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Abstract. In this paper we present the Dinosaur Hypothesis, which
states that the behaviour of a market never settles down and that the
population of predictors continually co-evolves with this market. To the
best of our knowledge, this observation has only been made and tested
under artificial datasets, but not with real data. In this work, we attempt
to formalize this hypothesis by presenting its main constituents. We also
test it with empirical data, under 10 international datasets. Results show
that for the majority of the datasets the Dinosaur Hypothesis is not
supported.
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1 Introduction

The Dinosaur Hypothesis (DH) is inspired by an observation of Arthur [1]. In
his work, Arthur and his group conducted the following experiment under the
Santa Fe Institute Artificial Stock Market. They first allowed the market evolve
for long enough. They then took the most successful agent with his winning
predictor3 out of this continuously evolving market, “froze” him for a while, and
then returned the agent back to the market. They found that the early winner
could not perform as well as he used to do in the past. His predictors were
out of date, which had turned him into a dinosaur. This is quite an interesting
observation, because it indicates that any successful predictor or trading strategy
can only live for a finite amount of time.

In addition, Chen and Yeh [3] also tested the existence of this non-stationary
market behaviour in their artificial stock market framework; their results verified
Arthur’s observation. Furthermore, they observed that a dinosaur’s performance
decreases monotonically.

Based on these observations, Chen [2] suggested a new hypothesis, called
the Dinosaur Hypothesis. The DH states that the market behaviour never set-
tles down and that the population of predictors continually co-evolves with this
market.
3 Predictor is the model that the agents use for forecasting purposes. In Arthur’s work,

predictor is a GP parse tree. In this work, predictors are Genetic Decision Trees (see
Sect. 3 for more details). We also refer to them as trading strategies.
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In this paper, we first formalize the DH by presenting its main constituents.
In addition, motivated by the fact that both Arthur, Chen and Yeh made their
observations under an artificial stock market framework, we want to examine
whether the same observations hold in the ‘real’ world. We thus test the hypoth-
esis with empirical data. We run tests for 10 international markets and hence
provide a general examination of the plausibility of the DH. Our tests take place
under an evolutionary environment, with the use of GP [7]. One goal of our em-
pirical study is to use the DH as a benchmark and examine how well it describes
the empirical results which we observe from the various markets.

The rest of this paper is organized as follows: Section 2 elaborates on the
DH, and Section 3 briefly presents the GP algorithm that is going to be used
for testing the DH. Section 4 then presents the experimental designs, Section 5
addresses the methodology employed to test the DH, and Section 6 presents and
discusses the results of our experiments. Finally, Section 7 concludes this paper.

2 The Dinosaur Hypothesis

Based on Arthur’s work, we can derive the following statements which form the
basic constituents of the DH:

1. The market behaviour never settles down
2. The population of predictors continuously co-evolves with the market

These two statements indicate the non-stationary nature of financial markets
and imply that strategies need to evolve and follow the changes in these markets,
in order to survive. If they do not co-evolve with the market, their performance
deteriorates and makes them ineffective.

However, as we said earlier, these observations were made in an artificial
stock market framework. What we thus do in this paper is to test the above
statements against our empirical data. We propose the following Fitness Test :

The average fitness of the population of predictors from future periods should

1. Not return to the range of fitness of the base period (P1)
2. Decrease continuously, as the testing period moves further away from the

base period (P2)

As we can see, there is a population of predictors, which in our framework
these are Genetic Decision Trees (GDTs); what we do in this work is to monitor
the future performance of these GDTs in terms of their fitness, in accordance
with Arthur’s and Chen and Yeh’s experiments. More details about the testing
methodology can be found at Sect. 5.

Statement P1 is quite straightforward and is inspired by Arthur [1]. The term
‘range of fitness’ is also explained in Sect. 5. Statement P2 is inspired by the
observation that Chen and Yeh made [3], regarding the monotonic decrease of a
predictor’s performance. However, in our framework we do not require the per-
formance decrease to be monotonic. This is because when Chen and Yeh tested
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for the Dinosaur Hypothesis (they did not explicitly use this term), they only
tested it over a period-window of 20 days, which is relatively short, hence easy
to achieve monotonic decreasing. Thus, requiring that a predictor’s performance
decreases monotonically in the long run would be very strict, and indeed hard to
achieve. For that reason, statement P2 requires that the performance decrease
is continuous, but not monotonic. It should also be mentioned that we are in-
terested in qualitative results, meaning that we want to see how close the real
market behaves in comparison with what is described by the DH.

Finally, in order to make the reading of this paper more comprehensive, we
present two definitions, inspired by Arthur’s work: Dinosaur, is a predictor who
has performed well in some periods, but then ceased performing well in the
periods that followed. This means that his predictor may or may not become
effective again. If it does, then it is called a returning dinosaur.

3 GP Algorithm

Our simple GP is inspired by a financial forecasting tool, EDDIE [6], which learns
and extracts knowledge from a set of data. This set of data is composed of the
daily closing price of a stock, a number of attributes and signals. The attributes
are indicators commonly used in technical analysis [5]: Moving Average (MA),
Trader Break Out (TBR), Filter (FLR), Volatility (Vol), Momentum (Mom),
and Momentum Moving Average (MomMA). Each indicator has two different
periods, a short- and a long-term one, 12 and 50 days respectively.

The signals are calculated by looking ahead of the closing price for a time
horizon of n days, trying to detect if there is an increase of the price by r%. For
this set of experiments, n was set to 1 and r to 0. In other words, the GP tries
to forecast whether the daily closing price will increase in the following day.

Furthermore, Fig. 1 presents the Backus Naur Form (BNF) (grammar) of the
GP. The root of the tree is an If-Then-Else statement. Then the first branch is
a Boolean (testing whether a technical indicator is greater than/less than/equal
to a value). The ‘Then’ and ‘Else’ branches can be a new GDT, or a decision, to
buy or not-to-buy (denoted by 1 and 0). Thus, each individual in the population
is a GDT and its recommendation is to buy (1) or not-to-buy (0). Each GDT’s
performance is evaluated by a fitness function presented below.

Depending on what the prediction of the GDT and the signal in the training
data is, we can define the following 3 metrics:
Rate of Correctness

RC =
TP + TN

TP + TN + FP + FN
(1)

Rate of Missing Chances

RMC =
FN

FN + TP
(2)

Rate of Failure

RF =
FP

FP + TP
(3)
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<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision
<Condition> ::= <Condition> “And” <Condition> |

<Condition> “Or” <Condition> |
”Not” <Condition> |
Variable <RelationOperation> Threshold

<Variable> ::= MA 12 | MA 50 | TBR 12 | TBR 50 | FLR 12 |
FLR 50 | Vol 12 | Vol 50 | Mom 12 | Mom 50 |
MomMA 12 | MomMA 50

<RelationOperation> ::= “>” | “<” | “=”
Decision is an integer, Positive or Negative implemented
Threshold is a real number

Fig. 1. The Backus Naur Form that the simple GP uses to construct trees

We use these metrics to define the following fitness function:

ff = w1 ∗ RC − w2 ∗ RMC − w3 ∗ RF (4)

where w1, w2 and w3 are the weights for RC, RMC and RF respectively. The
weights are given in order to reflect the preferences of investors. For our experi-
ments, we chose to include GDTs that mainly focus on correctness and reduced
failure. Thus these weights have been set to 0.6, 0.1 and 0.3 respectively, and are
given in this way in order to reflect the importance of each performance measure
for our predictions.

4 Experimental Designs

Experiments were conducted for a period of 17 years (1991-2007) and the data
was taken from the daily closing prices of 10 international market indices: CAC
40 (France), DJIA (USA), FTSE 100 (UK), HSI (Hong Kong), NASDAQ (USA),
NIKEI 225 (Japan), NYSE (USA), S&P 500 (USA), STI (Singapore) and TAIEX
(Taiwan). For each of these markets, we run each experiment for 10 times.

Each year was split into 2 halves (January-June, July-December), so in total,
out of the 17 years, we have 34 periods4. The GP system was hence executed 34
times. Table 1 presents the GP parameters for our experiments. The behavior of
each GDT can be represented by its series of market timing decisions over the
entire trading horizon. Thus, the behaviour of each rule is a binary vector of 1s
and 0s (buy and not-to-buy). The length or the dimensionality of these vectors
is then determined by the length of the trading horizon, which in this study is 6
months, i.e., 125 days long; hence, the market timing vector has 125 dimensions.

Here we should emphasize that the GP was only used for creating and evolv-
ing the trading strategies. No validation or testing took place, as it happens in
4 At this point the length of the period was chosen arbitrarily to 6 months. We leave

it to a future research to examine if and how this time horizon can affect our results.
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Table 1. GP Parameters. The GP parameters for our experiments are the ones used
by Koza [7]. Only the tournament size has been changed (lowered), and the reason for
that was because we have observed premature convergence under a larger tournament
size. Other than that, the results seem to be insensitive to these parameters.

GP Parameters

Max Initial Depth 6
Max Depth 17
Generations 50
Population size 500
Tournament size 2
Reproduction probability 0.1
Crossover probability 0.9
Mutation probability 0.01

the traditional GP approach. The reason for this is because we were not using
the GP for forecasting purposes; instead, we were interested in using the GP
as a rule inference engine which would evolve profitable trading strategies for
a certain period of time. The GP was thus used for each of the 34 periods to
create and evolve trading strategies. After the evolution of the strategies under a
specific period, these strategies are not tested against another set. This approach
is consistent with the Lo’s Adaptive Market Hypothesis [8], as it states that the
heuristics of an old environment are not necessarily suited to the new ones. Our
no-testing approach is also consistent with the well-tested overreaction hypoth-
esis [4], which essentially states that top-ranked portfolios are outperformed by
bottom-ranked portfolios during the next period. Thus, after evolving a num-
ber of generations (50 in this paper), what stands (survives) at the end (the last
generation) is, presumably, a population of financial agents whose market-timing
strategies are financially rather successful. This population should, therefore, in-
terest us in spirit of Arthur’s adaptive market process; therefore, we use them
to test how those competitive strategies perform in the future periods.

5 Testing Methodology

This section presents the testing methodology. But before we do this, let us first
present some frequently used terms:

– Base period, is the period during which GP was used to create and evolve
GDTs that are going to be used for testing the DH

– Future period(s), is a period(s) which follow the base period (in chronological
order)

We are interested in observing how the average fitness of the population of
GDTs changes throughout time. As we have already seen, we used a simple GP
system to generate and evolve trading strategies for each one of the 34 periods.
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After this step, we apply this evolved population of GDTs to the future periods’
data. In order to better explain this, let us use an example. Let us suppose that
the period we trained the GDTs (base period) was the first semester of 1991
(1991a); we can then calculate the average fitness of the population of these
trees for this period. From this point on, we will be calling this ‘average fitness
of the population of GDTs’ as population fitness. We thus have an indication of
how well the population performs during the base period. Then, we apply all
evolved GDTs to the data of future periods: second semester of 1991 (1991b),
first semester of 1992 (1992a),..., second semester of 2007 (2007b) and calculate
the population fitness for each one of these periods. As a result, we can observe
how this fitness changes over the future periods.

The same procedure is followed for all periods until 2007a, so that all of
them act as a base period. This means that when 1991b is the base period, the
GDTs that were created and evolved during 1991b will be applied to all future
periods. After 1991b, 1992a takes over as the base period and the same procedure
happens again. We do this until 2007a. We obviously cannot do this for 2007b,
since there are no data available after this year. The reader should also bear in
mind that we only apply the evolved GDTs to future periods; for instance, when
the base period is 2000a, we do not apply the GDTs backwards in time, only
forwards. We are not interested in looking what happens in the past; we are only
interested in observing how the fitness of the GDTs is affected in the future.

Given a base period, the population fitness of all periods is normalized by
dividing those population fitnesses by the population fitness in the base period.
Hence, each base period has its normalized population fitness equal to 1 and a
returning dinosaur is a population of strategies from future periods that has its
normalized population fitness ‘close to 1’. At this point, we need to define the
term ‘close to 1’. Strictly speaking, this means that this population’s normalized
fitness is greater or equal to 1. However, in our opinion, other future periods
which do not necessarily satisfy this condition could be considered as return-
ing dinosaurs, too. Let us consider the case of a future period with normalized
population fitness very ‘close to 1’, e.g. 0.99. When this happens, it indicates
that there exist those similar market conditions in this future period, as in the
base period, so that the dinosaurs can again have high performance. Although
this performance may not be exactly equal to 1, we believe that the fact that
the normalized population fitness of these strategies (GDTs) is this ‘close’ to
1, indicates that these GDTs have become successful again, and should thus be
considered as returning dinosaurs.

However, defining a specific range of fitnesses for ‘close’ would be arbitrary;
after all, closeness is only a matter of degree. We therefore present in the next
section the statistics of fitness observed for each stock market. Besides, as we
said in Sect. 2, we are interested in qualitative results; we want to see how close
the 10 empirical markets behave in comparison by what is described by the DH.

If DH holds, we should observe two things: firstly, the normalized population
fitness of the future periods has decreased and does not return to the range of
fitness of the base period (P1), and secondly, this decrease is continuous (P2).
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6 Results

6.1 Statement P1

According to P1, the future periods’ population fitness will not return to the
range of fitness of the base period. As we saw earlier, we test this statement for
one period at a time. The subject period forms our base period.

In order to examine how often dinosaurs return, we iterate through each
base period and calculate the maximum fitness among its future periods. Let
us give an example. If 1991a is the base period, then there is a series of 33
population fitness values for its future periods. We obtain the maximum value
among these 33 values, in order to check how close to 1 this future period is.
This process is then repeated for 1991b and its 32 future periods, 1992a, and
so on, until base period 2007a. We thus end up with a 1 × 33 vector, which
shows the potential returning dinosaur per base period. The graph of this vector
is presented in Fig. 2. Each line represents the results on a different dataset
and they have been divided in four separate subfigures: CAC40-DJIA-FTSE100
(top-left), HSI-NASDAQ-NIKEI (top-right), NYSE-S&P500 (bottom-left), and
STI-TAIEX (bottom-right).

Fig. 2. Fitness Test, P1: The maximum normalized population fitness among all future
periods for each base period. Each line represents a single dataset. Results have been
divided in 4 subfigures.

What we can see from this figure is that only STI has a base period (1992b)
with a maximum normalized population fitness exceeding 1. This indicates re-
turning dinosaurs and goes against statement P1. We cannot observe any more
periods that reach the threshold of maximum population fitness greater or equal
to 1. Nonetheless, all of our datasets seem to have quite high population fitness
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values, which many times exceed 0.9 or even 0.95 (e.g. DJIA-1993b, HSI-1998b,
NASDAQ-2003a, TAIEX-1997b). Therefore, although we cannot strictly talk
about a returning dinosaur, we should also not neglect the fact that this is an
indication that the market environment actually can create conditions that are
very similar to the past and as a result, successful strategies from the past do not
necessarily have a finite lifetime (as the DH implies), but can again be successful
in the future. Thus, our results do not support statement P1.

6.2 Statement P2

To show a continuous decrease in the population fitness, we calculate the sum
of the fitness values of all those future periods that are 1 period away from
the base period, then the sum of those future periods that are 2 periods away,
and so on, up to a period difference between future and base period of 33. In
order to do this, we first need to create a table of distances, like the one in
Table 2(a). Each row of this table presents the distance of the future periods
from their base period. For instance, if 91a is the base (first row), then future
period 91b has distance equal to 1, future period 92a has distance equal to 2,
and so on. Table 2(b) shows the series of population fitness values for the future
periods of each base period. For example, when the base period is 91a (first
row), the normalized population fitness starts from 1 in 91a, then drops to 0.66
(91b), then goes to 0.72 (92a), and so on, until it reaches fitness equal to 0.74
in future period 07b. Let us now denote the sum of fitnesses we mentioned at
the beginning of this section by

∑
|i−j|=m Fit(i, j), where i, j are the base and

future period respectively, |i−j| is their absolute distance, as presented in Table
2(a), and m is the distance from the base period and takes values from 1 to 33.
We divide this sum by the number of occurrences where |i−j| = m. This process
hence returns the average of the normalized population fitness, and allows us to
observe how it changes, as the distance m from the base period increases. We
call this metric Dm and it is presented in (5).

Dm =

∑
|i−j|=m

Fit(i, j)

{#(i, j), |i − j| = m}
(5)

Let us give an example: if we want to calculate D32, we need to sum up the
population fitnesses that have distance m = 32. This happens with Fit(91a, 07a)
(fitness of GDTs from base period 91a, when applied to future period 07a) and
Fit(91b, 07b) (fitness of GDTs from base period 91b, when applied to future
period 07b). Therefore D32 would be equal to the sum of these two fitness rates
divided by 2, as there are only 2 periods that can have m = 32.5 By calculating
5 The distance m = 32 can also be found in 07a91a and 07b91b. However, we do not

take them into account because, as we said earlier in Sect. 5, we are not interested in
applying the evolved GDTs of a base period (here 07a and 07b) backwards in time
(91a and 91b, respectively).
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Table 2. (a) Distance of future periods from their base period, over the 17 years 1991-
2007. The further away we move from a period, a single unit of distance is added.
(b) Series of future population fitnesses per base period. Each base period’s series is
presented as a horizontal line of this table. Fitness values have been normalized, so
that the average fitness in the base period is always equal to 1.

(a)

j
91a 91b 92a 92b ... 07b

91a 0 1 2 3 ... 33
91b 1 0 1 2 ... 32

i 92a 2 1 0 1 ... 31
... ... ... ... ... ... ...

07b 33 32 31 30 ... 0

(b)

j
91a 91b 92a 92b ... 07b

91a 1 0.66 0.72 0.78 ... 0.74
91b 1 0.76 0.72 ... 0.70

i 92a 1 0.74 ... 0.77
... ... ... ... ... ... ...

07b ... 1

Dm for all m values, we can have a clear idea of how the average of the population
fitness changes when we move from periods that are close to the base period (low
m), to periods that are further away (high m), and thus observe whether there
is a continuous decrease. Figure 3 presents the results for all datasets. Each line
represents again a single dataset, similar to that in Fig. 2.

What we observe from this figure is that there are upwards and downwards
movements of the Dm metric. This is consistent for all datasets. We do not
observe a continuous, or any kind of decrease in general, in the metric. This
therefore does not validate the P2 statement.

Fig. 3. Fitness Test, P2: Dm values for all m from 1 to 33. Each line represents a single
dataset. Results have been divided in 4 subfigures.
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7 Conclusion

This paper presented and formalized the Dinosaur Hypothesis. The DH says
that the behaviour of a market never settles down and that the strategies in this
market continuously co-evolve with it. This was an observation first made by
Arthur [1] and later by Chen and Yeh [3]. However, these two works made these
observations under an artificial stock market. In this paper, we were interesting
in examining whether these observations could also hold in the real world and
thus tested the hypothesis with empirical data. For our experiments, we used a
fitness test, where we created and evolved trading strategies with a GP system.
Results showed that 1 of the 10 datasets tested demonstrated the existence of
returning dinosaurs; having a returning dinosaur is of course contradicting with
statement P1. However, it would not be accurate to say that the remaining 9
datasets fully support P1. This is because all of population strategies have had
future periods’ average fitness values that are close to the fitness of the base
period; in fact, there were many occasions were this fitness was even more than
90% closer to the population fitness of the base period. Therefore, although there
is no normalized population fitness among these 9 datasets that reaches 1, we can
argue that trading strategies from the past can still be applied to the market and
perform satisfactory, even if many years have passed. Markets can thus have a
number of ‘typical states’, where past rules may become useful again. Returning
dinosaurs hence exist. Finally, regarding statement P2: we did not observe any
continuous decrease in the average population fitness of any of the 10 datasets
tested, and we can thus argue that P2 is not supported by the empirical data in
this work. Overall, we can conclude that the empirical evidence that can support
the Dinosaur Hypothesis is quite weak.
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