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Abstract—The COVID-19 pandemic has exacerbated the back-
log of Referral-to-Treatment (RTT) patients awaiting surgery,
presenting a significant challenge within the UK’s National
Health Service (NHS). As waiting times continue to rise, opti-
mising surgical theatre planning becomes crucial for effective
patient care.

Traditionally, scheduling relies on plan-makers’ subjective
estimates or historical averages, leading to inefficiencies such as
surgery cancellations or underutilisation of resources. Machine
learning (M/L)-based predictive algorithms offer a promising
solution by leveraging data-driven models to forecast surgical
times more reliably. However, their application in NHS hospital
settings remains limited. This also causes restriction for the
broader adoption of Digital Twin (DT) technology and Artifi-
cial Intelligence (AI) within the healthcare area, despite their
significant potential in today’s era.

This study explores the implementation of multiple M/L algo-
rithms for surgical time estimation for Trauma and Orthopaedics
related procedures in an NHS Trust hospital. Results indicate
that Neural Networks, along with ElasticNet, Gradient Boosting,
and Bayesian Ridge models, demonstrate robust performance.
Additionally, expansion of modelling to procedure-specific is
adopted where models are built separately for each surgical
procedure. The consideration of procedure-specific modelling is
promising.

The study contributes insights into the integration of M/L
algorithms into healthcare digital resources, paving the way
for enhanced surgical planning strategies. Future research will
focus on integrating the predictive models into a comprehensive
framework (referred to as a Digital Twin) for simulation and
optimisation-driven automated decision-making.

Index Terms—Surgical Time Prediction, Theatre Planning,
Machine Learning, Artificial Intelligence, Health-Care Digital
Twin

This work is an outcome of a Knowledge Transfer Partnership (KTP)
between the University of Essex and East Suffolk & North Essex NHS
Foundation Trust (ESNEFT), with funding provided by ESNEFT.

I. INTRODUCTION

The backlog of Referral-to-Treatment (RTT) waiting pa-
tients requiring surgery has been exacerbated by the COVID-
19 pandemic [1], and continues to present a formidable
challenge. In the UK, regardless of the National Health Service
(NHS), being an efficient health-care system, the number of
waiting patients requiring some sort of surgery and waiting
more than a year continues to increase [2]. With such increas-
ing cumulative waiting times for patients requiring surgery,
the importance of surgical-theatres and their effective planning
becomes even more pronounced.

The availability of surgical theatre’s and their planning,
which play a crucial role in hospitals for patient care and
well-being, are often constrained, since they demand a higher
percentage of the total allocated hospital costs [3]. Any
enhancement in the utilisation of the theatres and related
resources directly affects patients waiting time, especially in
the context of elective surgeries. Consequently, cost-effective
surgical planning becomes imperative to ensure judicious
utilisation of available and/or affordable theatres’ associated
resources, aiming at reducing the RTT list [4].

It is undoubtedly accepted that the overall effectiveness of
theatre planning/ Scheduling mostly relies upon the estimation
of surgical duration for the planned surgical procedure(s)
[5]. Accurate schedules hinge on reliable estimations of how
long each surgery will take. However, scheduling in most
hospitals relies on estimations from surgeon and/or averages
of historical procedure-time duration [6]. This dependencies
have limited accuracy, since they don’t fully consider broader
range of features and variables that could affect the surgical
procedure time. Thus, currently used methods of planning
have higher chances of leading to the major issues: surgery



cancellations due to overrun time in previous procedures or
under-utilisation of theatres when procedures performed in less
time than was allocated [7]. Under-utilisation means wasted
resources causing revenue-loss, while, cancellations leads to
patient’s disappointment towards the hospital setting. There-
fore, the solution lies in improved surgery duration estimation.
With more accurate forecasting of procedure time, hospitals
can create optimal operating room schedules. This translates
to several benefits: efficient resource utilisation, increased
surgical capacity and optimised case arrangement.

In the evolving landscape of healthcare, the role of machine
learning (M/L) based predictive algorithms has been receiving
significant attention for estimating surgical times [5, 8, 9].
Time-predictive models built using these algorithms have the
potential to enhance decision-making by providing accurate
estimates of procedure times during surgical schedule plan-
ning. However, the use of M/L algorithms and their derived
tools for procedure time estimation is not sufficiently exploited
and remains very limited within NHS-related hospital settings
in the UK.

This limitation, in turn, restricts the broader adoption of
Digital Twin (DT) technology and Artificial Intelligence (AI),
which hold significant promise for revolutionising healthcare
[10]. DTs can create highly accurate virtual replicas of phys-
ical systems, allowing for advanced simulations and real-time
optimisations. AI, when integrated with DTs, can provide
personalised treatment plans, predict patient outcomes, and
optimise resource allocation. These technologies are particu-
larly effective in optimising surgical scheduling and enhancing
personalised medicine. Effective exploitation of DT and AI
in healthcare heavily relies on M/L algorithms and data-
assisted analysis and prediction for activities involving human
intervention [11].

The rest of the paper is structured as follows: Section
II discusses approaches for estimating surgical durations in
hospital settings and examines trends of predictive modelling
in surgical time estimation. Section III outlines the steps this
research-work follows for the task such as data collection,
processing, and feature selection. Section IV details the model-
building process, including the algorithms and approaches
used or proposed. Section V presents empirical results from
different model types, compares them and provides a detailed
empirical analysis of the results. This includes evaluation
of the performance of different models to identify the most
reliable approaches for surgical time estimation. Section VI
concludes the paper and outlines future research directions.

II. BACKGROUND

Studies have been conducted, within the realm of predicting
or forecasting the surgical duration, leading to some significant
level of developments in this area. Distribution fitting model
can be considered as first stream attempt in the estimation of
procedure time and, applied, to a certain extent for predicting
time, based on fitted distributions [12, 13].

The subsequent advancement in predictive modelling in-
volves statistical modelling, wherein factors influencing surgi-

cal duration(s) are assigned with relative importance to create a
simpler linear regression model. Eijkemans et al. [5] developed
a multi-variable linear regression model considering specific
estimators, including surgeon’s time estimate, surgery-specific
features, surgeon team features, and patient-level features.
They examined the effects of these features by adding them
individually or in groups to the base model, which solely
comprises procedure-related information as an input feature.
The study aimed to identify the impact of these additions on
the overall accuracy (R2) of the model. The findings suggest
that team characteristics play a crucial role in influencing the
duration of surgical procedures, with surgeon’s estimates of
team characteristics being the most influential factor. In con-
trast, patient characteristics have a limited impact on procedure
duration. However, using surgeon’s time estimates as input
features may hinder practical replicability in this context.

Kayis et al. [14] attempted to harvest fittings model’s predic-
tions by adding features to the base fitting model which is the
mean value of the last 5 particular procedures’ duration. The
Last 5 particular procedures’ duration is considered such a way
that the particular surgeon has performed at least 5 surgeries of
the particular type in the last year, and otherwise the estimates
are generated from all the same type of procedures performed
by any surgeon. They trained an Elastic Net regularised linear
regression with added other features considering the Last 5
estimate as the core input feature. The added features as
temporal features were time of day, day of week, etc.), and
further operational features (Theatre room assignment, etc.).
Though, having mean of previous procedure-related duration
as input features maximises practicality in contrast to the
modelling with surgeon’s estimate as input features [5], the
Last 5 mean feature creates ambiguity for features’ importance
analysis. This is because most or all of the features already
affect the procedure time for the last 5 selected procedures.

ShahabiKargar et al. [15] on other side, has avoided both
of the above case i.e., primarily estimated procedure time
as input features, and also focused on practically available
pre-operative surgical data. An exhaustive review of available
information sources was made to select the potential predictors
together with discussions with clinical experts and hospital
administrators.

In the last decade, M/L techniques beyond linear regression,
such as Decision-tree-based, Deep-learning-based, Bayesian-
approaches or hybrid models, have been implemented for
theatre time forecasting [8, 16, 17, 18]. This is primarily
driven by their effectiveness in handling outliers and missing
data, as well as their capability to model non-linear rela-
tionships. Master et al. [8] conducted a study where they
trained multiple decision-tree-based M/L models, including
random forest regression, gradient-boosted regression trees,
and hybrid combinations. The goal was to achieve more robust
predictions compared to linear regression models. In the study
of Sahadev, Lovegrove, Kunz [18], both RF and xGboost
regression model performed with no significance difference in
performance results for the given orthopaedic-related elective
surgery dataset from ‘East Kent Hospitals University NHS
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Foundation Trust’. Likewise, Bartek et al. [19] evaluated two
decision-tree based models Random-forest (RF), and xGBoost,
with xGboost outperforming RF model predicting with the
accuracy of 50% considering ±10% flexibility for the duration
requirements to be acceptable.

Regarding the data and domain of interest in this study-area,
there have been different trends observed in the research area.
Some researchers tend to incorporate multiple specialties into a
single model [14, 15], while others deal separating them [17]
or focus on a particular specialty [18, 20]. Similarly, many
research studies has filtered the top-performing procedures
from one or more specialties [8, 18], to establish the role
of machine learning (M/L) in forecasting. Having the model
trained on only selected procedures, however, has limitation in
obtaining insight covering broader range and also not enough
for practical application.

Other than above, next prevailing trend involves modelling
for selected procedure(s) only that is/are both frequent and
crucial for most hospitals [9, 21, 22]. Being procedure-specific,
this approach enables a robust analysis of the model avoid-
ing generalisation among the procedures. Upon achieving a
significant performance level, it facilitates planning for these
specific procedures with reduced risks, thereby maximising the
chances of practical replicability. For example, [9] developed
machine learning models to predict the duration of Total
Knee Arthroplasty (TKA). In their study, the neural network-
based model outperformed the tree-based model. However,
in reality, the planning team for any specialty require to
plan for a broader range of procedures, which is a limitation
for such single procedure specific related time-estimation.
This limitation can be mitigated by expanding the procedure-
specific modelling concept for multiple procedure categories.

In summary, a range of statistical to machine learning
techniques have been implemented in predicting surgery time,
where most of the research efforts outperform existing hospi-
tal’s manual estimation methods. However, these models still
holds considerable predictive errors, which is why they lack
confidence in practical applications. This can be attributed to
factors such as the lack of benchmarks for practical pre-surgery
viable features affecting procedure time, the limited balanced
availability of surgery related data from individual hospital
settings required to train a complex model, limited implemen-
tation and analysis of algorithms due to restricted access to
inter-hospital/trust-related data, and the inherent complexity
of surgical procedures. Also, the question on effectiveness of
building single (holistic) or multiple specialty/procedure spe-
cific models remains unanswered: should all procedure or spe-
cialty data be combined for model-building to increase training
data volume with generalisability on variables’ contribution
on procedure-time, or should they be separated which will
decrease training data volume for each model but allows for
the exploration of procedure/specialty-specific contributions of
variables?

In this study, we have focused on a broader range of
machine learning (M/L) algorithms and different approaches,
leveraging real-world data from a NHS trust. The contributions

of this study, are articulated as follows:
• We investigate a diverse array of machine learning (M/L)

algorithms that are or can be utilised to predict surgical
duration, aiming for a comprehensive evaluation of their
performance.

• The study highlights the ranges of surgical-procedures,
offering insights into the variability and complexity in-
herent in surgical scheduling.

• Our use of real-world data from an NHS Trust enhances
the study’s contribution by providing a realistic and
context-rich dataset.

• Acknowledging the importance of feature selection, we
follow a thorough process of feature selection focusing
on pre-surgical variables. The rigorous approach ensures
a proper balance of input features with the data avail-
able for model training without compromising predictive
accuracy.

• By implementing procedure-specific modelling, we assess
its impact on predictive accuracy, offering insights into its
effectiveness compared to generalised models.

• The findings aim to establish benchmarks for procedure-
time estimation within specific surgical contexts (spe-
cialty or procedure-wise), paving the way for future
research into multi-procedural analyses across various
specialties.

III. METHODOLOGY: DATA COLLECTION AND
MODELLING PIPELINE

Figure 1 outlines the overall model-building related steps
which are later discussed in this and later sections. The step
includes: data collection and pre-processing, feature selection,
model(s) selection, model(s) training and performance testing
of the models.

A. Data Collection and pre-processing

This study explores the data associated to elective surgical
procedure at Colchester Hospital under East Suffolk and North
Essex NHS Foundation Trust (ESNEFT), UK. The focus of
this study in this stage is the specialty of “Trauma and
Orthopaedics (T&O)”, therefore, data was retrieved being
limited to the specialty. Limiting to a specific specialty is
motivated by the goal of assessing whether building multiple
models for each procedure and/or sub-specialty would be more
effective than having a single holistic model for all specialties
(or procedures). Likewise, the goal is to predict times for
elective procedures, which is why emergency surgeries are not
considered.

The dataset covers details of planned and performed elective
surgical procedures between Jan 1st, 2019, and May 30th, 2023
(4 years). Records with missing, inconsistent, or duplicate data
are then removed. Additionally, procedures performed less
than 5 times during the timespan or unassigned to procedure
codes, are excluded. Outliers are then identified and removed
on a procedure-wise basis since the overall procedure time
range from 10 to 300 minutes, and generalisation of outliers
could still leave corrupt data un-noticed. For example, data
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Fig. 1. Steps showing the data collection, model building and validation process

may contain noise due to mismatches between procedure codes
and durations. For the overall dataset, the accepted maximum
z-score

(
|value−mean|

std

)
is set to 2.75, while for each procedure

category data, it is set to 1.75. Data points not meeting this
z-score criterion are considered outliers, which may result
from data corruption or other untraceable causes leading to
such extreme patterns. The z-score values were chosen after a
pre-analysis of the data, considering representative procedure-
specific data, where outliers (not-possible, rare exceptional)
were identified through both visual and analytical methods.

Approximately 24% of the cases from the original dataset,
were excluded based on the criterion outlined in Figure 2 .
With this elimination and filtering, the dataset count retrieved

Fig. 2. Dataset cleaning and filtering steps with given data count for those
steps: Exclusions of unfit data and filtering on remaining in order to have
better model’s performance

for the development and evaluation of the predictive model is
9011, encompassing 163 procedural categories.

Categorical features data are then one-hot-encoded, using
the tool available under pandas and sklearn packages. One-hot
encoding is a technique used to convert categorical variables
into a form that can be provided to machine learning algo-
rithms. Each category value is converted into a new binary
column, where an entry has a value of 1 if the original cat-

egorical variable had that category, and 0 otherwise. Missing
categorical features within the feature other than ‘Procedure
Code’ and ‘Consultant Code’ are termed as ‘Unknown’ and
kept.

From the final dataset, 80% will be used for training the
model(s) while 20% will be utilised for model’s performance
testing.

B. Target Variable and Selecting Input Features

The duration of a surgical procedure can be understood as
either the time during which surgical tasks are performed or
the entirety of the time that a patient occupies the operating
theatre (i.e., from entering to leaving). In this study, this
duration is equivalent for the time-range during which the
patient is under assessment by the theatre staff, starting from
pre-anesthesia and ending when the patient leaves or is taken
out of the theatre. This time duration, which will serve as the
target variable for prediction, is commonly referred to as ‘H4
Minutes’ at ESNEFT.

For input features selection, a list of potential predictors
(features) of procedure time were identified initially by re-
viewing relevant literatures. Beyond this, the features initially
considered for selection were also motivated by pre-analysis
of the data, suggestions from consultants, or analytics in-
volved in the area. For example, based on related research
and pre-analysis, two new features were considered in this
study: Theatre Area, which categorises theatres based on
location and facilities, and Covid-flag, which represents the
pandemic period. The pre-analysis includes procedure timing
(H4 Minutes) comparison across potential features associated
data. For instance, a pre-analysis involving data categorisation
based on procedure type and consultant code, as illustrated in
Figure 3, demonstrated higher variability in actual procedure
times between the procedure categories. Then, again within
each procedure type, variability can be observed among the
consultants involved in the surgery. This analysis hinted the
procedure time is very much influenced by the procedure type
itself and the consultant involved.

The similar type of variability can be observed with the
current approach of planning at ESNEFT, depicted in the first
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W283: Removal of internal fixation from bone nec
W379: Total prosthetic replacement of hip joint using cement unspecified.
W409: Total prosthetic replacement of knee joint using cement unspeci-
fied.
W879: Diagnostic endoscopic examination of knee joint unspecified
W903: Injection of therapeutic substance into joint

Fig. 3. Box-plot showing procedure times (in min) categorically for the
selected procedure categories (related codes and description presented in the
box) and also further segmented by consultants’ code within each category
(n representing total counts after data-categorisation)

sub-figure of Figure 7 (discrete nature of scatter-plot in vertical
y-axis, between and also among procedures). This variation
in planning for the same procedure arises from differences
in the individual consultants’ planning approaches. Sugges-
tions about incorporating past experiences of consultants (or
surgeons) and also of the theatre team as input variables to
improve the model’s performance can be found in research-
study [23, 24] . However, due to the limited available data, this
study will only consider the consultant’s name (anonymous
code) and anaesthetists’ count for inclusion.

Furthermore, in order to capture additional attributing fea-
tures, experimental based refining was performed. This process
involved employing the forward method of feature selection
[25], where features (variables) are progressively included with
greedy search (best performance) strategies. This experiment-
based analysis was carried out using two distinct model
types—elastic regression and decision-tree-based models. The
objective was to ensure the capture of significant features while
avoiding redundancy. Clinical case related features (except the
procedure type) are avoided with the focus to operational and
temporal data that could be typically available in advance
while scheduling. This is to maximise the practical replica-
bility of the approach, i.e., utilising the final product (model)
on planning theatres in advance.

The following are the final features selected after refining
the listed possible variables (grouped based upon their char-
acteristics):

• Patient characteristics: Age-group, Gender, Obesity
• Operation characteristics: Procedure type (Code),

anaesthetist expected?, Number of Procedures
• Team and Theatre characteristics: Consultant Code,

Anaesthetist count, Theatre Area
• Temporal Characteristics: Day of the week, Covid-flag

The selected features mostly contain categorical string data,
while a few, such as Number of Procedures and Anaesthetists
Count, have numerical continuous integer values. However,
due to the limited range of values for these latter two features,
they were also treated as categorical for consistency. The
following steps were taken to one-hot encode the categorical
features into a format suitable for machine learning models:

• Patient characteristics: Age group was encoded into
multiple binary features representing different age ranges,
such as Age group 5to15, Age group 15to30, and so
on up to Age group 71to80. Gender was encoded into
binary features Gender Male and Gender Female, indi-
cating the patient’s gender. Obesity status was represented
by Obesity Yes and Obesity No, indicating whether the
patient is obese or not.

• Operation characteristics: For considered 163 different
procedure codes, each were encoded as a binary feature
such as Procedure Code W409, Procedure Code W903,
Procedure Code W879 and so on. The feature indicating
if an anaesthetist was expected was encoded into Anaes-
thetist Expected? Yes and Anaesthetist Expected? No.
The number of procedures was categorised into discrete
binary features like N procedures 1, N procedures 2
and N procedures 3.

• Team and Theatre characteristics: Each of consultants
(total total count 24) were encoded with anonymisation
into binary features such as Consultant A, Consultant B,
and so on. The Anaesthetist Count data were again
encoded into categories such as Anaesthetist count 1 and
Anaesthetist count 2. Theatre areas were one-hot encoded
into binary features like Theatre Area 1 and Theatre
Area 2.

• Temporal characteristics: Each day of the week is one-
hot encoded into binary features such as Day Monday,
Day Tuesday and so on. The Covid-flag is encoded
into Covid Flag pre-covid, Covid Flag covid and Covid
Flag post-covid, indicating whether the surgery took
place before, during or after the Covid pandemic.

IV. MODELS DEVELOPMENT

This section details the process of models’ development
including the selection of multiple algorithms.

A. Models and Algorithms Selection

Multiple Machine Learning (M/L) algorithms were con-
sidered for the model development including: linear regres-
sion, decision-tree-based, Bayesian-based, and Deep learning
(Neural-Network). This selection encompasses the diverse
range of algorithms and tools commonly utilised within this
research area (as discussed in Section 2), and allows us
to conduct a thorough examination of which techniques are
most suitable for the specific problem (theatre procedure time
estimation).

Elastic Net [26] which combines the L1 and L2 penalties
to minimise both the sum of absolute values and the sum
of squares for the metrics was utilised for linear regression.
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Two different decision-tree-based algorithms were considered
following the trend set by decision-tree-based regression mod-
els: Standard Decision-tree, which are simple yet powerful
models used for both regression and classification tasks, and
Gradient Boosted Trees, ensemble methods that sequentially
combine multiple weak learners to build a strong predictive
model [27]. Additionally, Bayesian Ridge regression, a linear
regression model that introduces regularisation, is considered.
Bayesian algorithms are adopted in many areas due to their
ability to overcome over-fitting by placing a prior distribution
over the model parameters, making them particularly useful for
handling multi-collinearity and noisy data [28]. The algorithm
considered from the deep learning model perspective was a
simple Feedforward Neural Network (FNN) architecture, as
FNNs are well-suited for regression tasks where the goal
is to predict continuous values based on input features. It
consists of multiple layers: one input layer, one or more hidden
intermediate layers, and an output layer.

Python-based scikit-learn (sklearn) [29] and PyTorch [30]
packages were chosen as the primary modeling tools.
Within scikit-learn, modules ElasticNetRegressor (from lin-
ear model), DecisionTree (from tree), GradientBoosting (from
ensemble), and BayesianRidge (from linear model) were
utilised to construct above discussed models. Similarly, the
PyTorch nn module was employed for the implementation of
the FNN model.

Within each type of model, two distinct approaches were un-
dertaken. The first approach considers Procedure Code feature
together with remaining selected input features (Section III-B)
comprehensively to create a holistic model. In the second ap-
proach, a modular approach to modelling is adopted, focusing
on categorised procedure related data so that Procedure Code
feature get removed.

B. Holistic and Procedure Specific Categorical Modelling

The holistic model encompasses all data from T&O Spe-
cialty under the categorical feature ’Procedure Code’, pro-
viding a comprehensive overview of the specialty’s data.
This comprehensive approach generalises the effect of other
features, regardless of procedure type, in procedure-time pre-
diction which has both pros and cons. It can be beneficial
for procedures with less data, as it helps establish the effect
of features (procedure code as well as other) on procedure
timing; however, this generalisation may obscure the unique
impact of the other features among different procedures.

While, the all-procedures inclusive holistic model(s) con-
siders all data under the categorical feature ‘Procedure Code’
collectively, the categorical modelling takes a more nuanced
approach. It involves separating unique procedures and con-
structing models individually for each procedure, given a
threshold of minimum data count. Since, procedure-specific
modelling is another less explored topic of research as dis-
cussed in Section II, this will further allows for a more gran-
ular understanding of the predictive power of the procedure
specific-models. Moreover, it allows us to study the unique
impact of selected input variables on the procedure duration

for each specific procedure, thus suggesting higher potential
of the approach in procedure time prediction considering the
varying nature of each procedure. However, there will be data
limitations to implement the approach for all the procedures.

For the eligibility of procedure-specific categorical model-
ing, we set a threshold of a minimum of 200 occurrences in the
available data. This means that only procedures that have been
performed at least 200 times within the specified time range
and have at least 200 data points available after pre-processing
(Section III-A) would be considered. Using this criterion, 11
procedures were deemed eligible for the categorical modeling
approach (This includes procedures presented in Figure 3).

To conduct a comparative analysis with the overall (holistic)
model, we will evaluate the performance of the overall model
on the selected procedures using the specified performance
metrics. This assessment aims to provide insights into how
the categorical models for the filtered procedures perform in
comparison to the holistic model.

C. Model Training along with Hyper-parameter Tuning

Single designated or multiple algorithms were applied on
training each model type, in order to capture the underlying
relationships between input features and the target variable.
The goal of model training would be minimising the discrep-
ancy between predicted and actual target values by iterative
adjustment of prediction related parameters. For the situation
where multiple choices of algorithms or model’s setting as
training options be available, the options were passed as hyper-
parameters. For each model, along with their relevant set
of chosen hyper-parameters, training the model(s) with the
provided training data involves the following steps:

• The Elastic Net model was trained by adjusting the
coefficients for input features, balancing between L1 and
L2 regularisation.

• The Decision Tree model adjusted its feature splits (sig-
nificance) to minimise prediction error.

• The Gradient Boosting model refined input features’
significance through boosting stages.

• The Bayesian Ridge model was trained by adjusting the
coefficients for input features, incorporating priors on
the weights and regularising them based on Bayesian
inference.

• The Neural Network in PyTorch used predefined learn-
ing rate, number of epochs, hidden layer dimensions,
optimiser, and batch size. During this training of this
model, node-related weights in the multi-layer forward
neural network were adjusted iteratively through back-
propagation to minimise the loss function.

Hyper-parameter tuning was crucial for identifying the best
options that suit the data. For instance, in Gradient Boosting,
hyper-parameters such as learning rate, tree depth, and the
number of boosting rounds played pivotal roles in shaping the
model’s performance. Subsequently, the hyper-parameter tun-
ing procedure was conducted to enhance model performance
and prediction accuracy.
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• For the Elastic Net model, hyper-parameters such as
alpha (regularisation strength) and l1 ratio (balance be-
tween L1 and L2 regularisation) were varied.

• In the Gradient Boosting model, hyper-parameters includ-
ing the number of boosting stages, learning rate, and
maximum tree depth were adjusted.

• For the Decision Tree model, hyper-parameters such as
maximum depth, minimum samples split, and minimum
samples per leaf were fine-tuned.

• The Bayesian Ridge model’s hyper-parameters included
max iter, alpha 1 and alpha 2 (priors on the precision
of the weights), and lambda 1 and lambda 2 (priors on
the precision of the noise).

• For the Neural Network, hyper-parameters included
learning rates, number of epochs, hidden layer dimen-
sions, optimizer classes, and batch sizes.

Grid search with cross-validation was employed to sys-
tematically explore different hyper-parameter combinations
for each model, identifying the settings that provided the
best predictive performance, i.e., to have minimum possible
discrepancy between predicted and actual procedure times (H4
Minutes).

The process of model training was followed for both holistic
and categorical modelling scenarios. The trained models with
best hyper-parameters combination for each model-type were
then assessed for their performance using the testing dataset.

V. MODELS’ PERFORMANCE RESULTS AND ANALYSIS

Root Mean Square Error (RMSE), Mean Absolute Percent-
age Error (MAPE), and R-squared (R2) were utilised as three
different metrics to assess the performance of each model.
These metrics are commonly employed in regression tasks
due to their ability to capture different aspects of predictive
accuracy and model fit. Therefore, the metrics are selected
to ensure a comprehensive assessment of model variability
and effectiveness. Additionally, Consultants’ estimations con-
sidered as the base model are also presented for significance
comparison of the models. The overall evaluation was con-
ducted using the testing dataset, which comprises 20% of the
total data after pre-processing (Figure 1).

A. Performance of Different Algorithms and related Models

TABLE I
HOLISTIC (BUILT FOR ALL PROCEDURES) MODELS’ OVERALL (AVERAGE)

PERFORMANCE ON TESTING DATASET ENCOMPASSING ALL 163
PROCEDURE CODES RELATED DATA

RMSE MAPE R2
Base model 31.63 0.57 0.7
ElasticNet 22.10 0.25 0.85
GBoost 22.71 0.24 0.85
Decision Tree 27.86 0.28 0.77
Bayesian Ridge 22.11 0.25 0.85
NN Model 21.46 0.22 0.86

Table I comprehensively presents the performance of all
considered holistic models with 3 different performance met-
rics mentioned before. Specifically saying, the table includes
the overall performance for each of the holistic model type,
and performances are measured against all procedures consid-
ered in building the model(s). Figure 4 illustrates comparison
between predicted and true values via. the scatter plots for
each Holistic model type. The plots facilitate analysis by
complementing the limitations of tabular data, which only
offer metrics-based comparisons of model performance. Tab-
ular results alone fail to provide sufficient insights into the
distribution range of procedure time between predicted and
real-world values, as well as details regarding errors. The
scatter sub-plots (Figure 4), together with predictive-error
(residual) distribution related sub-plots (Figure 5), assist in
identifying the potential biases in the predictive nature of
the model. The residual analysis allows for interpretation of
the systematic patterns or trends in prediction errors, such as
distribution of normality, skewness, etc.

In terms of performance, all of the models surpassed the
Base-Model significantly. Among them, NN model show-
case superior predictive accuracy in overall, obtained with
lower Root Mean Squared Error (RMSE), Mean Absolute
Percentage Error (MAPE), and higher R-squared (R2) val-
ues (Table I). ElasticNet, Gradient Boosting and Bayesian
Ridge also demonstrate competitive performance, displaying
relatively low RMSE and high R2 values across all procedures.
Decision-Tree (DT) remains as least performing from all
metrics perspective.

To validate the differences between the models’ output and
their performance, we implemented a statistical-test, named
Friedman test, started setting a null hypothesis (H0). The H0

posited that there are no differences in the central tendencies
(median ranks) among the models output per case, implying
that all models perform equivalently, lets say by absolute
Percentage Error per case. The Friedman test yielded a test
statistic of 57.9776 and a p-value of 7.7141e-12, which gave
p-value significantly lower than the common significance level
of 0.05. Given this p-value, we reject the null hypothesis,
indicating strong evidence that one model’s performance is
significantly different from the others. With results suggesting
that the models do not perform identically we ranked their
performance. We calculated the ranks based on the absolute
percentage error for all cases from from the test dataset i.e.,
across all of the testing data point. The average ranks ((Table
II) also indicated that NeuralNet has the best performance
among the models tested, followed by Gradient Boosting and
ElasticNet Regression. This rank-based analysis, where Neural
Network outperforms all other algorithms is again statistically
validated at the 5% significance level. It can be observed by
the p-values of the Bonferroni post-hoc test (Table II), where
all of these p-values are below 5%.

Evaluation of the residual distribution related to the Holistic
Models (Figure 5), showed the density plot tends to be biased
towards the negative in most cases. This indicated greater
predicted time compared to the true duration and can be
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Fig. 4. Models’ Overall Prediction Performance on the Testing Dataset: Scatter Plot Analysis (Prediction vs True H4 minutes) for All Models, including plot
for existing Consultant Planning data

TABLE II
MODELS AVERAGE RANKS BASED ON ABSOLUTE PERCENTAGE ERROR

FOR CASES IN TEST DATASET, ALONG WITH THE BON-FERRONI’S
POST-HOC (PBonf ) TEST (PAIRWISE COMPARISON WITH NEURALNET

RELATED DATA FOR SIGNIFICANT DIFFERENCES).

Model Average Rank PBonf

NeuralNet 3.114809 -
GradientBoostingRegressor 3.354964 2.852E-05
RegressionPipeline&ElNet 3.364947 1.546E-05
BayesianRidge 3.396007 1.743E-06
DecisionTreeRegressor 3.564060 1.028E-13
Base Model 4.186911 2.422E-67

disregarded if the bias is not excessively high. In fact, a
slight bias towards the negative side might be preferable, as
it could help minimise risks during planning, compared to
being biased towards the positive side. Bayesian Ridge and NN
models exhibit higher peaks than others, with Decision-Tree
showing a lower peak. While Gradient Boosting Regressor and
NN models have lesser variance than the others, the Decision
Tree Regressor and ElasticNet Regression models also show
notable improvements, with better-balanced error distributions
and reduced skewness. The Gradient Boosting Regressor and
Bayesian Ridge models, while showing reduced variability,
still exhibit heavy tails, indicating frequent extreme errors.
Overall, the machine learning models provide more reliable
and accurate predictions, with the Neural Network Model
leading in performance.

B. SHAP Analysis

As a part of analysis of models, SHAP analysis was con-
ducted to reveal critical insights into the influence of features

on surgical time. The feature importance findings obtained
from SHAP analysis across all model types were almost
identical. Here, we have discussed one of one representative
Holistic model (gradient boosting).

Among the categorical features, operational factors were
observed to have a higher influence on predicting ‘H4 Min-
utes’. In the SHAP analysis plot (Figure 6) with only top
significant shown, red points indicate high feature values (1
in one-hot encoded case), while blue points represent low
(0 in one-hot encoded case) feature values. Likewise, the
higher negative or positive value signifies their impact on
the surgical time estimation, in negative or positive way. The
colour gradient indicating the higher feature values (red) for
the variables Anaesthetist Expected? No and Theatre Area 2
are both associated with negative SHAP values. Notably, the
absence of an expected anaesthetist (i.e., when binary 1 for
Anaesthetist Expected? No) significantly impacts the model’s
predictions, leading to a decrease in the predicted surgical
time. Following closely behind is a factor related to ‘Team and
Theatre Characteristics’, i.e., Theatre Area, which categorises
theatres based on location and facilities. With this, the feature
Theatre Area 2 is associated with shorter surgical times.

The pre-considered crucial feature i.e., Procedure Code
(Section II, Section III-B) demonstrated distinct impacts, for
certain procedures like W879, W903, W379, W399, and also
others notably influencing the time prediction. The analysis
also suggests the involvement of different consultants varying
impacts on surgical time, with certain consultants (e.g., B, J)
being linked to reducing durations and Consultant L linked to
longer durations. Additionally, ‘Temporal Factors’ such as the
Covid flag indicate that pre-Covid conditions generally have a
neutral to slightly negative impact on surgical time, whereas
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Fig. 5. Residual (Percentage Errors) distribution for Models and data related to Figure 4

Fig. 6. A representative plot of SHAP (SHapley Additive exPlanations) values
(related to GradientBoosting model) to represent the impact of some top
influencing input features to the model

post-Covid scenarios might slightly increase the duration.
Lastly, patients’ demographic characteristics, such as gender
and age, exhibit less significance. However, the age group of
71-80 demonstrates some influence, suggesting that older age
groups tend to experience marginally longer surgical times.

C. Categorical Modelling: Results and Analysis

In the Holistic-modelling approach, the procedure-related
variable was found to be a significant feature to variability
in the model (Figure 6). This justify the approach for devel-
opment of categorical models for procedures that occur more
frequently, aiming to improve prediction accuracy.

To study the impact of categorical modelling (Section IV-B),
we initially identified the performance of the Holistic model
discussed earlier on the selected 11 procedures (Table III). The
performance trend of the Holistic Models remained largely
consistent with the results for all 163 procedure cases (Table
I), showing some metric-based improvement when evaluated
against the 11 most frequently performed procedures (Table
III). However, a notable exception was the Decision-Tree
(DT) Holistic model, which performed significantly better
for the 11 selected procedures. This suggests that the data
distribution influences the DT model, making it more effective
and potentially biased towards procedures with higher counts.
It is also noteworthy that consultant’s planning (also base
model) for these higher frequency 11 procedures is better
compared to the situations with all procedures included.

Then, we also recorded the combined performance of the 11
procedure-specific models related to same 11 procedures, each
of which is tailored to a particular procedure. This approach
is repeated for all 5 different types of predictive model being
considered.

Prediction vs. real procedure duration related illustrations
(scatter-plot) are provided for categorical models, i.e., proce-
dure specific-models in Figure 7. Each of these sub-plots illus-
trate real and predicted procedure times by each of categorical-
models for each procedure.

The impact of categorical modelling is notably advanta-
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TABLE III
PERFORMANCE OF VARIOUS MODELS (INCLUDING RELATIVE IMPROVEMENT TO BASE MODEL) ON 11 SELECTED PROCEDURES FOR TWO DIFFERENT

MODELLING TYPES: (I) HOLISTIC MODEL AND (II) CATEGORICAL MODEL

RMSE MAPE R2

Value
± %

Value
± %

Value
± %

base model base model base model

Base model - 30.62 - 0.71 - 0.72 -

ElasticNet
Holistic 20.72 0.32 0.27 0.62 0.87 0.21
Categorical 19.82 0.35 0.23 0.68 0.88 0.22

GBoost
Holistic 20.12 0.34 0.25 0.65 0.88 0.22
Categorical 19.89 0.35 0.23 0.68 0.88 0.22

Decision Tree
Holistic 22.99 0.25 0.26 0.63 0.84 0.17
Categorical 21.71 0.29 0.24 0.66 0.86 0.19

Bayesian Ridge
Holistic 20.73 0.32 0.27 0.62 0.87 0.21
Categorical 19.76 0.35 0.23 0.68 0.88 0.22

NN Model
Holistic 19.87 0.35 0.23 0.68 0.88 0.24
Categorical 18.90 0.38 0.22 0.69 0.89 0.24

Fig. 7. Prediction Performance of Categorical Models on the Testing Dataset for Various Model Types: Models are individually constructed for each procedure
within each model type, and the performance results are then aggregated

geous across most considered model types, demonstrating su-
perior average performance compared to the holistic approach
(Table III). To substantiate these findings, a Kolmogorov-
Smirnov test was employed to evaluate performance differ-
ences between categorical and holistic modelling approaches
across various model types (as in Section V-A). The test made
to check the discrepancies between the approach based upon
the prediction-values indicate statistically significant dispari-
ties (p < 0.05), for the ElasticNet and Bayesian Ridge models.

Conversely, no statistically significant differences (p> 0.05)
were found for DecisionTreeRegressor, GradientBoostingRe-
gressor, and NeuralNet, suggesting comparable performance
between the two approaches for these models.

Furthermore, a frequency-based percentage analysis was
performed based on absolute errors at each testing data point
(Table IV). It showed that the categorical modelling approach
in overall performs better than the holistic approach across
various model types but also revealed varying preferences
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TABLE IV
PERCENTAGE WHERE CATEGORICAL APPROACH PERFORMS BETTER

MODEL-WISE

Model Type Overall Percentage favouring
Categorical Approach

ElasticNet 54.66%
DecisionTreeRegressor 44.27%
GBoostingRegressor 51.75%
BayesianRidge 54.17%
NeuralNet 48.93%

across models. The analysis pointed DecisionTreeRegressor
leans towards the holistic approach, while BayesianRidge and
ElasticNet show a preference for the categorical approach.
GradientBoostingRegressor and NeuralNet demonstrate bal-
anced performance between the two approaches, underscoring
the nuanced performance dynamics across different model
types.

In summary, linear regression models (ElasticNet and
Bayesian Ridge) show enhanced accuracy and explanatory
power, emphasising the significance of procedure-specific
modelling whenever abundant data are available. The deep-
learning and decision-tree based categorical models though not
differ much from holistic in performance does not perform less
than the holistic. These mixed findings suggest implementing
optimal model selection strategies based on specific modeling
approaches in practical applications. Moreover, the findings
also suggest more experimentation with data expansion for
the concept of categorical modelling. It need not be limited to
procedures-specific, but surgeon-specific models also can be
explored further in improving prediction accuracy [8, 19].

The performance results of considered M/L models were
presented in this section, together with comparative analysis
both among themselves and in relation to the base model. In
summary, the Neural Network models, appears best choices for
predictive modelling, offering superior performance in captur-
ing complex relationships within the data, but requires more
data for performance-improvement with categorical approach.
The ElasticNet, Gradient-Boosting and Bayesian Ridge pro-
vide reliable alternatives. In overall, the outcome with consid-
eration of procedure-specific modelling is promising.

VI. CONCLUSION AND FURTHER WORK

In this study, we developed and analysed multiple M/L
predictive models for the estimation of surgical duration, with
their intended utilisation in theatre(s) scheduling. For this, we
used data from four years of elective surgeries conducted in
an NHS Trust hospital within the specialty of ‘Trauma and
Orthopaedics’. We focused on patient and hospital setting
related features that could be known at the time of theatre
planning as input variables to the model, so that the realism of
the model be enhanced. Regarding performance of each of the
models, our analysis suggested that Neural Network models
among utilised in this study could be the optimal choice for

predictive modeling, while ElasticNet, Gradient-Boosting, and
Bayesian Ridge models also offer reliable alternatives.

Other unique approach we employed is the procedure-
specific categorical modelling, where models were built sep-
arately for each procedure using the related procedural data.
Procedure-specific modelling for the procedures with sufficient
data counts showed promising results. While most authors
point out that models with limited coverage of procedures
and/or sub-specialties are a limitation [19, 31] , the result
of this study suggests creating multiple models to cover the
broader range of procedures and sub-specialties instead of
broader range of data incorporation for a single model. This
approach, however, still has the limitation that we will require
the holistic level model for the procedures which are not
performed frequently enough enabling the building of the
unique model. Having procedure-specific models allows for
more insightful procedure-based performance analysis, thus
adaptation of the model(s) would be easier and effective
when identified procedure-time attributing additional features
(procedures wise).

While the resulting models and their predictive capabilities
still require broader validation and enhancement before being
relied upon for theatre planning, they can offer partial assis-
tance. The models have already demonstrated their capability
in estimating procedure time with less inaccuracy than the
current approach, thus aiding in reducing over-utilisation or
under-utilisation of theatres. This, in turn, facilitates effective
theatre planning to reduce the Referral to Treatment Time
(RTT) of waiting patients, whether by optimising existing
resources or adding to them. Furthermore, the exploitation of
M/L algorithms in predictive analysis allows for the broader
adoption of Artificial Intelligence (AI) and Digital Twin tech-
nology across the hospital and theatres.

For future work, there is still scope for model improvement,
particularly in the category of ‘Team and Theatre Charac-
teristics’, by incorporating information about staff (surgeons,
anaesthetists, and nurses) as input variables into the models.
Incorporating team dynamics into the models not only im-
proves predictive accuracy but also facilitates the creation of
a Digital Twin of the hospital and its operational system.

Furthermore, integrating predictive machine learning mod-
els into a comprehensive framework (referred to as a Digital
Twin) for simulation and optimisation-driven decision-making
is increasingly vital in healthcare. Additionally, experimenta-
tion using the datasets from other Trusts and/or Hospitals will
help identify and improve the generalisability of the obtained
results.
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