that may increase the profitability of the ge-

netic programming algorithms, especially when considering the median value of the rate of

return and the mean value of the risk of the STGP-FASATA-S algorithm. Thus, in this chapter,

we introduce another strongly-typed GP algorithm with the previously mentioned novel fit-

ness function, but this time, proposing to incorporate a novel GP operator. This GP operator

encourages active trading by injecting into the GP population trees that are able to perform a

high number of trades while achieving high profitability at low risk at the same time.

More specifically, we are interested in encouraging the algorithm to follow an active trad-

ing approach that actively monitors and analyses market conditions to identify short-term

145
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trading opportunities. The advantage of such trading strategies is that they can leverage

price movements over relatively short timeframes, thereby increase their profitability. To

achieve this, we create a new GP operator that works alongside crossover and mutation. This

novel operator identifies the FA, SA, and TA subtrees, which are using highly active trading

strategies to achieve high profitability at low risk and injects them into the following genera-

tion by combining them into a new tree.

Our objective is to showcase the proposed GP algorithm’s capability of generating unique

and profitable trading strategies that leverage information from all three analysis types.

We compare its performance to STGP-FASATA-S, which is the best performed GP variant in

Chapter 6 and STGP-FASATA since it is an algorithm incorporating the strongly-typed archi-

tecture. Experiments take place on the same 42 international companies’ stocks, and results

are reported across the same three financial metrics, namely Sharpe ratio, rate of return, and

risk.

The rest of the chapter is organised similarly with Chapters 5 and 6 as Section 7.2, which

details the methodology employed in our study, Section 7.3 with the experimental setup, and

the results and analysis of the study are presented in Section 7.4. Finally, Section 7.6 sum-

marises the main findings of this thesis contribution and explores potential future scientific

work.

7.2 Methodology

This chapter presents the ActTrade algorithm, a novel genetic programming algorithm incor-

porating a strongly-typed architecture.

The research methodology includes three main components. Firstly, Section 7.2.1 offers
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an overview of the GP methodology, encompassing the model representation, while the novel

GP operator is introduced in Section 7.2.2. Subsequently, Section 7.2.3 delves into the trading

signals and trading strategy employed. Finally, Section 7.2.4 details the fitness function and

metrics that will be taken into consideration during the evaluation process.

7.2.1 Model representation

As in Chapter 6, the function nodes are based on a 3-input AND function with a Boolean output

called 3-AND, as well as binary AND, OR, Greater than (GT) and Less than (LT) functions, with

different variants allowing for each indicator type. To remind the reader, the 3-AND function

takes 3 children, with the first being of type FA, the second of type SA, and the third of type

TA, with all of the branches taking relevant types of functions. All three branches of the

3-AND function need to evaluate TRUE in order for the function to yield a TRUE outcome.

The function set used in our algorithm is summarised in Table 6.1 of Chapter 6 designed to

ensure that the algorithm generates models that fully utilise all indicator types while enforcing

type consistency.

As in Chapter 6, the strongly-typed architecture of the novel algorithm has the advantage

of fully utilising the search space of each individual indicator type. The three branches corres-

ponding to the FA, SA and TA indicators are connected using the 3-AND function at the root

of the tree. This integration creates a foundation for better exploration and exploitation of

the search space. As a result, the model can generate more diverse, effective, and adaptable

trading strategies.
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7.2.2 GP operators

This section is separated into two parts: the traditional GP operators and the novel GP oper-

ator. The traditional GP operators have been introduced in Chapter 5, while the novelty of

this chapter lies in Section 7.2.2, where we introduce the new GP operator.

Traditional GP operators The traditional GP operators and function set presented in Chapter

7 are parts of this chapter, too. More information can be found in Chapters 3, 5, and 6.

A novel GP operator for active trading As mentioned in the introduction of this chapter,

one of our motivations is to create an algorithm that follows highly active trading strategies,

as this offers a potential for higher profits. Thus, we focused on creating offspring that seek

to maximise the number of trades, as well as the Sharpe ratio.

In order to achieve this, we undertake the following process: at every generation, we

iterate through each individual in the population and place its three subtrees (FA, SA, TA)

into three respective lists, one for each analysis type. We then calculate the number of trades

and the Sharpe ratio for each subtree. Once we have done this for all trees in the current

generation, we identify the FA subtree with the highest number of trades, as well as the FA

subtree with the highest Sharpe ratio. This process is repeated for the SA and TA subtrees. It

is also worth noting that in order to encourage smaller and easier to read trees, when there

are subtrees that perform the same number of trades, we choose the one with the smaller

size. Next, we create three offspring by combining subtrees that maximise the Sharpe ratio

and the number of trades. More specifically, the first offspring consists of the FA subtree with

the highest Sharpe ratio (from all FA subtrees), the SA subtree with the highest number of

trades (from all SA subtrees), and the TA subtree with the highest number of trades (form all
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TA subtrees). These three subtrees are placed under the ternary 3-AND function and copied

into the next generation. The second offspring follows a similar process, whereby the SA

subtree with the highest Sharpe ratio forms a tree along with the FA and TA subtrees with

the highest number of trades. Finally, the third offspring consists of the TA subtree with the

highest Sharpe ratio, along with the FA and SA subtrees with the highest number of trades.

It should be noted that this operator is applied at every generation during training. This

means that the above three generated offspring will be copied into the next generation before

crossover and mutation takes place. This process is summarised in Algorithms 1 - 3.

By adopting this approach, the GP operator imparts two distinct characteristics that are

desired in the individuals of the population, namely, a high number of trades and a high

Sharpe ratio.1 This strategy aims to enhance the quality of the evolving trees in subsequent

generations, promoting individuals that exhibit both traits to achieve more effective and prof-

itable trading outcomes.

1During the early experimentation phase, we considered alternatives to this approach, such as creating trees

where all three subtrees would either maximise the number of trades or maximise the Sharpe ratio. We found

that in those cases, only a limited number of cases would evaluate TRUE and subsequently perform a trading

action because the root of these trees was the function 3-AND. As a result of this highly restrictive situation, the

GP was overly passive and would frequently choose not to trade at all. Other alternatives we considered were

(i) using an OR function as the root node, but this would not guarantee that all three indicator types would

be simultaneously considered during a trading action, and (ii) using a non strongly-typed GP solution. Neither

of these two approaches yielded very good financial performance. We have left any further investigation of

alternative approaches as future work.
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Algorithm 1 Active trading genetic operator procedure - Part1
Require: Population of individuals, Analysis types: FA, SA, TA

1: Initialise empty lists for FA, SA, and TA subtrees.

2:

3: for each individual in the population do

4: Extract FA, SA, and TA subtrees from the individual.

5: Append these subtrees to the respective lists for the analysis type.

6: end for

7:

8: for each subtree in the corresponding analysis type (FA, SA, TA) list do

9: Calculate the number of trades and Sharpe ratio.

10: end for

11:

12: for each list (FA subtrees, SA subtrees, TA subtrees) do

13: Identify the subtree with the highest number of trades (max_trades_subtree) and

the subtree with the highest Sharpe ratio (max_sharpe_subtree).

14: end for

15:
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Algorithm 2 Active trading genetic operator procedure - Part2
1: Create three offspring (named Offspring1, Offspring2, Offspring3):

2: for each offspring do

3: Select corresponding subtrees:

4: if Offspring1 then

5: FA subtree: max_sharpe_subtree from FA subtrees

6: SA subtree: max_trades_subtree from SA subtrees

7: TA subtree: max_trades_subtree from TA subtrees

8: else if Offspring2 then

9: FA subtree: max_trades_subtree from FA subtrees

10: SA subtree: max_sharpe_subtree from SA subtrees

11: TA subtree: max_trades_subtree from TA subtrees

12: else

13: # Offspring3

14: FA subtree: max_trades_subtree from FA subtrees

15: SA subtree: max_trades_subtree from SA subtrees

16: TA subtree: max_sharpe_subtree from TA subtrees

17: end if

18:

19: Combine the three subtrees (FA, SA, TA) under the ternary 3-AND function and enter

them into the population of the next generation.

20: end for
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Selection

In the previous section, we explained how our proposed genetic operator creates three off-

spring, which are subsequently placed into the population of the next generation. We call

them Offspring1, Offspring2, and Offspring3. As these three individuals might not always

make a large impact on the search, we decided to also probabilistically allow them to act as

parents during crossover and mutation. In this way, we allow their genetic material to be

copied into more trees in the population.

To achieve the above, we assign four probabilities p1, p2, p3, and p4,2 to select the first

parent for crossover, and the single parent for mutation. More specifically, with probability p1,

we use tournament selection, wherein k individuals (trees) are randomly selected from the

population. Then, the individual with the highest fitness value in the tournament is selected

as a parent to undergo crossover/mutation. In addition, we assign a probability p2, p3, and p4,

to each one of Offspring1, Offspring2, and Offspring3, respectively. In this way, the proposed

genetic operator can also affect the creation of new offspring by carrying part of its genetic

material to the new offspring.

For the second parent, we always use tournament selection, i.e. p1 = 1. Algorithm 3

summarises the selection process.

To conclude, the proposed GP algorithm is a strongly typed GP that aims to maximise the

Sharpe ratio. The strongly typed structure of the GP enables more effective exploration and

utilisation of all three indicator types. At the same time. The proposed operator allows for

offspring to be created that focus both on maximising the Sharpe ratio, as well as maximising

the number of trades.

2The sum of p1 + p2 + p3 + p4 is always equal to 1.
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Algorithm 3 Parents selection procedure
Require: Probabilities p1, p2, p3, p4, Offspring1, Offspring2, Offspring3

1: if Selecting the first parent for crossover or parent for mutation then

2: With probability p1: Perform tournament selection to select parent

3: With probability p2: Select Offspring1 as parent

4: With probability p3: Select Offspring2 as parent

5: With probability p4: Select Offspring3 as parent

6: else

7: Perform tournament selection to select the second parent for crossover

8: end if

7.2.3 Trading signals and trading strategy

The trading strategy is the same as in Chapter 6, where the trading signals are generated

using the GP trees, where the result of the root 3-AND function represents a TRUE/FALSE

value. The strongly-typed algorithms are all able to produce the same sample GP tree with

STGP-FASATA-S, also included in Figure 7.1.

7.2.4 Fitness function and Metrics

After improving the results from STGP-FASATA to STGP-FASATA-S in Chapter 6, the same

fitness function of STGP-FASATA-S is implemented in ActTrade. Our analysis still considers

the return, risk and Sharpe ratio metrics to evaluate the algorithms’ respective performances.

As in Chapters 5 and 6, first we find the list of returns (R) from each trade. The rate of return

is the mean value of this list, while the risk is the standard deviation of the list. The Sharpe

ratio is calculated as the ratio of the expected value of the excess return compared to the risk
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Figure 7.1: GP sample tree. The first child of the 3-AND function is enforced to be FA-related,

the second child is SA-related, and the third is enforced to be TA-related. This sample tree

checks if the P/E indicator is less than the ERC of 0.5, and if the TEXTpol indicator is greater

than the ERC 0.7, and if the ROC10 indicator is less than the ERC 0.3. If all three of them are

TRUE, then the recommendation will be to buy (1), otherwise it will be to hold (0).

free return over the risk. Again, the fitness function, fsum, is determined by the weighted sum

of the FA, SA, and TA subtrees and the complete tree comprising the three subtrees and it aims

to emphasise the contribution of each indicator in enhancing the trading performance of the

algorithm. More specifically, it is defined as the summation of the Sharpe ratio (SRC) of the

complete tree, and the Sharpe ratios (SRFA, SRSA, SRTA) of the FA, SA, and TA subtrees,

with weights wc, wFA, wSA, and wTA, respectively.



7.3. EXPERIMENTAL SETUP 155

7.3 Experimental Setup

As in Chapter 6, in the experimental setup section, we will briefly mention the data collection

again in Section 7.3.1, and thereafter introduce the GP benchmarks of this chapter in Section

7.3.2. Finally, we present the parameter tuning process for this chapter in Section 7.3.3.

7.3.1 Data

The data collection process is the same as in Chapters 5 and 6, and can be found in more

detail in Section 5.3.

7.3.2 Benchmarks

We call our proposed GP algorithm ActTrade, due to its active trading operator. We compare

its performance to the proposed GP variants STGP-FASATA and STGP-FASATA-S strongly-typed

algorithms, introduced in Chapter 6. We present all of these benchmarks next.

• STGP-FASATA is a strongly-typed GP algorithm that combines fundamental, sentiment

and technical analysis indicators. This algorithm does not use our novel fitness function

nor the novel active trading genetic operator. It thus acts as a valuable benchmark

to enable us to understand the added value of the aforementioned innovations of the

proposed GP.

• STGP-FASATA-S is similar to the aforementioned STGP-FASATA algorithm, with the ad-

dition of the fitness function that our proposed ActTrade also uses (summation of Sharpe

ratio fitness functions). Thus, the only difference between STGP-FASATA-S and ActTrade

is the use of the active trading operators, serving as a benchmark to reveal the added

value of this GP operator.
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Furthermore, Chapters 5 and 6 included four machine learning and one financial bench-

mark. However, since we have shown these benchmarks being statistically outperformed for

all financial metrics in Chapter 6 by STGP-FASATA-S, we do not include them in this chapter.

7.3.3 Parameter Tuning

Table 7.1 presents the GP parameters used in the experiments of this article. This section is a

little different from the corresponding parameter tuning detailed in Sections 5.3.3 and 6.3.3.

The current section contains the previously discussed parameters and also the tournament

probability (p1), and active trading offspring probability (p2, p3, p4). To find the optimal GP

parameters, a two-step grid search was conducted in the validation set for the parameters

of population size, crossover probability, number of generations, tournament size, and max-

imum tree depth. Furthermore, the probabilities p1, p2, p3, and p4 for selecting the first parent

for crossover or mutation (p1: selecting tournament; p2, p3, and p4 are for the three generated

offspring from the active trading genetic operator. As outlined in the previous chapters, the

trading parameters d and r were held constant at 30 and 0.05, respectively, to expedite the

tuning process.

The second step of parameter tuning can be found in Chapter 5.

7.4 Results and Discussion

In this section, we present our experiments’ results in comparing the proposed ActTrade with

the benchmarks discussed in Section 7.3.2. We follow the same process as for the experi-

ments detailed in Chapters 5 and 6, by running 50 independent runs for each one of the 42

companies for each GP algorithm. This way, each run returned a distinct trading strategy,
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Table 7.1: GP Parameters for the eight GP algorithms.

GP Parameters

Population size 1000

Crossover probability 0.95

Mutation probability 0.05

Generations 50

Tournament size 4

Maximum tree depth 6

Tournament probability (p1) 0.4

Active trading offspring probability (p2, p3, p4) (0.2, 0.2, 0.2)

which we then evaluated on the test set. Tables 7.2 and 7.3 showcase the mean Sharpe ratio

values of the runs in each company, while the mean Sharpe ratio values of all the runs across

all companies can be found in Table 7.4. The mean values for the rate of return and risk can

be found in Sections 7.4.2 and 7.4.3, respectively.

To be consistent with the previous chapters, we again validate our findings by performing

a two-sample Kolmogorov-Smirnov (KS) test on all runs across companies for each algorithm.

We again address the issue of multiple comparisons by applying the Holm-Bonferroni correc-

tion for pairwise comparisons. We individually compared the ActTrade algorithm with the two

GP algorithmic benchmarks (STGP-FASATA and STGP-FASATA-S) for each financial metric.

Consequently, for a 5% significance level, the following p-values apply: the first-ranked

p-value should be less than 0.025, and the second-ranked p-value should be less than 0.05.

This approach ensures that the probability of obtaining a false positive result is maintained
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below a predetermined threshold, resulting in more reliable statistical findings.

7.4.1 Sharpe ratio

Tables 7.2 and 7.3 present the average Sharpe ratio values over the 50 runs for the 42 compan-

ies. As we can observe, the algorithm that has the most optimal Sharpe ratio values is GP-SA

(with 22 companies), followed by ActTrade (12) and STGP-FASATA-S (8). We again notice

that some of the values are close to each other, while in some cases where STGP-FASATA has a

negative value, we observe that STGP-FASATA-S and ActTrade algorithms choose not to trade

at all.
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Table 7.2: Averages for Sharpe ratio per company. Boldface is used to denote the best value

for the particular dataset. First 21 companies.

Company STGP-FASATA STGP-FASATA-S ActTrade

AAPL 2.6744 8.4403 7.2507

ADIDAS 0.6694 0 0

ALIBABA 2.7338 2.3999 11.8146

AMAZON 3.7653 0 0

ASUS -0.2138 -0.5439 6.3323

ATVI 3.0072 0.3750 2.6987

BLACKB 1.6736 1.0647 1.0846

COKE 1.8917 2.6953 1.1766

EBAY -0.0702 0.4302 0.1362

ESTEE 1.8651 8.7272 1.6824

FORD 5.2550 0 3.2462

FUJIFILM 1.0232 -1.7277 0.1871

FUJITSU 9.9302 24.6731 15.8708

GM -0.6598 0 0

GOOGL 1.1243 -0.1268 14.1991

HITACHI -1.2785 0 0

HONDA 2.0304 2.4846 0

HSBC 1.9430 0 0.0372

HYUNDAI 10.8667 1.1241 2.3572

IBM 6.8871 3.2115 1.7280

INTC 2.2122 0 -0.0318
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Table 7.3: Averages for Sharpe ratio per company. Boldface is used to denote the best value

for the particular dataset. Last 21 companies.

Company STGP-FASATA STGP-FASATA-S ActTrade

KERING 1.1841 0.3960 0

KODAK 1.1869 1.0455 1.2845

MCDON -0.0126 0 -1.2986

NESTLE 9.8132 0.1730 5.5454

NFLX 3.1125 5.0024 9.3962

NINTENDO 3.8835 0.7198 0.6481

NYT -0.0254 -2.3197 0.1232

PANASONIC 1.3352 3.6128 7.4402

SAINSBURY 1.0712 15.2586 2.3479

SHISEIDO -1.0828 1.8925 -0.6254

SUBARU -0.5199 0.0901 2.0504

SUZUKI 0 6.3275 9.1027

TENCENT 4.7378 0.3920 3.7368

TESCO 15.6728 0 -14.5138

TESLA 0.9962 1.6463 2.7183

TOYOTA 3.0060 0 0

UBISOFT 5.7834 -0.4325 0

WALMART 1.5732 0.1634 1.5442

XEROX 1.4751 0 0.3188

YAMAHACO 1.7156 2.1979 2.2089

YAMAHAMO 6.6631 -0.1101 0.3586
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Table 7.4 displays summary statistics over each company’s 50 GP runs across the seven GP

algorithms. We have excluded in the statistic’s calculation runs with a Sharpe ratio equal to

0, as in those cases, the algorithms did not perform any trading.

Table 7.4: Summary statistics of Sharpe ratio across all 50 GP runs and all 42 companies.

Boldface is used to denote the best value for each statistic.

Algorithm Average Median StDev Maximum Minimum

STGP-FASATA 3 0.64 9.9 144.32 -8.81

STGP-FASATA-S 3.78 1.07 11.57 83.59 -27.80

ActTrade 3.9 1.318 8.22 64.35 -14.51

As we can see from Table 7.4, the proposed ActTrade algorithm has the highest mean

and median values, indicating a strong risk-adjusted performance compared to the other

algorithms and highlighting its robustness and consistency in delivering favourable risk-

adjusted returns. Generally, the GP algorithms of this chapter experience higher mean values,

which indicates the advantage of the architecture in comparison to the non strongly-typed GP

variants we show in the previous chapters. ActTrade’s standard deviation is also the lowest.

To better understand the above results, we perform pairwise comparisons of the ActTrade

(best/control algorithm due to having the best average and median values) with each other

GP algorithm. We present the test results in Table 7.5. As mentioned in Chapter 5, we use the

Kolmogorov-Smirnov (KS) non-parametric test, along with the Holm-Bonferroni correction,

to account for the multiple pairwise comparisons (two in total). As we can observe, the

distribution of the proposed ActTrade is statistically significant different than the distributions

of STGP-FASATA and STGP-FASATA-S, with p-values (second column) significantly lower than



162 CHAPTER 7

the corresponding significance level values (fourth column).

Table 7.5: Kolmogorov-Smirnov test p-values on Sharpe ratio of the proposed ActTrade al-

gorithm against the 2 GP benchmarks. Statistical significance changes are based on the

Holm-Bonferroni correction. Statistically significant differences at the 5% level are indicated

in boldface.

Pairwise comparison KS test p-value Rank Significance

level

ActTrade vs STGP-FASATA 9.92E-33 1 0.025

ActTrade vs STGP-FASATA-S 5.04E-06 2 0.05

In conclusion, ActTrade has the highest average and median values of Sharpe ratio, and

its distribution is statistically significant different than that of the benchmarks. Thus, we can

state ActTrade statistically outperforms the other 2 GP variants, subsequently outperforming

the GP non-strongly GP algorithms that have already been outperformed in Chapter 6.

7.4.2 Rate of return

Tables 7.6 and 7.7 present the average rate of return values over the 50 runs for the 42

companies. The algorithm that has the most optimal rate of return values is again GP-SA

(with 18 companies), followed by ActTrade (16) and STGP-FASATA-S (8). We notice that

some values are closer to each other than their value difference in Section 7.4.1.

Table 7.8 summarises the results by presenting the mean, median, standard deviation,

maximum and minimum values across all 50 runs for each company. As we can observe, the

proposed ActTrade again has the best mean value and a median value very close to the best
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Table 7.6: Averages for rate of return per company. Boldface is used to denote the best value

for the particular dataset. First 21 companies.

Company STGP-FASATA STGP-FASATA-S ActTrade

AAPL 0.0227 0.0277 0.0242

ADIDAS 0.0082 0 0

ALIBABA 0.0210 0.0244 0.0326

AMAZON 0.0187 0 0

ASUS -0.0022 0.0009 0.0119

ATVI 0.0124 0.0079 0.0259

BLACKB 0.0281 0.0144 0.0022

COKE 0.0131 0.0111 0.0119

EBAY -0.0059 0.0102 0.0026

ESTEE 0.0094 0.0092 0.0053

FORD 0.0102 0 0.0182

FUJIFILM 0.0131 -0.0321 0.0071

FUJITSU 0.0689 0.1016 0.0833

GM -0.0354 0 0

GOOGL 0.0099 -0.0033 0.0103

HITACHI -0.0184 0 0

HONDA 0.0141 0.0139 0

HSBC 0.0052 0 0.0005

HYUNDAI 0.0191 0.0344 0.0356

IBM 0.0134 0.0467 0.0250

INTC 0.0185 0 -0.0026
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Table 7.7: Averages for rate of return per company. Boldface is used to denote the best value

for the particular dataset. Last 21 companies.

Company STGP-FASATA STGP-FASATA-S ActTrade

KERING 0.0273 0.0192 0

KODAK 0.0158 0.0228 0.0390

MCDON -0.0126 0 -0.0563

NESTLE 0.0052 -0.0021 0.0039

NFLX 0.0349 0.0470 0.0525

NINTENDO 0.0061 0.0069 0.0168

NYT 0.0053 0.0113 0.0087

PANASONIC 0.0068 0.0061 0.0262

SAINSBURY 0.0118 0.0270 0.0217

SHISEIDO -0.0292 0.0283 -0.0468

SUBARU -0.0256 0.0036 0.0292

SUZUKI 0 0.0646 0.0403

TENCENT -0.0013 0.0099 0.0187

TESCO 0.0419 0 -0.0302

TESLA 0.0413 0.0596 0.0601

TOYOTA 0.0333 0 0

UBISOFT -0.0118 -0.0443 0

WALMART 0.0038 0.0029 0.0026

XEROX 0.0405 0 0.0174

YAMAHACO 0.0076 0.0140 0.0113

YAMAHAMO -0.0091 -0.0025 0.0042
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observed (0.0145 vs 0.015). Its standard deviation (0.031) is comparable to the lowest value

of 0.028, showing that it has relatively low volatility. The maximum rate of return value is the

same for all algorithms, and ActTrade has the lowest minimum value for the rate of return.

Table 7.8: Summary statistics of rate of return across all 50 GP runs and all 42 companies.

Boldface is used to denote the best value for each statistic.

Algorithm Average Median StDev Maximum Minimum

STGP-FASATA 0.0135 0.0125 0.028 0.11 -0.18

STGP-FASATA-S 0.021 0.015 0.035 0.11 -0.087

ActTrade 0.0225 0.0145 0.031 0.11 -0.06

Again, to evaluate the significance of the above results, we performed the Kolmogorov-

Smirnov non parametric test, along with the Holm-Bonferroni correction, as presented in

Table 7.9. For the pairwise comparisons ActTrade was the control algorithm once again and

when comparing the distributions of ActTrade with the distributions of STGP-FASATA and

STGP-FASATA-S we find them to be statistically significant different.

7.4.3 Risk

Tables 7.10 and 7.11 present the average risk values over the 50 runs for the 42 companies.

The algorithm that has the most lowest risk values is ActTrade (with 18 companies), followed

by GP-SA (15) and STGP-FASATA-S (9). Similarly to Section 7.4.2, we notice that some values

are closer to each other.

As in Sections 7.4.1 and 7.4.2, Table 7.12 displays the summary statistics for the values

of risk of all 50 runs for each company across the three GP algorithms tested. We get a very
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Table 7.9: Kolmogorov-Smirnov test p-values on the rate of return of the proposed ActTrade

algorithm against the 2 GP benchmarks. Statistical significance changes are based on the

Holm-Bonferroni correction. Statistically significant differences at the 5% level are indicated

in boldface.

Pairwise comparison KS test p-value Rank Significance

level

ActTrade vs STGP-FASATA 1.37E-36 1 0.025

ActTrade vs STGP-FASATA-S 1.75E-06 2 0.05

similar picture to what we have seen so far in that the proposed ActTrade algorithm has the

lowest mean and median values, as well as the lowest standard deviation. STGP-FASATA-S

observes the lowest maximum risk value, while the lowest minimum risk is by STGP-FASATA.

Table 7.13 shows the differences in the distributions between ActTrade, as the control

algorithm, and the two benchmark algorithms. The small p-values indicate that the distribu-

tions are statistically significant different, at the 5% significance level.

7.4.4 The role of the active trading operator

Given the above positive results for the ActTrade algorithm, we are interested in understand-

ing the effects of the proposed genetic operator during the learning (training) phase of the

models. To do this, we track the fitness value (Sharpe ratio) of the population for each gen-

eration.

As previously mentioned in Subsection 7.2.2, the novel genetic operator yields offspring

through two distinct mechanisms. First, it generates offspring directly by incorporating the
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Table 7.10: Averages for risk per company. Boldface is used to denote the best value for the

particular dataset. First 21 companies.

Company STGP-FASATA STGP-FASATA-S ActTrade

AAPL 0.0174 0.0059 0.0110

ADIDAS 0.0261 0 0

ALIBABA 0.0264 0.0256 0.0027

AMAZON 0.0196 0 0

ASUS 0.0131 0.0162 0.0087

ATVI 0.0168 0.0201 0.0094

BLACKB 0.0352 0.0411 0.0593

COKE 0.0091 0.0060 0.0100

EBAY 0.0455 0.0234 0.0176

ESTEE 0.0139 0.0028 0.0151

FORD 0.0147 0 0.0055

FUJIFILM 0.0237 0.0193 0.0296

FUJITSU 0.0324 0.0079 0.0241

GM 0.0530 0 0

GOOGL 0.0203 0.0279 0.0104

HITACHI 0.0145 0 0

HONDA 0.0176 0.0127 0

HSBC 0.0078 0 0.0066

HYUNDAI 0.0320 0.0304 0.0150

IBM 0.0483 0.0145 0.0144

INTC 0.0083 0 0.0902
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Table 7.11: Averages for risk per company. Boldface is used to denote the best value for the

particular dataset. Last 21 companies.

Company STGP-FASATA STGP-FASATA-S ActTrade

KERING 0.0294 0.0478 0

KODAK 0.0615 0.0347 0.0345

MCDON 0 0 0.0435

NESTLE 0.0101 0.0160 0.0102

NFLX 0.0271 0.0310 0.0123

NINTENDO 0.0206 0.0505 0.0314

NYT 0.0405 0.0297 0.0385

PANASONIC 0.0262 0.0302 0.0263

SAINSBURY 0.0344 0.0198 0.0115

SHISEIDO 0.0487 0.0625 0.0758

SUBARU 0.0515 0.0380 0.0141

SUZUKI 0 0.0102 0.0314

TENCENT 0.0227 0.0246 0.0049

TESCO 0.0027 0 0.0021

TESLA 0.0665 0.0590 0.0426

TOYOTA 0.0110 0 0

UBISOFT 0.0460 0.0817 0

WALMART 0.0153 0.0225 0.0127

XEROX 0.0272 0 0.0539

YAMAHACO 0.0241 0.0142 0.0156

YAMAHAMO 0.0206 0.0229 0.0276
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Table 7.12: Summary statistics of risk across all 50 GP runs and all 42 companies. Boldface

is used to denote the best value for each statistic.

Algorithm Average Median StDev Maximum Minimum

STGP-FASATA 0.028 0.022 0.026 0.19 0.000067

STGP-FASATA-S 0.026 0.0177 0.026 0.126 0.00046

ActTrade 0.023 0.016 0.023 0.18 0.0004

Table 7.13: Kolmogorov-Smirnov test p-values on the risk of the proposed ActTrade al-

gorithm against the 2 GP benchmarks. Statistical significance changes are based on the

Holm-Bonferroni correction. Statistically significant differences at the 5% level are indicated

in boldface.

Pairwise comparison KS test p-value Rank Significance

level

ActTrade vs STGP-FASATA 2.98E-31 1 0.025

ActTrade vs STGP-FASATA-S 1.22E-06 2 0.05

three newly created individuals into the next generation. These individuals are identified as

follows: Offspring1 (where the FA subtree maximises the Sharpe ratio, while the SA and TA

subtrees maximise the number of trades); Offspring2 (with the SA subtree maximising the

Sharpe ratio, and the FA and TA subtrees maximising trades); and Offspring3 (where the TA

subtree maximises the Sharpe ratio, while the FA and SA subtrees maximise trades). Second,

the operator indirectly influences offspring generation by using Offspring1, Offspring2, and

Offspring3 as parents for crossover and mutation. Consequently, at each generation, we
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encounter not only Offspring1, Offspring2, and Offspring3 but also several individuals that

were generated by having these offspring as parents. Furthermore, traditional tournament

selection also contributes to the creation of individuals in each generation.3

To organise our analysis effectively, we categorise the offspring in each generation in the

following categories:

• Offspring1

• Offspring2

• Offspring3

• Tournament Selection Group (Group-Tourn): Individuals in this group are the result of

conventional tournament selection.

• FA Group (Group-FA): This group comprises offspring whose first parent is Offspring1.

Given that this is a selection method, several offspring are generated in this way, hence

the word ’group’ in the naming.

• SA Group (Group-SA): The SA group includes offspring whose first parent is Offspring2.

• TA Group (Group-TA): Offspring in this group have parents whose first parent is Off-

spring3.

Tables 7.14 and 7.15 present the average Sharpe ratio values for each offspring group

across all generations over the 50 GP runs. Our primary objective is to rigorously compare the

performance of offspring generated through our proposed operator with those generated via
3There is also an elitist individual that exists at each generation, but for the purpose of this section’s analysis,

we focus solely on understanding the performance of individuals derived through the proposed genetic operator

and how they compare to those generated by tournament selection.
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traditional tournament selection. Note that we exclude duplicate models (i.e. models/trees

that exist more than once in a given group). As we can observe, all categories of offspring

exhibit high average Sharpe ratio values. More importantly, there are many cases in which

offspring generated through tournament selection (Group-Tourn) have, on average, lower

fitness values than the other categories. This is an important finding because it indicates that

offspring generated by the proposed genetic operator (either directly or indirectly through

acting as a parent for crossover and mutation) has the ability to create competitive models

that often outperform models derived from tournament selection.

7.4.5 Results of each market

As we showcased in the previous thesis contributions, although all 42 companies’ data comes

from the same time period, there is a lot of variation among their price series. Thus, we again

examine the algorithms’ performance across different market profiles by separating them into

Group 1 (companies with an increase of at least 20%), Group 2 (companies with an increase

between 0% and 19.99%) and Group 3 (companies with a decrease).

After defining the above groups, 19 companies were placed in Group 1, 14 in Group 2, and

9 in Group 3, respectively.

We then report the average value of each metric (Sharpe ratio, rate of return, and risk)

for each GP algorithm across the datasets for each group. As we can observe from Table 7.16,

the proposed ActTrade performs strongly in terms of the aggregate metric of Sharpe ratio

for Group 1, and it has a high value for Group 3, while in Group 2 the winner is GP-FASATA

and in Group 3 the best performance derived from ActTrade. With regards to rate of return,

ActTrade has the best value for Groups 1 and 3, while in Group 2, the best performance is

returned by that of STGP-FASATA-S. Finally, in terms of risk, ActTrade performs way lower
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Table 7.14: Average Sharpe ratio values of the different offspring groups. Boldface is used to

denote the best value for the particular company. This table presents the first 21 companies.

Company Offspring1 Offspring2 Offspring3 Group-Tourn Group-FA Group-SA Group-TA

AAPL 5.33 39.28 11.63 15.20 15.67 16.85 11.63

ADIDAS 19.43 2.73 6.06 13.62 15.89 13.86 15.29

ALIBABA 14.22 13.08 16.29 11.39 13.26 12.39 15.81

AMAZON 5.32 32.30 42.95 24.27 25.43 27.13 26.56

ASUS 12.13 5.60 23.25 11.83 12.63 12.35 12.07

ATVI 6.95 10.54 13.31 8.54 8.50 8.63 8.37

BLACKB 5.68 16.89 28.64 14.96 15.33 16.98 16.83

COKE 8.61 9.48 21.29 10.62 11.13 10.65 13.24

EBAY 8.68 20.11 34.07 16.18 16.81 17.33 18.46

ESTEE 8.52 7.74 6.80 6.49 7.78 7.67 6.99

FORD 6.60 10.07 18.90 9.54 10.98 11.05 8.92

FUJIFILM 11.03 13.54 15.00 12.00 14.53 14.52 10.32

FUJITSU 17.42 10.06 50.89 20.25 24.53 24.21 19.32

GM 27.42 4.34 63.08 28.01 31.12 28.40 33.35

GOOGL 10.20 39.83 11.62 24.43 25.25 27.69 25.90

HITACHI 206.79 3.81 72.04 141.38 173.94 159.22 169.06

HONDA 14.99 16.94 20.11 16.33 18.42 18.98 17.17

HSBC 3.18 4.28 11.64 5.55 6.14 6.39 6.23

HYUNDAI 5.23 6.31 19.49 11.54 12.28 12.34 12.62

IBM 13.74 106.57 26.19 46.14 41.85 50.43 26.60

INTC 14.62 45.51 7.78 19.78 21.86 23.82 17.26
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Table 7.15: Average Sharpe ratio values of the different offspring groups. Boldface is used to

denote the best value for the particular company. This table presents the last 21 companies.

Company Offspring1 Offspring2 Offspring3 Group-Tourn Group-FA Group-SA Group-TA

KERING 11.65 21.62 17.77 12.16 13.69 14.58 15.18

KODAK 4.41 10.41 6.39 5.16 5.93 6.38 5.21

MCDON 19.96 4.43 51.78 31.28 33.16 31.55 35.05

NESTLE 5.44 12.37 23.92 11.30 12.55 13.05 10.94

NFLX 17.24 12.92 24.38 16.66 17.17 16.11 19.79

NINTENDO 5.04 4.72 6.98 4.39 4.86 4.79 4.24

NYT 57.03 8.04 597.05 225.10 241.75 233.01 246.84

PANASONIC 8.07 8.03 15.21 9.73 9.93 10.31 9.34

SAINSBURY 25.82 29.24 35.56 18.64 21.78 22.03 17.83

SHISEIDO 11.54 10.35 28.96 16.75 18.76 17.69 17.14

SUBARU 12.11 5.39 13.89 10.63 11.39 10.29 9.91

SUZUKI 10.66 17.85 19.50 15.66 15.36 15.74 14.34

TENCENT 5.69 12.82 12.11 9.30 7.11 8.42 9.47

TESCO 64.87 16.83 13.56 36.99 45.71 41.62 50.50

TESLA 13.41 19.12 8.58 11.73 13.05 13.78 12.26

TOYOTA 3.61 12.95 279.70 161.56 98.91 103.87 258.83

UBISOFT 15.82 10.47 11.49 15.51 17.07 17.02 18.72

WALMART 3.26 11.28 7.49 6.51 6.23 7.10 6.73

XEROX 19.79 7.84 49.99 27.40 29.48 27.81 34.08

YAMAHACO 3.47 5.31 11.01 6.18 6.96 6.70 6.30

YAMAHAMO 12.98 8.41 15.83 11.16 12.63 12.31 13.53
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than the rest of the algorithms for Groups 2 and 3, while STGP-FASATA has the lowest risk for

Group 1.

In summary, ActTrade has the best performance in terms of the rate of return in two of the

groups. Moreover, it delivers low risk values across all groups. Given the variation of results

across groups and metrics, looking at the Sharpe ratio as an aggregate metric of both return

and risk is useful. As mentioned, ActTrade shows strong performance for datasets that either

have very strong positive price movements (Group 1) or negative price movements (Group 3)

and perform optimally in the two metrics assayed. It also performs well as regards the degree

of risk for average price movements (Group 2). This indicates that our proposed algorithm is

able to perform very well in strongly uptrend markets, as well as in downtrend markets. This

is an important finding, demonstrating that our algorithm can perform well in opposite types

of markets. Finally, the fact that the strongly-typed GP algorithms also perform very well in

terms of the Sharpe ratio indicates the importance of the strongly-typed GP architecture when

combining different analysis types of indicators.

7.5 Additional analysis

In this section we will explore the results of the ActTrade in more depth, introducing a "best

tree analysis" in Section 7.5.1 and the analysis of the computational times in Section 7.5.2.

7.5.1 Best tree results

While the average results presented in the previous sections provide insights into the expected

performance of a given algorithm in the machine learning domain, this section also showcases

the best results achieved by each GP algorithm. "Best results" here refer to the top-performing
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Table 7.16: Separated average results per metric per trend group.

Market Algorithm Sharpe ratio Rate of return Risk

Group 1 (>20%) STGP-FASATA 2.55 0.017 0.023

STGP-FASATA-S 3.3 0.017 0.024

ActTrade 4.17 0.020 0.027

Group 2 (0% - 19.99%) STGP-FASATA 3.7 0.008 0.029

STGP-FASATA-S 1.8 0.02 0.029

ActTrade 1.8 0.011 0.021

Group 3 (<0%) STGP-FASATA 2.26 -0.001 0.033

STGP-FASATA-S 3.5 0.011 0.030

ActTrade 2.18 0.012 0.024

tree in terms of fitness among 50 runs in the training set. Subsequently, this selected tree is

applied to the unseen test set, effectively representing a single best tree chosen from those

50 runs. In the financial sector, this holds particular significance as investors employing GP

algorithms in stock markets typically run the algorithm multiple times and subsequently opt

for the best-performing tree or model for trading. Therefore, having an algorithm that ex-

cels in terms of the "best tree" is a critical aspect of the financial sector. Consequently, Table

7.17 presents the average performance of the best trees across the 42 datasets for each GP

algorithm. To completely understand the algorithm’s capabilities, we present additional ana-

lysis, including all previous GP algorithms. The reason for the inclusion is that we have not

yet separately addressed them as regards the best tree results in the previous thesis to avoid

repetition.
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In the results, we exclude the companies whose runs gave a value of 0 so as to be consistent

with the results from the previous sections. It is to be reminded that the results for each

financial metric are presented individually.

Table 7.17: Best trees average performance across the 42 datasets

Algorithm Sharpe ratio Return Risk

STGP-FASATA 3.23 -0.004 0.027

STGP-FASATA-S 1.76 0.020 0.04

ActTrade 3.51 0.039 0.021

As we can observe, the proposed ActTrade algorithm has the highest Sharpe ratio and rate

of return values while achieving the lowest risk. As the Sharpe ratio is an aggregate metric

that considers both return and risk, the fact that the best tree of ActTrade has the best value

makes it a very positive result. It is also worth noting that practitioners pay particular atten-

tion to such aggregate metrics [166], thus ActTrade best tree’s performance is of particular

importance.

7.5.2 Computational times

Table 7.18 presents the computational times for all algorithms tested in this chapter. As we

can observe, the fastest algorithm is STGP-FASATA, which takes around 1.5 minutes. STGP-

FASATA-S and ActTrde take more time, at more than 7 minutes per run.

However, such differences are not crucial because, in the algorithmic trading domain,

such algorithms usually run offline, and only their models are used in real-time applications.

So, while training a model can take up to 7.5 minutes, its application to the test set takes a
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Table 7.18: Computational times per algorithm

Algorithm Value (in minutes)

STGP-FASATA 1.36

STGP-FASATA-S 7.10

ActTrade 7.48

fraction of a second. Furthermore, genetic programming is a highly parallelisable algorithm,

and thus, its computational times can be further reduced through the parallelisation processes

[167].

7.5.3 Summary of findings

To sum up, as seen in Tables 7.2 - 7.17 and focusing on the findings from ActTrade, the results

have been summarised below. When comparing the GP variants with each other, it is evident

that:

• The proposed ActTrade algorithm is able to perform strongly across all three financial

metrics of Sharpe ratio, rate of return and risk. Furthermore, its distribution is statistic-

ally significant different than the distributions of the two GP variants.

• The proposed genetic operator has the ability to create strong offspring (in terms of

Sharpe ratio), which often outperform offspring derived by tournament selection.

• The novel ActTrade algorithm also has the highest values in Sharpe ratio and rate of re-

turn in the best tree results while exhibiting the least risk amongst all other algorithms.
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7.6 Conclusion

In conclusion, this chapter presented a novel strongly-typed genetic programming algorithm

that combines fundamental, sentiment, and technical analysis indicators. On top of the novel

fitness function presented in Chapter 6, the proposed algorithm also utilised a novel genetic

operator to encourage active trading. As we have established during this chapter, the novel

genetic operator leads to improved results across all three metrics of Sharpe ratio, rate of

return, and risk, outperforming STGP-FASATA and STGP-FASATA-S, and subsequently out-

performing the GP variants showcased in Chapter 6. The importance of combining the three

analysis indicator types, which have not been frequently occurring in previous studies, is evid-

ent from our findings. Combining the indicators enhances the models’ knowledge and creates

financially more advantageous trading strategies. Moreover, the novel fitness function, in

addition to the active trading operator significantly improves these results.



Chapter 8

Thesis Conclusion

This thesis leveraged genetic programming techniques to address applications within the field

of algorithmic trading. The primary objective of this study was to demonstrate the efficacy

of the proposed GP algorithms in generating distinctive and profitable trading strategies that

incorporate information from the three analysis types. To achieve this, the algorithms were

employed to integrate three financial analysis types, namely fundamental, sentiment, and

technical analysis, in addition to introducing a novel strongly-typed architecture, a novel fit-

ness function and a novel GP operator. The conclusions drawn from the experiments conduc-

ted on these problems are presented in the subsequent sections. The discussion commences

with an exploration of the motivation driving each set of experiments. This is followed by an

analysis of the novelty and originality exhibited by the presented research. Subsequently, the

conclusions of each set of experiments are detailed, offering insights into their outcomes and

implications. Finally, this chapter delves into the exploration of future research, providing a

comprehensive overview of potential directions for further investigation and advancement in

this domain.
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8.1 Summary of the combination of the three financial analysis

types

8.1.1 Motivation of the presented research

In Chapter 5, the motivation stemmed from exploring the implications of utilising a ge-

netic programming algorithm, one that incorporates the three financial analysis types (fun-

damental, sentiment, and technical analysis), as well as to show the advantages of their com-

bined utilisation, as this integration had not been extensively investigated in the literature.

To address this, we developed a novel GP algorithm, namely GP-FASATA, which is tailored to

include all financial analysis indicators in its terminal set. This algorithm was then compared

to three other GP benchmarks, four machine learning benchmarks, and a financial strategy to

assess its significance and highlight its disadvantages.

8.1.2 Novelty of the Presented Research

While each analysis type can produce favourable trading outcomes individually, their combin-

ation yielded even more enhanced performance, especially related to the Sharpe ratio. This

observation indicates that the individual strengths of these analysis types are complemented

by their synergy when utilised together.

8.1.3 Conclusions

The GP-FASATA algorithm achieved higher mean values for the Sharpe ratio and rate of re-

turn metrics, although it did not perform with the highest median values. Moreover, the

GP-FASATA algorithms’ results revealed a statistically different distribution from the distribu-

tions of the other GP algorithms. On the other hand, GP-TA was the algorithm with the lowest
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mean and median values regarding risk, and its distribution was also statistically significant

different to those of the other three GP variants. Thus, we aimed to improve the trading per-

formance further, especially the value of risk, by introducing a strongly-typed GP architecture

for the algorithms that combine the three financial analysis types, as well as a new fitness

function.

8.2 Summary of the non-strongly and strongly-typed genetic

programming

8.2.1 Motivation of the presented research

From Chapter 5, we concluded that GP-FASATA did perform with a higher mean Sharpe ratio

and rate of return than the individual GP algorithms. However, the median values for two

metrics were not as high and in relation to risk GP-TA attained the lowest risk value. Thus,

in Chapter 6, as part of the second thesis contribution, in seeking to create an algorithm

that would perform with lower risk, we introduced STGP-FASATA-S. The proposed algorithm

incorporates a strongly-typed genetic programming structure and a novel fitness function,

thereby maximising the complete tree of an individual and the three subtrees. To assess the

importance of the algorithm, we compared it to the algorithms introduced in Chapter 5 and

STGP-FASATA, which does possess a strongly-typed structure yet does not incorporate the

novel fitness function.

8.2.2 Novelty of the presented research

The novel algorithm was able to conduct a more effective search of the space encompassing

fundamental analysis, sentiment analysis, and technical analysis indicators. This advantage
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is not present in algorithms of Chapter 5, permitting all indicator types within its terminal set

without the strongly-typed architecture. While the average and median values of the Sharpe

ratio and rate of return are similar in both algorithms, we were more interested in reducing

both the average and median values of risk. The strongly-typed architecture of the proposed

STGP-FASATA-S algorithm enables a more effective search of the space, combining the three

financial analysis types. In contrast, the novel fitness function of the algorithm can improve

the financial performance of GP.

8.2.3 Conclusions

In conclusion, STGP-FASATA-S showcased higher mean and median values for all three fin-

ancial metrics, performing better than the other five GP variants in terms of Sharpe ratio,

rate of return, and risk, which we sought to lower in Chapter 6. Moreover, the proposed

GP algorithm’s results were also better than the results of the four machine learning bench-

marks in all financial metrics and their distributions were statistically significant different.

This part was especially included in Chapter 6 because the proposed algorithm in Chapter 5,

GP-FASATA’s distribution was not statistically significant different than the distributions of the

machine learning benchmarks in all financial metrics. Therefore, we conclude that combining

all indicators can enhance the models’ knowledge and create financially more advantageous

trading strategies. Finally, based on our analysis, it is not sufficiently profitable to simply com-

bine the different types of indicators, as GP-FASATA does. Thus, a strongly typed architecture

is essential in achieving an improved performance for the Sharpe ratio, which combines both

rate of return and risk. This finding underscores the potential efficacy of our approach in

developing robust trading strategies.

Wanting to take advantage of the strongly-typed architecture of the algorithm, along with
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the novel fitness function, for the next contribution to this thesis, we sought to increase the

values of the Sharpe ratio and rate of return even further while decreasing measured risk.

We achieved this by introducing a new genetic programming operator, one which encourages

active trading.

8.3 Strongly-typed Genetic Programming variants

8.3.1 Motivation of the presented research

In Chapter 6, where we introduced STGP-FASATA and STGP-FASATA-S, the values of the

Sharpe ratio and rate of return did increase, while the value of risk decreased. However,

we wanted to strengthen these results more and create an algorithm that would further ad-

vance these values, especially in terms of the rate of return and risk. Thus, in Chapter 7, for

the third and final thesis contribution, our goal was to showcase further financial profits and

take full advantage of the strongly-typed architecture; we created the ActTrade algorithm.

The ActTrade GP variant has the same fitness function as STGP-FASATA-S but introduces a

novel operator that encourages active trading. We compared the ActTrade variant with the

two other strongly-typed GP algorithms introduced in Chapter 6.

8.3.2 Novelty of the presented research

The proposed algorithm encourages active trading by injecting into the GP population trees

that perform a high number of trades while achieving high profitability with low risk at the

same time. Thus, the novel GP variant was able to perform strongly across all three key

financial metrics of Sharpe ratio, rate of return and risk, and its distribution was statistically

significant different than the other GP variants. The proposed genetic operator can create
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strong offspring (in terms of the Sharpe ratio), often outperforming offspring derived by

tournament selection.

8.3.3 Conclusions

ActTrade performed better than the two other strongly-typed genetic programming algorithms

and, subsequently, the non-strongly GP variants, with the addition of the novel GP operator

leading to significantly improved results across all three financial metrics. The proposed

genetic operator can spawn strong offspring, outperforming traditional GP operators and

techniques.

This algorithm also exhibited significant "best tree" results, which is an important aspect

referring to the best-performing tree in terms of the Sharpe ratio among 50 runs in the training

set. This holds significance as investors in stock market applications using genetic program-

ming algorithms often run the algorithm multiple times and choose the best performing tree

for trading.

8.4 Future work

While our research has yielded promising results, it is important to acknowledge that it re-

mains a work in progress for further improvements in the performance of trading strategies.

Future research will concentrate on refining the genetic programming (GP) methodology by

optimising the utilisation of trees generated through the proposed genetic operator to tackle

the similarity between generated trees. This similarity manifests in both their structural con-

figuration (genotype) and the signals they generate (phenotype). To overcome this challenge,

we propose a strategy wherein we systematically replace tree nodes responsible for these sim-
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ilarities. By substituting these nodes with different, yet compatible nodes belonging to the

same branch type (FA, SA, and TA nodes), we aim to introduce diversity and variability into

the evolving population of trees. The careful selection of compatible nodes ensures that the

fundamental characteristics of the trees are preserved while introducing the necessary di-

versity to enhance the overall robustness of the methodology. Our goal is to create a more

dynamic and resilient GP framework capable of exploring a broader solution space, ultimately

leading to the discovery of more effective and robust trading strategies.

Another avenue is to implement a modification in the GP process, targeting trees that do

not meet predefined performance criteria. This strategic intervention seeks to enhance the

adaptability and responsiveness of the GP methodology. This could be achieved by substitut-

ing nodes with trees from a secondary initialised population that includes additional function

nodes compared to the original population. This secondary population is characterised by the

inclusion of additional function nodes, such as NOT and XOR, exceeding the known elements

of the original population. By infusing this supplementary genetic material into the under-

performing individuals, we aim to instigate a form of genetic "rejuvenation", fostering the

emergence of more sophisticated and potentially successful trading strategies. This deliberate

injection of complexity is intended to create GP-generated trees with enhanced performance.

Through these refinements, our research seeks to tackle the challenge of stagnation within the

evolutionary process, proactively addressing instances where trees fail to meet desired bench-

marks. By employing this targeted modification, we anticipate not only an elevation in the

efficiency and effectiveness of individual trees but also a broader enhancement of the over-

all GP methodology. This iterative and adaptive approach aligns with our goal of optimising

trading strategies for improved financial outcomes, contributing to the evolving landscape of

algorithmic trading in financial markets.
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Finally, in advancing the performance of trading strategies involves the incorporation of

Multi-objective Optimisation (MOO). Through the application of MOO algorithms, we seek

to identify Pareto-optimal solutions that represent optimal trade-offs between conflicting ob-

jectives. More specifically, we aim to maximise the rate of returns while simultaneously min-

imising risk, thereby presenting a holistic perspective on strategy optimisation. This way we

aim to intricate balance between two conflicting objectives of financial decision-making, but

both important for devising robust trading strategies. This not only enhances the adaptability

of our approach but also contributes to a more comprehensive understanding of the complex

dynamics inherent in financial markets.
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