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Abstract

This thesis explores the application of genetic programming (GP) within the directional
changes (DC) framework for algorithmic trading. Traditional algorithmic trading methods
rely on datasets with fixed time intervals, such as hourly or daily data, leading to a discon-
tinuous representation of time. DC provides an alternative by transforming these datasets
into event-driven sequences, allowing for a unique price analysis approach. The first part
of the thesis compares GP with machine learning (ML) algorithms in algorithmic trading,
focusing on factors like market data, time periods, forecasting windows, and transaction
costs—variables often neglected in previous studies. A comprehensive evaluation of a GP-
based financial approach is conducted, comparing it to nine popular ML algorithms and the
buy-and-hold strategy, using daily data from 220 datasets across 10 international markets.
Results show that GP not only yields profitable results but also outperforms ML algorithms
in terms of risk and Sharpe ratio. The second part investigates GP within the DC frame-
work, introducing two novel algorithms: GP-DC, which uses only DC-based indicators, and
GP-DC-PT, which combines DC-based and physical-time indicators from technical analysis.
Both approaches outperform non-DC-based GP strategies, technical analysis, and buy-and-
hold benchmarks, with GP-DC-PT achieving an average return of over 18%, highlighting
the advantage of incorporating DC into trading strategies. Finally, the thesis introduces two
multi-objective optimization algorithms, MOO2 and MOO3, based on the NSGA-II framework,
which optimize two and three fitness functions, respectively, using DC and physical-time in-
dicators. Both MOO2 and MOO3 outperform single-objective methods, with MOO3 showing
consistent improvements across all metrics. These findings suggest that incorporating direc-

tional changes significantly enhances trading strategies’ return and risk performance.
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Chapter 1

Introduction

Algorithmic trading refers to the process of executing financial transactions using algorithms
that follow pre-defined rules. The applications of algorithmic trading involve various finan-
cial instruments, such as stocks, bonds, currencies, and derivatives. Due to its capability of
analysing data and executing trades at speeds and frequencies that are impossible for human
traders, algorithmic trading has become a focal point of investigation within the financial
domain [8].

This rise in the popularity of algorithmic trading is attributed to several factors. First,
traders seek high profits with low risk in financial trading. Second, the unpredictability and
complexity of the market make it hard to predict future price movements. Third, according
to the efficient market hypothesis (EMH), financial markets are highly competitive and all
available information is therefore quickly reflected in asset prices. This rapid reflection makes
any advantage gained by an existing strategy short-lived as more traders adopt it, forcing

traders to continuously search for more advanced approaches.

An important component of algorithmic trading is financial forecasting. The main goal
of financial forecasting is to provide insights and predictions about future market conditions,
such as stock prices or market trends, helping traders make informed decisions. One tra-
ditional method used in financial forecasting is technical analysis. Technical analysis is a
method that predicts the future price movement of securities by analysing historical market

data, primarily price and volume. Unlike fundamental analysis which focuses on a com-



pany’s financial health, the belief underlying technical analysis is that past trading activity
and price changes can indicate future market behaviour. Technical analysis involves the use
of various tools and techniques, including chart patterns, technical indicators, and statistical
measures, to identify trends and potential reversal points. In addition, it can be incorporated
and enhanced by ML techniques. Nowadays, many algorithmic trading systems use technical
analysis, specifically utilising ML algorithms trained by technical indicators, to make trading
decisions automatically. These technical indicators help automated trading systems to sum-
marise useful information and filter out noise in the market. In this thesis, we investigate the

application of ML using technical indicators in the field of financial forecasting.

1.1 Motivation

In the field of algorithmic trading, ML techniques are frequently employed alongside technical
indicators, summarising information in terms of physical time series data to forecast future
price movements. In particular, genetic programming (GP), an evolutionary technology that
applies the Darwinian principle of evolution to improve its models, has been a popular ML
algorithm with proven success in improving financial forecasting [9][10][11]. This combina-
tion leverages historical market data to identify patterns and trends, enhancing the accuracy
of predictive models. The performance of such machine learning algorithms depends on
many factors, including data analysis from different markets, data periods, forecasting days
ahead, transaction costs, and benchmarks. For example, many references in the ML liter-
ature indicate that more data can allow an ML algorithm to better generalise; other works
suggest that old data may be irrelevant in financial problems [12]. However, most of these
factors have been neglected in previous studies. In addition, GP has been used successfully
in financial forecasting in many cases and yet has only been compared with a few benchmark
algorithms, usually less than four [13] [10], leading to reduced comparability and incomplete
understanding of performance.

Therefore, the first contribution of this thesis is the investigation of the performance of

a GP algorithm, benchmarked against nine ML algorithms, by considering the factors that
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influence financial results, as detailed in Chapter 4.

The technical indicators used in the above application of the GP algorithm are calculated
by the historical data under fixed time intervals, daily specifically, representing a physical
time series prediction. As its name implies, the research in physical time series prediction
relies on fixed physical time scales, such as daily, weekly, or monthly intervals. However, this
conventional approach often leads to discontinuous data, resulting in the loss of significant
information between data points. For example, if one uses daily closing prices, they would
obtain only a single price point per day, ignoring all other price changes that occur during
the day. All these ignored data points are often missed opportunities, both from a financial
perspective (e.g., a trading algorithm could take advantage of these intraday price changes
and make a significant profit) and also from an ML perspective since these additional data
could have been used for training an algorithm. To avoid this issue, one could start using
high-frequency data, such as hourly, or even at higher minute-by-minute intervals. However,
the same problem occurs (albeit on a smaller scale) as summarising data under fixed time
intervals ignores what happens in between. Alternatively, one could use tick-by-tick data,
i.e., record every individual price change. While this offers the most accurate and detailed
view of market activity, it introduces its own challenges, such as the large amounts of data
and its intrinsic computational cost, as acquiring and maintaining tick-by-tick data can be
expensive due to its high frequency and volume. Another disadvantage of tick data is that it

can introduce ‘noise’ due to the extremely high number of data points.

To avoid the challenges that derive from the use of physical time, one could represent
price movements as discrete events, effectively capturing noteworthy price fluctuations which
are typically defined by thresholds, e.g., a 5% change. As a result, data is summarised by
capturing significant market activities. The framework of directional changes (DC) introduced
in [14] and formalised in [9], leverages a user-defined threshold value, denoted as 6, to detect
substantial price movements. In the DC framework, a price series is partitioned into distinct
upward and downward trends, marked by DC events when prices deviate beyond 6. These
DC events are then followed by overshoot events, signifying price movements beyond the

DC event. Therefore, directional changes tend to emphasise the magnitude of price changes
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over varying time intervals, unlike the traditional approach under physical time which uses
fixed intervals (e.g., daily closing prices). This concept offers traders a fresh perspective when
analysing price movements, enabling them to concentrate on significant price changes while

filtering out less relevant price details.

As a novel method, the application of financial forecasting under the DC framework re-
mains unexplored. Furthermore, GP has demonstrated notable efficiency in combining di-
verse indicators for profitable trading strategies. As a result, we are interested in investigating
the advantages and disadvantages of using GP under the DC framework, which constitutes

the second contribution of this thesis and is presented in Chapter 5.

To balance the return against the relative risk in the trading strategy, we use the Sharpe
ratio as the fitness function of the proposed GP-based algorithms. The Sharpe ratio can evalu-
ate the risk-adjusted return, ensuring that the models optimise return and risk simultaneously.
However, a drawback of the Sharpe ratio and similar aggregate fitness functions is that it may
cause misunderstanding of the complex relationship arising among the different objectives
and makes GP focus on optimising one part of the fraction only, e.g. only the numerator
(return) or the denominator (risk). Such behaviour can still result in increased Sharpe ratio
values as the evolutionary process continues, but without necessarily improving both return

and risk.

To overcome this problem, we propose multi-objective optimisation (MOO) techniques
that provide a framework for simultaneously optimising the expected rate of return and risk
instead of using an aggregate fitness function. This approach yields a set of Pareto-optimal
solutions that offer various trade-offs. Based on the same physical time and DC indicators, the
proposed MOO algorithm adopts the well-known non-dominated sorting genetic algorithm II
(NSGA-II) which follows the framework of the genetic algorithm (GA). Since both GA and GP
belong to the evolutionary algorithm family and follow the same process, we use GP instead
of GA in the NSGA-II algorithm. While NSGA-II has been very successful, its strict Pareto
dominance criterion can lead to some solutions remaining in the later generations during
NSGA-II, even when they exhibit extreme superiority in one objective but perform poorly

in others. Therefore, we apply an a-dominance strategy that relaxes the strict dominance
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criteria [15]. Furthermore, to evaluate the trading strategy in terms of long-term profitability,
we extend our work by adding a third metric in the MOO framework, namely total return.
As a result, in the final contribution of this thesis, we propose two novel MOO approaches
that use a GP-version of NSGA-II to optimise two and three fitness functions, namely MOO2
and MOO3. Both of these novel MOO algorithms proposed algorithms are trained using a

combination of PT and DC indicators.

1.2 Thesis overview

The remainder of this thesis is structured as follows. Chapter 2 presents the background
information to this thesis, including financial forecasting under physical time series and DC
framework, GP, and MOO. Chapter 3 introduces the research related to physical time series
predictions, GP, DC, and MOO approaches. Through the literature, we find the gap that
motivates the experiments of this thesis. Then, Chapter 4 presents the first contribution of
this thesis, investigating the in-depth comparison between genetic programming and 9 other
ML algorithms. In Chapter 5, we explore the application of the GP under the DC framework.
Chapter 6 extends the previous research into the field of multi-objective optimisation. Finally,

Chapter 7 concludes this thesis.



Chapter 2

Background

In this chapter, we first introduce the background information of financial forecasting in Sec-
tion 2.1, covering both physical time series and event-based predictions. Meanwhile, the
technical indicators of physical time series and directional changes used in this thesis are in-
troduced in Section 2.1.2 and Section 2.1.4 respectively. Second, Section 2.2 is dedicated to
providing information on genetic programming, including representation, population initial-
isation, genetic operators, breeding methods, and selection. Third, we introduce the multi-
objective optimisation method in Section 2.3, mainly presenting a well-known algorithm,
NSGA-II, in Section 2.3.1. In addition, we also introduce a novel method that relaxes the

dominance criteria of the NSGA-II in Section 2.3.2. Finally, Section 2.4 concludes this chapter.

2.1 Financial forecasting

Financial forecasting has always played a vital role in the financial world. To obtain the
greatest trading returns with the least risk, financial traders hope to predict market trends
and reversal points.

The goal of financial forecasting is to gain profit by making correct trading decisions.
Usually, the decisions are made based on the opportunity caused by the information gap. Ac-
cording to the information relied on, financial forecasting can be broadly categorised into two

primary methodologies, namely fundamental analysis and technical analysis. Fundamental
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analysis focuses on economic indicators, financial statements, and various macroeconomic
factors to assess the intrinsic value of securities. On the other hand, technical analysis, which
is one of the techniques used in this thesis, relies on the study of past market data, primarily
price and volume, to forecast future market behaviour.

The traditional method of conducting technical analysis relies on fixed interval data series,
also known as physical time series prediction. Moreover, over the past decade, an alternative
approach has emerged, one that focuses on key events and which has garnered significant
attention and success in the literature. This event-based approach, specifically directional
changes (DC), as discussed in this thesis, transforms historical time series data into a sequence

of events. Further details on these methodologies are presented below.

2.1.1 Physical time series prediction

Most financial forecasting relies on the physical time scale, such as hourly, daily, or weekly
data. This approach relies on the principle that future price movements could be reflected in
the historical data. Given its sole reliance on historical data for prediction, technical analysis
is widely used in physical time series prediction.

Technical analysis, as one of the most traditional methods of evaluating stocks, is used
by approximately 90% of the traders [16]. The main idea of technical analysis is the use
of charts and graphs integrated with various statistical methods to predict the market trend
and stock price [17]. In textbooks of technical analysis, there are three rules to guide traders
[18]. The first one is that the action of the market price reflects all the information. In other
words, the price movement is derived from all relevant financial information. The second
rule is about the trend of price movement. The final goal of technical analysts is to find
the trend and the time at which the trend starts to reverse. It enables traders to make a
profit from selling stocks in the downtrend and buying stocks in the uptrend. The last rule is
that history repeats itself. A big assumption behind technical analy<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>