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Abstract

Machine learning (ML) demonstrates superior accuracy in financial time-series forecasting compared to traditional statistical
models. While most studies focus on applying ML algorithms to high-frequency pricing data, the availability of fundamental
financial data is limited as it is generated quarterly. This paper investigates the performance of nine ML algorithms in small
sample data sets, against an ARIMA model — frequently used for financial time-series forecasting — serving as a benchmark.
Results obtained from 100 US companies indicate that the majority of ML algorithms exhibit low error rates on the test set,
outperforming benchmark results. Notably, the k-nearest neighbor algorithm achieves the highest prediction accuracy among the
algorithms considered, even with only 33 data observations, while avoiding overfitting.
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1. Introduction

Much of the academic literature on the applications of ML algorithms to finance tends to focus on pricing data
[15], i.e. the market price of a financial security (e.g. common stocks, bonds, etc.). This is typically the case due to
the open-source availability and abundance of such data: each year a total of 252 data points are created, assuming
daily frequency. Fundamental data, on the other hand, such as revenues and free cash flows, usually used by creditors,
auditors and investors to perform their analyses, is in short supply as companies only disclose such figures on a
quarterly basis, thus generating four data points per annum.

Free Cash Flows (FCF) is a measure of cash available for shareholders after all the necessary expenses and in-
vestments were met. Fundamental investors aim to predict the growth rate of FCFs in order to estimate a business’
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intrinsic value. Compared to the price of financial securities, intrinsic value is a measure of how much a business is
worth [11] given its future FCFs growth, discounted at an appropriate rate. The model that performs this computation
is known as Discounted Free Cash Flows (DCF). Specifically, the DCF model takes the FCF growth and discount rates
as inputs, and outputs an estimate of the intrinsic value of a stock. While there exists a consensus among investment
practitioners and researchers on how to derive the discount rate [23], the best way to derive the growth rate is still
an open question. This is partly due to the fact that the growth rate at a particular point in time tends to be highly
dependent on a company’s financial and operating conditions, which are generally not constant.

This paper investigates the effectiveness of a representative sample of regression algorithms taken from the Machine
Learning (ML) literature, benchmarked against an Auto Regressive Integrated Moving Average (ARIMA) model,
which is traditionally treated as the gold-standard approach for growth rate prediction in the finance literature [6]. In
our regression setting, we treat the Free Cash Flows growth rate as our target variable, and a set of past lags, the mean
and standard deviation of the target variable, and financial ratios as our feature matrix.

The motivation for this research stems from the fact that while traditional quantitative models require that the data
conforms to a strict set of assumptions1, the models we consider here do not require such strict assumptions on the
data. Hence, when these assumptions are violated, the ML models are more likely to demonstrate higher predictive
power.

The present work makes two important contributions to the state of the art. Firstly, the focus of this paper is on
finding a more accurate way of predicting the FCF growth rate than the established ones, which, when applied to
the DCF model would result in a more precise estimate of the ‘true’ worth of a business. This, in turn, would result
in better investment decisions undertaken by the investment community. Secondly, the data sets presented in the
paper are characterized by data that is sparse in terms of available number of observations. Therefore, we present an
overview of the performance of a representative set of machine learning algorithms in this setting, and in addition, we
outline a method for time-series forecasting using an expanding window, which allows to preserve as many training
observations as possible.

The rest of this paper is structured as follows: Section 2 provides the background information; Section 3 details the
literature review conducted for this study; Section 4 outlines the methodology used in our approach; Section 5 details
the experimental setup in which we consider the properties of data and parameter tuning for our algorithms; Section
6 describes the results obtained from our experiments and the computational complexity involved; finally Section 7
provides conclusions and implications from the results.

2. Background Information

The essence of fundamental stock valuation is researching a company’s financial documentation. Specifically,
investors, suppliers, and creditors focus on two key documents, namely the ‘10-Q’, which discloses data from the
first three quarters of a year, and the ‘10-K’, which summarizes the same information for a whole year. Specifically,
financial analysts will pay particular attention to the key figures from the ‘Balance Sheet’ — which is a summary of
what a company owns and owes; the ‘Income/Loss section’ — a summary of how much money from sales a company
generated; and the ‘Cash Flow section’ — a summary of how the capital was allocated within a company. The aim
of this due diligence is to estimate the fair value of a business, given the growth of sales, earnings, credit and capital
relationship changes and available equity.

In economic theory, the value of an asset is determined by the future cash flows it generates, discounted at a suitable
rate that reflects the associated risk for the investor [6]. The concept of “intrinsic value” is emphasized in financial
literature [11], and refers to an estimated reasonable price for a stock based on its future cash flows, discounted at
an appropriate rate. Various methods are available for estimating this intrinsic value, with the discounted cash flow
(DCF) model being the most popular approach [23]. The DCF model can be formally represented as follows:

1 e.g. the absence of a deterministic trend and time anomalies, constancy of parameter coefficients, and homoscedasticity of the error process, all
of which are frequently violated by fundamental financial data [24]
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V =
T∑

t=1

FCFt+1

(1 +WACC)t , (1)

where t = 1, ...,T is the time index, with t = 1 corresponding to the first quarter; T denotes a sufficiently distant point
of interest in the future; V denotes the intrinsic value of a stock; FCFt+1 denotes the Free Cash Flows at quarter t + 1;
and WACC is the weighted average cost of capital (explained below).

In other words, in order to arrive at the intrinsic value with respect to a future point in time, researchers predict
the future Free Cash Flows T+1 periods into the future, apply a discounting rate by scaling each future FCF by
(1 +WACC)−t, and then sum up the resulting values. We calculate the Free Cash Flows as:

FCFt = CFOt − CUIt, (2)

where CFOt denotes the ‘Cash From Operations’, and CUIt denotes the ‘Cash Used Investing’. These two variables
are reported quarterly by a company and can be found in the ‘Cash Flow Statement’. The one quarter ahead value of
FCF is estimated as:

FCFt+1 = FCFt(1 + gt+1), (3)

where gt+1 — the target variable we aim to estimate in this research — is the projected growth rate to the next quarter,
i.e. t+1. The final component of the DCF model is the weighted average cost of capital (WACC), which is widely used
to estimate the level of risk associated with common stock [23]. The WACC considers both the default risk associated
with a firm’s leverage and the risk related to stock market shocks, taking into account the amount of equity capital the
firm possesses [14], formally:

WACC = rD
D

D + E
+ rE

E
D + E

, (4)

where D denotes the total debt a firm possesses, E denotes the total equity, rD denotes the required return on debt, and
rE the required return on equity. The values for D and E are displayed on the Balance Sheet of a firm, usually labeled
as ‘Total Liabilities’ and ‘Total Shareholders’ Equity’, respectively. The cost of debt, rD is usually assigned by the
credit rating agency, such as Moody’s, Standards and Poors, and Fetch, and is disclosed in 10K/Q financial reports.
To estimate rE , researchers usually apply the Capital Asset Pricing Model (CAPM):

rE = R f + β(Rm − R f ), (5)

where R f denotes the risk free rate, which is typically estimated via the 3-Month US Treasury bills rate; Rm denotes
the expected (average) return on a broader market index, such as the S&P500; and β denotes the slope-coefficient from
an Ordinary Least Squares regression, performed on 3 years’ worth of monthly returns on stock, against the financial
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index’s price returns. More specifically, this is derived from:

Rs = βRidx + ϵ, (6)

where Rs is the vector of stock returns; Ridx is the vector of market returns; the slope-coefficient β is the quantity
required for Equation 5; and lastly, ϵ denotes the regression error [21].

Earlier we noted that intrinsic value estimation typically relies on the DCF model and calculating the WACC
using the CAPM and financial statements. However, determining the future FCF growth rate (gt+1) lacks a universally
accepted approach. This research addresses this gap by formulating the derivation as a regression problem. The aim
is to predict the future FCF growth rate (g) using financial ratios. As previously mentioned, a more accurate FCF
growth rate prediction would result in a more precise estimate of the ‘true’ worth of a company, and subsequently in
better investment decisions undertaken by the investment community. The next section explores existing methods in
the literature for approximating the growth rate.

3. Literature Review

The finance literature highlights the usefulness of ML algorithms for classification and regression problems [15].
Typical regression problems revolve around predicting revenues and earnings, where these variables are indicative of
future stock price performance. Typical classification problems focus on determining probability of important events
occurring, e.g. the probability of bankruptcy of enterprises.

It is worth noting that when assessing the value of a company, investors often rely on projections provided by
financial institutions and investment banks. However, these projections can be akin to a black box and may exhibit
biases [9]. Another commonly used approach involves utilizing financial variables or historical average FCF growth
rates [6]. However, this method overlooks external factors such as economic recessions or seasonal fluctuations in
consumer demand. Additionally, as companies evolve over time, their growth rate tends to decrease as they mature
[6], rendering past growth rates a less reliable predictor of future performance.

Traditionally used quantitative forecasting models like ARIMA have shown robust performance [3]. However,
these models rely on assumptions that financial data often violates over longer periods [12]. While ML algorithms
have gained interest for their ability to bypass stationarity and linearity assumptions [10], their application has mainly
focused on forecasting earnings per share, revenues, and cash flows [7, 16, 25]. Recent research evaluated various ML
algorithms against analysts’ expectations and found that ML models provided comparable or superior results [16].

The forecasting of business fundamentals and earnings per share has been approached as a classification problem.
For instance, [5] used Random Forests and Stochastic Gradient Descent Boosting to predict a year ahead directional
changes in corporate earnings. Ensemble learning models show robust performance on out-of-sample data, primarily
due to the capability of such models to automatically choose significant variables from high-dimensional data. [13]
developed a tree-based technique, named TreeNet, to estimate the probability of bankruptcy in Chinese public com-
panies using financial ratios, valuation multiples, macroeconomic and other variables. The model showed improved
accuracy of more than 90% in predicting bankruptcy.

In [23], ML algorithms were applied for fundamental company valuation, specifically focusing on the WACC and
FCF growth rate. A linear regression model was used, incorporating detailed data from balance sheets and income/loss
statements, polynomials representing past FCF lags, and selected macroeconomic variables. The study demonstrated
that ML-enhanced valuation models provide less biased estimates of intrinsic value compared to market analysts.
Similarly, in [1], the directional changes of enterprise profitability measures, including the FCF growth rate, were
investigated. Multiple Random Forest Classification algorithms were trained, adding one feature per training iteration.
Results revealed that ML algorithms achieved 55-67% accuracy in predicting directional changes in future FCF growth
rates, surpassing the 50% accuracy of the Random Walk model when tested on out-of-sample data.

Based on the literature reviewed, it is evident that ML algorithms are gaining popularity in the field of financial
forecasting, particularly in predicting per share earnings and revenues. While there is ongoing exploration of the
forecasting ability of FCFs, most studies focus on predicting directional changes, cash flows from projects, and employ
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simple algorithms such as Linear Regression. Nonetheless, the overall trend indicates a growing interest in applying
ML techniques to such tasks. The next section considers the methodology pursued over the course of this study.

4. Methodology

This research investigates the effectiveness of a number of ML algorithms, benchmarked against ARIMA, com-
monly applied to financial time-series data. The target variable, i.e. the ‘Free Cash Flows growth rate’, is a frequently
used measure for calculating the intrinsic value of a business, which is used in finance to make buy/sell decisions
related to common stock investing. At its core, we have a regression problem, where we regress the target variable —
the FCF growth rate — against past lags of the target variable, its empirical mean and standard deviation, and a set
of financial ratios, assuming that the next quarter’s FCF growth rate, depends on the previous quarters’ growth, their
moments, and financial ratios.

Financial ratios serve as performance indicators for specific aspects of a company’s performance, while Free Cash
Flows (FCFs) represent the amount of money available for distribution to shareholders after meeting all obligations.
The growth rate of FCFs measures the percentage change in FCFs over time. To ensure reproducibility, data for
our research is obtained from the Securities Exchange Commission’s EDGAR archive, which covers all securities
instruments in US Exchanges. The remaining sections are organized as follows: Section 4.1 explains the data pre-
processing methodology, and Section 4.2 provides an overview of the regression problem tackled in this research.

4.1. Data Preprocessing

Financial ratios are a frequently used measure of how company is doing at a point in time and how it compares
to similar companies in a given industry. In our research, we utilise financial ratios that measure the performance
of a company in areas such as liquidity (Current Ratio), product profitability (Gross Profit Margin), financial health
(Debt–Equity Ratio), assets utilisation (Return On Assets) and investors’ capital efficiency (Return On Equity) [17]

FCFs represent the funds available to shareholders after all expenses and investments are accounted for [14]. The
computation formula for FCFs can be found in Section 2 (Eq. 2). Regulatory requirements mandate that companies
report their financial figures on a 90/180/270/360-day basis. This presents a challenge for forecasting models since
reported figures are inclusive of values reported previously. To address this issue, we standardize all reported figures
to a 90-day basis. This ensures that each new quarter reflects the amount of money generated by the company over a
fixed 90-day period.

In order to derive the growth rate and make sure that our data set is in the same units, we convert all values to a
percentage change between two periods t and t − 1, as follows:

vt =
vt − vt−1

vt
, (7)

where vt denotes a value (either a target or a feature vector) at time t = 1, ..,T .
In order to account for sudden changes and fluctuations in important aspects of companies over time, it is essential

to avoid using raw values that can result in large deviations. Instead, we incorporate the mean and standard deviation of
the first lag of our target variables into the feature set. By including these statistics, we provide the forecasting models
with information on how the distribution’s moments evolve over time. To calculate the moving average and standard
deviation components, we use an expanding window method. This means that the aggregate statistics are computed
based on the available data at each time point. As the window expands, the moving average and standard deviation
converge to the overall average and standard deviation of the distribution. This approach helps to mitigate the potential
misleading effects of large shifts in the empirical distribution and provides algorithms with a better understanding of
how the moments of the distribution evolve over time.

To address high kurtosis (in excess of 3) and outliers in FCFs, we apply MinMax Scaling, while using again an
expanding window method. This normalization ensures unit-variance distributions, enhancing ML algorithm effec-
tiveness.
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4.2. Regression Problem Formulation

To solve our regression problem, we apply supervised learning algorithms, namely: Automatic Relevance Deter-
mination (ARD), Bayesian Ridge (BR), Decision Tree (DT), Random Forest (RF), XGBoost (XGR), Lasso linear
regression, K-Nearest Neighbor (KNN), Multilayer Perceptron (MLP), and Support Vector Regressor (SVR), with the
purpose of minimizing the loss function:

√
ϵ =

√√√
1
T

T∑
t=1

(gt − ĝt)2, (8)

which is also known as Root Mean Squared Error (RMSE), denoted as
√
ϵ. In Equation 8 gt is the actual FCF growth

rate at time t and ĝt is the model estimation of the growth rate at time t. Next section outlines the experimental setup
for this regression problem.

5. Experimental Setup

In this section we present the details of our experimental setup. We first present the data sets used in our experi-
ments, forecasting procedure, followed by discussion on hyperparameter tuning.

5.1. Data and Forecasting Method

For reasons explained in Section 2, public companies generate 4 data points annually (once every quarter). Further,
popular paid financial data sources, such as Bloomberg, Compustat and Refinitiv Eikon began to store their data
digitally in 1980s [15]. For most publicly traded companies there are up to 120 data points available (past 30 years).
Thus, ML algorithms will not have enough data to adequately train, which results in model overfitting [2]. To overcome
this problem, we use an expanding window approach, where the number of instances allocated to training expands at
every iteration by adding a point from the test set. This allows us to preserve as much data as possible, while at the
same time leaving enough room for performance evaluation. Implicitly, this process guarantees better fitness of the
model parameters even in the presence of past outliers, as these will be present in the training data at some point.

The fact that data sources such as the above are not free, makes it hard for independent users to reproduce study
results. For this reason, we obtained our data from the Securities Exchange Commission’s EDGAR repository — an
open source provider of fundamental financial data. The full process of obtaining data from EDGAR is available as
an open-source project at [8]. At EDGAR, there are 11662 US tickers2 for which filings are available. Some of these
tickers are denoted as ‘secondary’ issues, i.e. ‘BRK-B’ is a class B stock for Berkshire Hathaway. For the purposes of
this study, we work with class A stocks, as these are issued by the parent company. After exclusion of secondary issues,
we are left with 10813 companies. For our study we exclude all financial, blank-check, conglomerates and other non-
manufacturing enterprises, because these companies usually have different financial ratios for the evaluation of the
company’s financial standing, due to the different nature of business activities conducted by such entities. This leaves
4266 companies to choose from. Correspondingly, we exclude all companies that went public after 2009 as this will
guarantee that we get at least 45 observations per company, leaving 1669 companies available. Further, we exclude all
non-US companies and those with market capitalisation of less than 1 billion (USD) as of the end of November 2022,
as low capitalization companies have different regulation requirements and allowances, and non-US companies are
reporting under different tax treatment, hence might require other forms of adjustment than those we describe in the
methodology section. Correspondingly, we are left with 857 companies from which we randomly pick 100 to conduct
the experiments on.

2 A ticker is an abbreviation used to uniquely identify publicly traded shares of a particular stock on a particular stock exchange.
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Our forecasting program automatically picks the number of lags for the target variable by choosing the number
which minimizes the Akaike Information Criterion [4]. Furthermore, since the target variable displays a varying mean
and variance over time, we incorporate the mean and standard deviation of the first lag as part of the feature set.
The first lag is taken as a proxy for avoiding data leakage — a problem in predictive modeling when the algorithm
learns from data outside the training set (the target variable, for instance). Furthermore, in order to pick up appropriate
lags of features, we apply a Granger-Causality test, in which the null hypothesis is that the lagged xt are said not to
Grange-Cause variation in yt. Hence, if the p-value is less than our significance level α = 0.05, lags are incorporated
into the feature set and are not otherwise. In order to preserve as many observations for training, hold-out validation
and testing as possible, we allow for up to 5 lags of both target variables and features. Further, to train, fine tune and
test our prediction algorithms, we split the data into 60/20/20 subsets.

5.2. Parameter Tuning

We use the sklearn [18] open-source library for the python programming language to train the aforementioned
machine learning algorithms. Our research considers a diverse set of algorithms with different underlying optimization
functions and regularization properties. In order to pick the best set of hyperparameters for each model, we split the
data into train/validation/test sets and use the GridSearch method from the hypopt package on a hold-out validation
set, which iterates through all the parameter values to find the minimum RMSE. The process is repeated for each
company individually. Because we are dealing with a limited number of observations, we specifically focus on the
regularization properties of each algorithm, to avoid overfitting. For instance, we restrict the number of estimators
in a Random Forest to up to 5 trees, or the size of the MLP neural network to up to 2 hidden layers with up to 4
nodes in each. This way, the estimated parameters of the regression models are restricted to fit the majority of data
observations. We run our tests on a machine with an Intel Core i5-6600, 3.30GHz processor and 8GB RAM.

6. Results

In this section, we describe the results obtained on the set of 100 companies, starting with summary statistics,
followed by discussion on computational complexity.

6.1. Summary Statistics

Table 1 summarizes the ML algorithms’ RMSE results in the training and test sets, sorted by each algorithm’s
Friedman ranking. The non-parametric Friedman statistical test with the post-hoc Bonferroni-Dunn’s test, serves the
purpose of identifying the best performing forecasting model. Table 1 also shows the average rank (‘Ranking’ column),
where the lower the rank, the better the model’s performance, alongside the adjusted Bonferroni pBon f value. A
statistically significant difference between the model with the lowest ranking (the control ‘(c)’ algorithm) against the
rest of the models is established using pBon f : a p value less than 0.05 indicates the statistical significance at the α=5%
level, meaning that the algorithm statistically outperforms the respective algorithms.

It is observed that the K-nearest neighbor yields the lowest RMSE of 0.1078 on the test set (on average). Moreover,
the train set for the same algorithm yields 0.1085, indicating 0.0006 train-test sets difference. This rather small gap
implies a good fitness of the KNN model to limited sample observations data. This conclusion is further evidenced
by the results of the Friedman ranking test. The KNN algorithm achieves the best average rank of 4.1, followed by
BR (4.24), ARD (4.725) and SVR (0.2246). Moreover, KNN’s rank is statistically significant against our benchmark
ARIMA model at the 5% level, as well as DT, RF, XGR, Lasso, and MLP algorithms. Overall, results are consistent
with other studies examining the performance of similar algorithms in the context of problems featuring limited data
observations, where KNN was also shown to be competitive against other ML algorithms, such as DT, RF, and MLP
[19], [22], [20].

It is observed that, the majority of machine learning algorithms examined did not seem to overfit on our sample
of 100 data sets, whereas the difference between train and test sets for ARIMA was 0.2415, meaning that the model
captured patterns in the training set that could not be applied to the unseen data. Among the ML algorithms, the
highest difference between train and test sets is observed with Lasso regression. Moreover, the Multilayer Perceptron
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Table 1. ML Algorithms’ RMSE Performance, sorted by Friedman ranking. Significant differences at the α = 5% level between the control algorithm
(denoted with (c)) and the other algorithms (one per row) are shown in boldface, indicating that the adjusted p value is lower than 0.05.

TRAIN TEST Ranking pBon f
Model Mean STD Mean STD

KNN (c) 0.1085 0.1007 0.1078 0.0912 4.1 -
BR 0.1308 0.0538 0.1129 0.0782 4.24 6.6932
ARD 0.1339 0.0577 0.1213 0.0876 4.725 1.2994
SVR 0.1474 0.0707 0.1192 0.0757 5.06 0.2246
DT 0.1231 0.0677 0.1321 0.1011 5.375 0.0261
RF 0.1173 0.0519 0.1313 0.0931 5.39 0.0233
XGR 0.1467 5.38E-02 0.1336 0.0758 5.62 0.0035
Lasso 0.2253 1.03E-01 0.138 0.0895 6.04 5.29E-05
ARIMA 0.3852 4.65E-01 0.1436 0.099 6.39 7.99E-07
MLP 0.198 0.1479 0.282 0.2661 8.06 2.05E-19

Neural Network underfits the data with a difference of -0.0839. It is possible that a better result could be achieved with
a larger network (increase in size of layers and/or nodes), however, such a network would require a higher number
of observations, which is not possible due to the considerations outlined earlier. This model also yields the highest
standard deviation among forecasting algorithms in the test set (0.2661).

As our test RMSE results contain outliers, we provide descriptive statistics for companies for which the ML algo-
rithms demonstrate best and worst performance, along with their respective matrix dimensions. Table 2 reports this
summary, denoting n as the number of instances and m as the number of feature vectors in the combined training and
validation matrix. Note that the number of instances n can be different for each data set. There are two reasons for
it: (i) the forecasting program automatically picks up past lags, hence the number of lags of either target or feature
vectors decreases the number of observations, and (ii) different companies in our data set submitted their first financial
reports to the SEC at different quarters between the years of 2008 and 2010; hence, as the year of first record varies,
so does the length of the training set.

Table 2. Algorithms: best and worst forecast results

Algorithm Best n m RMSE Worst n m RMSE

KNN ACN 33 16 6.72E-06 CAH 44 12 0.3585
BR ACN 33 16 2.20E-06 ADM 42 12 0.3102
SVR ACN 33 16 1.31E-05 ADM 42 12 0.3405
ARD ACN 33 16 2.08E-05 ECL 45 17 0.4325
RF ACN 33 16 8.86E-06 MO 46 11 0.4818
DT ACN 33 16 1.22E-05 MO 46 11 0.4818
XGR KMB 42 27 0.0211 MO 46 11 0.3704
LASSO ACN 33 16 2.08E-05 ADM 42 12 0.3556
MLP ACN 33 16 0.0002 CTXS 44 17 1.2129
ARIMA ACN 33 16 1.74E-06 CAH 44 12 0.4587

From Table 2, it is observed that almost all algorithms show best performance on the same company except for
the XGR/KMB pair, whereas the list of companies with worst performance across forecasting models is slightly
more diverse. The number of observations hardly affects the performance of the forecasting algorithms, as ADM,
ECL, CAH and CTX have the highest number of data records. Interestingly, KMB, which has the highest number of
features (27), is showing the best performance for XGR. This could be attributed to the fact that XGR is an ensemble
method and can automatically pick significant features from the data. This property of XGR is observed in RF, and
DT but, possibly due to the differences in underlying optimization methods, RF and DT perform less well on KMB
stock.

Given that the number of records at each company differs, we divide the 100 companies into three groups. In order
to get a meaningful number of companies in each group, we take the median number of pre-processed observations
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(after differencing and scaling), as these data points are used for training ML models. The median number of observa-
tions in our 100 companies sample is 44, minimum is 33 and maximum is 47. Hence, Group 1 contains all companies
with number of observations below the median, Group 2 with number of observations at median point and Group 3
with number of observations above the median, resulting in 40/22/38 companies per group split. Table 3 summarizes
the results in terms of the average RMSE for the test sets in each group, with lowest RMSEs shown in boldfaces.

Table 3. Algorithms: Average Test Set RMSEs By Group

Algorithm KNN BR SVR ARD RF DT XGR Lasso MLP ARIMA

Group 1 1.23E-01 1.20E-01 1.30E-01 1.28E-01 1.44E-01 1.45E-01 0.144084 1.53E-01 0.296924 1.58E-01
Group 2 0.116558 0.120529 0.12436 0.107938 0.132123 0.129819 0.13144 0.148773 0.337909 0.148457
Group 3 0.087341 0.10088 0.105107 0.121637 0.117958 0.119655 0.123939 0.115476 0.23384 0.125294

The algorithm with best RMSE per group is BR (Group 1), ARD (Group 2), and KNN (Group 3). In addition,
KNN had the second best RMSE in Group 1 and 2. Thus, in two of the three groups KNN is the second best, although
the difference between KNN and the best algorithm in the given group is minimal.

To summarize, we have seen that the KNN regression algorithm consistently shows low RMSE values, and is able
outperform other algorithms in our study at the 5% significance level. However, while it is the best across the 100
companies, when grouped by proposed method, we get slightly different results: BR shows the lowest test set RMSE
in the group with the least matrix length, ARD gives the minimum RMSE in the second group, however, the difference
in both cases is close to zero.

6.2. Computational Times

In this section we consider the efficiency of each algorithm in terms of the time it takes to fine-tune the model and
make predictions. For each machine learning algorithm, we summarize time estimates in Table 4.

Table 4. Computational Times

Algorithms KNN BR SVR ARD RF DT XGR Lasso MLP ARIMA

Hyper-Parameters space 1400 11520 25 15000 8192 12000 2400 112 2700 N/A
Fine-Tuning Time (seconds) 4.2510 34.1187 0.0841 76.0866 52.1434 31.7173 28.7062 0.3531 201.2459 N/A
Forecasting Time (seconds) 0.0359 0.0359 0.0337 0.0628 0.0806 0.0329 0.0948 0.0362 0.5489 6.3566

As observed, the least efficient algorithm is MLP both for forecasting and fine-tuning. KNN is the third best
algorithm with an average training time of 4.2510 seconds, preceded by Lasso and SVR. In terms of forecasting time
(after the best set of parameters has been selected), all ML outperform ARIMA. The most efficient algorithm in this
aspect is Decision Trees with an average time of 0.0329 seconds. Importantly, the training/tuning and forecasting
time complexity will also rely on each algorithm’s individual sensitivity to dimensions of input data. We estimate
the overall time complexity of the forecasting program to be O(n2), as the time it takes to produce the forecast will
grow quadratically with the number of validation and test points, the number of companies to make forecasts for. It is
important to mention that the forecasting approach we propose is used in an ‘offline’ manner and hence the runtime of
each algorithm is not as important as the forecasting accuracy of the models, since it guides the accuracy of estimation
of the FCF growth rate. The better the estimate of this target variable, the closer one arrives at the intrinsic value of a
common stock, as computed with the DCF model.

7. Conclusions

In this paper, we investigated the performance of nine ML algorithms and ARIMA, which served as a benchmark, in
the problem of forecasting the FCF growth rate. The algorithms are examined in an environment of financial data sets,



10 Ivan Evdokimov, Michael Kampouridis, Tasos Papastylianou / Procedia Computer Science 00 (2023) 000–000

where observations are limited in number (33-47 data points per data set). We show that on a set of 100 companies,
ML algorithms display statistically significant superior performance of Free Cash Flows growth rate forecasting.
Computational times vary with each individual model’s complexity. The above result is important, for two reasons:
First, our proposed methodology results in a more precise estimate of the ‘true’ worth of a business. This is particularly
relevant to investors, as it allows to have a better understanding of a company’s value. Second, given the fact that in
this problem limited data points are available, we have shown that accurate predictions are still possible by using
machine learning algorithms and an expanded window approach. This opens the door to applying ML forecasting
to fundamental valuation techniques, with the FCF growth rate being of principal importance for this task. Further
research involves use of more algorithms and modified versions of the algorithms examined in this paper.
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