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Abstract

This thesis explores the application of genetic programming (GP) within the directional

changes (DC) framework for algorithmic trading. Traditional algorithmic trading methods

rely on datasets with fixed time intervals, such as hourly or daily data, leading to a discon-

tinuous representation of time. DC provides an alternative by transforming these datasets

into event-driven sequences, allowing for a unique price analysis approach. The first part

of the thesis compares GP with machine learning (ML) algorithms in algorithmic trading,

focusing on factors like market data, time periods, forecasting windows, and transaction

costs—variables often neglected in previous studies. A comprehensive evaluation of a GP-

based financial approach is conducted, comparing it to nine popular ML algorithms and the

buy-and-hold strategy, using daily data from 220 datasets across 10 international markets.

Results show that GP not only yields profitable results but also outperforms ML algorithms

in terms of risk and Sharpe ratio. The second part investigates GP within the DC frame-

work, introducing two novel algorithms: GP-DC, which uses only DC-based indicators, and

GP-DC-PT, which combines DC-based and physical-time indicators from technical analysis.

Both approaches outperform non-DC-based GP strategies, technical analysis, and buy-and-

hold benchmarks, with GP-DC-PT achieving an average return of over 18%, highlighting

the advantage of incorporating DC into trading strategies. Finally, the thesis introduces two

multi-objective optimization algorithms, MOO2 and MOO3, based on the NSGA-II framework,

which optimize two and three fitness functions, respectively, using DC and physical-time in-

dicators. Both MOO2 and MOO3 outperform single-objective methods, with MOO3 showing

consistent improvements across all metrics. These findings suggest that incorporating direc-

tional changes significantly enhances trading strategies’ return and risk performance.
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Chapter 1

Introduction

Algorithmic trading refers to the process of executing financial transactions using algorithms

that follow pre-defined rules. The applications of algorithmic trading involve various finan-

cial instruments, such as stocks, bonds, currencies, and derivatives. Due to its capability of

analysing data and executing trades at speeds and frequencies that are impossible for human

traders, algorithmic trading has become a focal point of investigation within the financial

domain [8].

This rise in the popularity of algorithmic trading is attributed to several factors. First,

traders seek high profits with low risk in financial trading. Second, the unpredictability and

complexity of the market make it hard to predict future price movements. Third, according

to the efficient market hypothesis (EMH), financial markets are highly competitive and all

available information is therefore quickly reflected in asset prices. This rapid reflection makes

any advantage gained by an existing strategy short-lived as more traders adopt it, forcing

traders to continuously search for more advanced approaches.

An important component of algorithmic trading is financial forecasting. The main goal

of financial forecasting is to provide insights and predictions about future market conditions,

such as stock prices or market trends, helping traders make informed decisions. One tra-

ditional method used in financial forecasting is technical analysis. Technical analysis is a

method that predicts the future price movement of securities by analysing historical market

data, primarily price and volume. Unlike fundamental analysis which focuses on a com-
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pany’s financial health, the belief underlying technical analysis is that past trading activity

and price changes can indicate future market behaviour. Technical analysis involves the use

of various tools and techniques, including chart patterns, technical indicators, and statistical

measures, to identify trends and potential reversal points. In addition, it can be incorporated

and enhanced by ML techniques. Nowadays, many algorithmic trading systems use technical

analysis, specifically utilising ML algorithms trained by technical indicators, to make trading

decisions automatically. These technical indicators help automated trading systems to sum-

marise useful information and filter out noise in the market. In this thesis, we investigate the

application of ML using technical indicators in the field of financial forecasting.

1.1 Motivation

In the field of algorithmic trading, ML techniques are frequently employed alongside technical

indicators, summarising information in terms of physical time series data to forecast future

price movements. In particular, genetic programming (GP), an evolutionary technology that

applies the Darwinian principle of evolution to improve its models, has been a popular ML

algorithm with proven success in improving financial forecasting [9][10][11]. This combina-

tion leverages historical market data to identify patterns and trends, enhancing the accuracy

of predictive models. The performance of such machine learning algorithms depends on

many factors, including data analysis from different markets, data periods, forecasting days

ahead, transaction costs, and benchmarks. For example, many references in the ML liter-

ature indicate that more data can allow an ML algorithm to better generalise; other works

suggest that old data may be irrelevant in financial problems [12]. However, most of these

factors have been neglected in previous studies. In addition, GP has been used successfully

in financial forecasting in many cases and yet has only been compared with a few benchmark

algorithms, usually less than four [13] [10], leading to reduced comparability and incomplete

understanding of performance.

Therefore, the first contribution of this thesis is the investigation of the performance of

a GP algorithm, benchmarked against nine ML algorithms, by considering the factors that
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influence financial results, as detailed in Chapter 4.

The technical indicators used in the above application of the GP algorithm are calculated

by the historical data under fixed time intervals, daily specifically, representing a physical

time series prediction. As its name implies, the research in physical time series prediction

relies on fixed physical time scales, such as daily, weekly, or monthly intervals. However, this

conventional approach often leads to discontinuous data, resulting in the loss of significant

information between data points. For example, if one uses daily closing prices, they would

obtain only a single price point per day, ignoring all other price changes that occur during

the day. All these ignored data points are often missed opportunities, both from a financial

perspective (e.g., a trading algorithm could take advantage of these intraday price changes

and make a significant profit) and also from an ML perspective since these additional data

could have been used for training an algorithm. To avoid this issue, one could start using

high-frequency data, such as hourly, or even at higher minute-by-minute intervals. However,

the same problem occurs (albeit on a smaller scale) as summarising data under fixed time

intervals ignores what happens in between. Alternatively, one could use tick-by-tick data,

i.e., record every individual price change. While this offers the most accurate and detailed

view of market activity, it introduces its own challenges, such as the large amounts of data

and its intrinsic computational cost, as acquiring and maintaining tick-by-tick data can be

expensive due to its high frequency and volume. Another disadvantage of tick data is that it

can introduce ‘noise’ due to the extremely high number of data points.

To avoid the challenges that derive from the use of physical time, one could represent

price movements as discrete events, effectively capturing noteworthy price fluctuations which

are typically defined by thresholds, e.g., a 5% change. As a result, data is summarised by

capturing significant market activities. The framework of directional changes (DC) introduced

in [14] and formalised in [9], leverages a user-defined threshold value, denoted as θ, to detect

substantial price movements. In the DC framework, a price series is partitioned into distinct

upward and downward trends, marked by DC events when prices deviate beyond θ. These

DC events are then followed by overshoot events, signifying price movements beyond the

DC event. Therefore, directional changes tend to emphasise the magnitude of price changes
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over varying time intervals, unlike the traditional approach under physical time which uses

fixed intervals (e.g., daily closing prices). This concept offers traders a fresh perspective when

analysing price movements, enabling them to concentrate on significant price changes while

filtering out less relevant price details.

As a novel method, the application of financial forecasting under the DC framework re-

mains unexplored. Furthermore, GP has demonstrated notable efficiency in combining di-

verse indicators for profitable trading strategies. As a result, we are interested in investigating

the advantages and disadvantages of using GP under the DC framework, which constitutes

the second contribution of this thesis and is presented in Chapter 5.

To balance the return against the relative risk in the trading strategy, we use the Sharpe

ratio as the fitness function of the proposed GP-based algorithms. The Sharpe ratio can evalu-

ate the risk-adjusted return, ensuring that the models optimise return and risk simultaneously.

However, a drawback of the Sharpe ratio and similar aggregate fitness functions is that it may

cause misunderstanding of the complex relationship arising among the different objectives

and makes GP focus on optimising one part of the fraction only, e.g. only the numerator

(return) or the denominator (risk). Such behaviour can still result in increased Sharpe ratio

values as the evolutionary process continues, but without necessarily improving both return

and risk.

To overcome this problem, we propose multi-objective optimisation (MOO) techniques

that provide a framework for simultaneously optimising the expected rate of return and risk

instead of using an aggregate fitness function. This approach yields a set of Pareto-optimal

solutions that offer various trade-offs. Based on the same physical time and DC indicators, the

proposed MOO algorithm adopts the well-known non-dominated sorting genetic algorithm II

(NSGA-II) which follows the framework of the genetic algorithm (GA). Since both GA and GP

belong to the evolutionary algorithm family and follow the same process, we use GP instead

of GA in the NSGA-II algorithm. While NSGA-II has been very successful, its strict Pareto

dominance criterion can lead to some solutions remaining in the later generations during

NSGA-II, even when they exhibit extreme superiority in one objective but perform poorly

in others. Therefore, we apply an α-dominance strategy that relaxes the strict dominance
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criteria [15]. Furthermore, to evaluate the trading strategy in terms of long-term profitability,

we extend our work by adding a third metric in the MOO framework, namely total return.

As a result, in the final contribution of this thesis, we propose two novel MOO approaches

that use a GP-version of NSGA-II to optimise two and three fitness functions, namely MOO2

and MOO3. Both of these novel MOO algorithms proposed algorithms are trained using a

combination of PT and DC indicators.

1.2 Thesis overview

The remainder of this thesis is structured as follows. Chapter 2 presents the background

information to this thesis, including financial forecasting under physical time series and DC

framework, GP, and MOO. Chapter 3 introduces the research related to physical time series

predictions, GP, DC, and MOO approaches. Through the literature, we find the gap that

motivates the experiments of this thesis. Then, Chapter 4 presents the first contribution of

this thesis, investigating the in-depth comparison between genetic programming and 9 other

ML algorithms. In Chapter 5, we explore the application of the GP under the DC framework.

Chapter 6 extends the previous research into the field of multi-objective optimisation. Finally,

Chapter 7 concludes this thesis.
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Chapter 2

Background

In this chapter, we first introduce the background information of financial forecasting in Sec-

tion 2.1, covering both physical time series and event-based predictions. Meanwhile, the

technical indicators of physical time series and directional changes used in this thesis are in-

troduced in Section 2.1.2 and Section 2.1.4 respectively. Second, Section 2.2 is dedicated to

providing information on genetic programming, including representation, population initial-

isation, genetic operators, breeding methods, and selection. Third, we introduce the multi-

objective optimisation method in Section 2.3, mainly presenting a well-known algorithm,

NSGA-II, in Section 2.3.1. In addition, we also introduce a novel method that relaxes the

dominance criteria of the NSGA-II in Section 2.3.2. Finally, Section 2.4 concludes this chapter.

2.1 Financial forecasting

Financial forecasting has always played a vital role in the financial world. To obtain the

greatest trading returns with the least risk, financial traders hope to predict market trends

and reversal points.

The goal of financial forecasting is to gain profit by making correct trading decisions.

Usually, the decisions are made based on the opportunity caused by the information gap. Ac-

cording to the information relied on, financial forecasting can be broadly categorised into two

primary methodologies, namely fundamental analysis and technical analysis. Fundamental
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analysis focuses on economic indicators, financial statements, and various macroeconomic

factors to assess the intrinsic value of securities. On the other hand, technical analysis, which

is one of the techniques used in this thesis, relies on the study of past market data, primarily

price and volume, to forecast future market behaviour.

The traditional method of conducting technical analysis relies on fixed interval data series,

also known as physical time series prediction. Moreover, over the past decade, an alternative

approach has emerged, one that focuses on key events and which has garnered significant

attention and success in the literature. This event-based approach, specifically directional

changes (DC), as discussed in this thesis, transforms historical time series data into a sequence

of events. Further details on these methodologies are presented below.

2.1.1 Physical time series prediction

Most financial forecasting relies on the physical time scale, such as hourly, daily, or weekly

data. This approach relies on the principle that future price movements could be reflected in

the historical data. Given its sole reliance on historical data for prediction, technical analysis

is widely used in physical time series prediction.

Technical analysis, as one of the most traditional methods of evaluating stocks, is used

by approximately 90% of the traders [16]. The main idea of technical analysis is the use

of charts and graphs integrated with various statistical methods to predict the market trend

and stock price [17]. In textbooks of technical analysis, there are three rules to guide traders

[18]. The first one is that the action of the market price reflects all the information. In other

words, the price movement is derived from all relevant financial information. The second

rule is about the trend of price movement. The final goal of technical analysts is to find

the trend and the time at which the trend starts to reverse. It enables traders to make a

profit from selling stocks in the downtrend and buying stocks in the uptrend. The last rule is

that history repeats itself. A big assumption behind technical analysis is that the same event

happens under the same conditions. Thus, traders tend to make the same decisions when all

conditions are similar. However, there has been some doubt whether technical analysis can

yield unusual profits based on past prices. This is likely to be against the EMH, which asserts
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that share prices reflect all available information and that stocks always trade at their fair

value. Consequently, it is impossible to purchase undervalued stocks or sell stocks at inflated

prices. In other words, no one can achieve excess profit without taking on corresponding risks.

Therefore, more and more studies have been developed to prove whether or not technical

analysis is profitable. As an example, a study in [19] found no evidence to confirm that

technical analysis can earn excess profit in the stock market at the very early stages. However,

with further research development, newer and more studies provided strong evidence for the

profitability of technical analysis [20] [21].

There are two main types of technical analysis. The first charts patterns - a subjective form

of technical analysis which allows traders to look at the specific period past the target price

and figure out patterns based on skill and experience [18]. The second arises in the form of

technical indicators that provide clear and rule-based signals for trading. By mathematical

calculation, the original data is converted into a value that measures the data’s different

characteristics. Based on the indicators, traders can ignore the noise in the data and make

decisions as to when to buy and when to sell. As an example, the most common indicator

used by traders is the moving average, which smooths the historical price to help traders spot

trends more easily. In real trading, various indicators are adopted simultaneously to reduce

noise.

2.1.2 Physical time series indicators

There are several physical time technical indicators that traders can use in the stock market.

Below, we introduce the main indicators which are used in this thesis. These indicators are

widely used in the literature [7] [22] [23]. Since this indicator is not the primary focus of the

thesis, the remaining indicators are introduced in Appendix A.

1) Relative Strength Index (RSI)

RSI is a momentum oscillator that measures the magnitude of recent price changes and

determines an asset’s overbought or oversold conditions. It is commonly used with an-

other indicator, MACD, introduced in Equation A58, to make predictions. The formula
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is presented in Equation 2.1.

RSI = 100− (
100

(1 + AvgU
AvgD )

) (2.1)

where AvgU/AvgD is the average percentage gain/loss over a selected period. RSI will

return a number between 0 and 100. Traditionally, a trade is considered overbought

when it is above 70 and oversold when it is below 30.

2) Moving average (MA)

MA is the moving average for a given period. The formula is presented in Equation 2.2.

MA =

∑n
i=1Ai

n
(2.2)

where An stands for the price of the day and n is the period of the MA specified by the

trader.

3) Commodity Channel Index (CCI)

CCI measures the deviation of an asset’s price from its statistical average. The formulas

are presented in Equation 2.3 to 2.5.

CCI =
TP −MATP

0.015×MeanDeviation
(2.3)

TP =
H + L+ C

3
(2.4)

MeanDeviation =

∑n
i=1 | TP −MATP |

n
(2.5)

where TP stands for the typical price. The H, L, and C are the high price, low price, and

close price, respectively. The high price is the highest stock price during a trade session

and the low price is the lowest stock price during a trade session. The close price is the

price at the end of the last trading session, while MATP is the moving average of the TP.

4) William’s %R
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William’s %R measures oversold or overbought conditions of an asset by comparing the

closing price of an asset to its price range over a set period. The formula is presented in

Equation 2.6.

William′s %R = −100× HighofRange− C

HighofRange− LowofRange
(2.6)

where HighofRange and LowofRange are the highest price and lowest price on a spe-

cified period and C is the close price.

5) Average True Range (ATR)

ATR is a volatility indicator developed by [24] and measures the volatility of an asset by

calculating the average of the true range over a set period. The formulas are presented

in Equations 2.7 and 2.8.

ATR =

∑n
i=1 TRi

n
(2.7)

TR = MAX[(H − L), (| H − C |), (| L− C |)] (2.8)

where H, L, and C stand for the high, low, and close prices, respectively.

6) Exponential Moving Average (EMA)

EMA calculates a weighted average of a series of prices over a set period, where more

recent prices are given greater weight in the calculation. The formula is presented in

Equation 2.9.

EMAi = C × 2

1 + n
+ EMAi−1 × (1− 2

1 + n
) (2.9)

where EMAi−1 is the previous EMA and n represents the look-back period.

7) On Balance Volume (OBV)

OBV measures buying and selling pressure and calculates the cumulative total of an

asset’s volume, where positive volume is added to the total of an ‘up’ day and negative

volume is subtracted on a ‘down’ day. The formula is presented in Equation 2.10.
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OBVi =


OBV(i− 1) + volume, if C > Ci−1

OBV(i− 1)− volume, if C < Ci−1

(2.10)

where OBVi−1 and Ci−1 are the previous OBV and C, respectively.

8) Parabolic Stop and Reverse (PSAR)

PSAR identifies potential reversals in the direction of an asset’s price movement by

placing dots on a chart that indicate potential stop and reverse points for a long or short

position. The formula is presented in Equation 2.11.

PSARi = PSARi−1 +AF (EP − PSARi−1) (2.11)

where AF is an acceleration factor that starts at 0 and increases by 0.01 per data point.

EP, which stands for the extreme point, is the lowest low price in the current downtrend

and the highest high price in the current uptrend. When PSAR is below the current high

price, the trend is an uptrend; otherwise, it is a downtrend. When the trend switches,

the value of AF is reset to 0. The initial PSAR is set to the first low price.

2.1.3 Event-based prediction

In 1967, [25] proposed the idea that the physical time scale is not necessarily the funda-

mental scale for the analysis and forecasting of the financial market. Instead, an event-based

approach, focusing on the important event, was proposed as an innovative way of summar-

ising price movements. Event-based prediction, as its name implies, summarises the time

series data into a series of discrete events. There are many types of event-based methods,

including zigzag[26] and turning point [27].

In this thesis, we focus on a specific subset of event-based methods known as directional

changes (DCs). DCs form an event-based approach for summarising market price movements,

as opposed to a fixed-interval-based approach. A DC event is identified only when the price

movement of the time series exceeds a threshold as pre-defined by the trader. Depending on
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the direction of price movement, such DC events could be either upturn events or downturn

events. Frequently, after the confirmation of a DC event, an overshoot (OS) event follows

and the OS event ends when a new price movement starts in an opposite trend, eventually

leading to a new DC event.

Figure 2.1: An example of DC. The grey line indicates the physical time series, the red line
denotes a series of DC and OS events as defined by a threshold of 1%, while the green line
denotes a series of DC and OS events as defined by a threshold of 1.5%. DC events are
depicted with solid lines, while dotted lines denote the OS events.

Figure 2.1 presents an example of how to convert physical time series to DC and OS

events using two different thresholds (see red and blue lines). Note that thresholds may, in

principle, vary, as traders need not necessarily agree on which price movement constitutes a

significant event whereupon each such threshold leads to a different event series. A smaller

threshold leads to the identification of more events and increases the opportunity for trade,

while a larger threshold leads to fewer events with greater price movement. Thus, selecting
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an appropriate threshold is a key challenge.

By looking at the historical daily price movement (grey line) and the events created by

the threshold of 1% (red lines), there are plenty of price movements that are not classified

as events under the DC framework, as these do not exceed the threshold. Only when a price

change is larger than the threshold is the time series divided into DC events (solid lines) and

OS events (dotted lines). For example, the solid red line from A to B is considered a DC event

on an upturn, while an OS event follows (from B to C) and then a new DC event (in the

opposite direction) is detected from C to D, and this is followed by an OS event from D to E

in a downturn, and so on.

It is worth noting that the trend change can be confirmed only when the price movement

exceeds the threshold. In other words, we will know when the OS event ends when the next

DC event (in the opposite direction) is confirmed. For example, in Figure 2.1, point D is

a DC event confirmation point. Before point D, the last OS event is considered to still be

active, while the trader considers it to have been included in an upward event. This leads

to a paradox that, on the one hand, in order to maximise returns, trades should be closed as

near as possible to the endpoint of the OS event while, on the other hand, when the endpoint

of the OS event is detected, it is already well beyond that point. Therefore, figuring out the

extreme point where the direction is reversed, such as point C in Figure 2.1, remains an active

research topic in the DC domain and, in particular, several scaling laws have been suggested

to establish OS event length [28].

The advantage of DC is that it offers traders a new perspective on price movements as it

allows them to focus on significant events and ignore other price movements that could be

considered noise. Therefore, DC leads to new research directions and challenges that are not

relevant under physical periods.

2.1.4 Directional changes indicators

Similar to having physical time series indicators, the DC paradigm includes its own indicators.

This is an important benefit of DC, as its indicators are able to capture patterns that physical

time series indicators cannot. Next, we present the DC indicators used in this thesis.
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1) Total price movements value at extreme points (TMV)

TMV is defined as a price change between the extreme points defining the beginning and

end of a trend as normalised by the threshold θ. The formula is presented in Equation

2.12.

TMV =
EPi − EPi−1

EPi−1 × θ
(2.12)

where EP represents the extreme price of the current DC trend, EPi−1 represents the

extreme price of the last DC trend, and θ is the user-specific threshold of the DC.

2) Overshoot Values at Extreme Points (OSV)

The OSV is the difference between the current price and the last DC confirmation point

divided by the threshold θ. The formula is presented in Equation 2.13.

OSV = (Pc − PDCC)÷ PDCC ÷ θ (2.13)

where Pc represents the current price, PDCC is the last DC confirmation price, and θ is

the threshold.

3) Average OSV

The average OSV is the average value of the OSV indicator over a given period. It is

calculated as the Equation 2.14.

Average OSV =

∑n
i=1OSVi

n
(2.14)

4) Time-adjusted return of DC (RDC)

RDC is equal to the product of TMV and the threshold θ, divided by the time intervals

between each extreme point. The formula is presented in Equation 2.15.

RDC =
| TMV | ×θ

T
(2.15)

where TMV states the total price movement value at extreme points, T is the time
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interval between each EXT, and θ is the threshold used.

5) Average time-adjusted return of DC (average RDC)

Average RDC is the average value of the RDC indicator over the given period. The

formula is presented in Equation 2.16.

Average RDC =

∑n
i=1RDC

n
(2.16)

6) Time for completion of a trend (TDC)

TDC is defined as the Duration of a DC trend and is calculated by the period spent

through a DC trend.

7) Average time for completion of a trend (average TDC)

Average TDC is the average value of the TDC indicator over the given period. The

formula is presented in Equation 2.17.

Average TDC =

∑n
i=1 TDC

n
(2.17)

8) Number of directional change events (NDC)

NDC is defined as the total number of DC events over the given period.

9) Time-independent Coastline (CDC) CDC is defined as the length of the price-curve coast-

line under DC, calculated by the sum of the absolute value of the TMV indicator over

the given period. The formula is presented in Equation 2.18.

CDC =

n∑
i=1

| TMVi | (2.18)

where n stands for the total number of DC events over the selected period.

10) Up and down trend asymmetry in time intervals (AT )
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Under the DC framework, the stock price is divided into a series of uptrends and down-

trends, which follow each other. Unlike physical time series, the number of uptrends

and downtrends is relatively equal, but their duration may vary. AT represents the

disparity between the time DC classifies as up trends and down trends over the given

period. The formula is presented in Equation 2.19.

AT =
Tm↑ − Tm↓
Tm↑ + Tm↓

(2.19)

where Tm↑ and Tm↓ represent the median time spent on the uptrend and downtrend,

respectively, over the given period.

More details of the DC indicators can be found on [5] and [6].

2.2 Genetic programming

2.2.1 General information

GP was first developed by [29] and has been used on financial forecasting problems for

over 20 years [8]. It is a bio-inspired technique that evolves computer programs to tackle

problems or execute tasks. GP incorporates key elements for an effective global search in that,

instead of focusing on a single solution, GP operates with a population of candidate solutions

(individuals). Moreover, the fitness function evaluates the quality of each individual in the

population, favouring higher-quality solutions for progression to the next generation, while

genetic operators explore the solution space by generating new offspring individuals through

a stochastic selection process based on fitness.

As Algorithm 1 outlines, the GP process starts with a randomly generated population,

which consists of p individuals, also known as population initialisation. These individuals are

constructed using terminal sets, which include variables and constants, in addition to func-

tion sets that define operations for manipulating these elements, potentially encompassing

arithmetic operations (+, -, ×, /), mathematical functions (sin, cos, exp, log), Boolean oper-

ations (AND, OR, NOT), conditional operators (If-Then-Else), iterative functions (Do-Until),

16



and comparison operators (>, <, =).

Following the establishment of the initial population, the algorithm evaluates a user-

defined fitness function for each individual, quantifying their effectiveness. Subsequently,

individuals are chosen to produce new offspring whereupon the individual with the higher

fitness function has a greater chance of being selected, as per natural selection. The selec-

ted individuals are modified by genetic operators such as crossover and mutation, thereby

introducing modifications for exploring the search space. Through the genetic operators, new

offspring are generated and a new population comprising new offspring is seeded. In the

new population, the fitness function is again calculated, and the selection process continues.

The entire process, which includes fitness function calculation, individual selection, offspring

breeding, and the creation of a new population, is termed a generation. In a single run of GP,

this cycle of generations is repeated until a termination criterion is reached (a certain number

of generations or an optimal fitness function value). This evolutionary approach allows GP to

conduct a robust global search in the candidate solution space, thereby minimising the risk

of being confined to local minima. Ultimately, the individual with the best fitness function

is considered the result of the GP. It is worth noting that the population initialisation is only

processed once at the outset of the GP.

2.2.2 Genetic programming representations

As mentioned before, the theory of GP comes from the process of natural evolution. GP

representation refers to the method used to symbolise the genotype1 of individuals. This

representation is crucial not only for facilitating the evolutionary process but also for ensuring

that the resulting solutions are interpretable.

Back in the early stages of GP development, the representation of individuals was based

on LISP S-expressions. This approach, rooted in the LISP programming language, employs

a uniform list format to represent both data and code, effectively capturing the essence of

individuals within the GP framework. Later on, [29] refined this concept by abstracting LISP

S-expressions into a tree-based representation that transcends the limitations of any single

1Genotype is the strategy of the solution that GP aims to solve.
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Algorithm 1 High-level pseudocode of a genetic programming algorithm.
GP(p, Fitness, pc, pm)

p: population size
Fitness: determines the quality of solutions
pc: crossover rate

1: Initialise population: P ← Generate p individuals (candidate solutions) at random
2: Evaluate: for each i in P , calculate Fitness(i)
3: while termination condition not satisfied do
4: Pg ← Create new (empty) population for generation g

5: Mating: probabilistically select p individuals from P . For each of these:

i. Perform crossover between the best performer and second best performer if the
probability condition is met

ii. Perform mutation for the best performer if the probability condition is not met

iii. Add the resulting offspring to Pg

6: Evaluate: for each i in Pg, calculate Fitness(i)
7: Survival: P ← Pg

8: end while
9: Return the individual with the highest fitness from P

programming language. This tree-based model, comprising both function sets and terminal

sets as previously outlined, has become the predominant form of representation in contem-

porary GP applications, and it is this model that we adopt in our thesis. In addition, several

different representations of the GP may be found, as follows: Linear Genetic Programming

[30], Cartesian Genetic Programming [31], and Graph Genetic Programming[32].

2.2.3 Population Initialisation

The initialisation of the population is a critical step in the GP process, setting the stage for

the performance of the evolutionary algorithm from the beginning. Despite occurring only

once, the significance of this phase remains undiminished, as it fundamentally influences

both the diversity and potential of the initial population. Within GP, there are three primary

approaches to population initialisation: full, grow, and a combination of these two known as

‘ramped half-and-half’.

To comprehend these methods fully, it is essential to introduce the concept of depth within

the GP context. Depth refers to the number of layers in an individual’s structure, extending

from the root (considered depth 0) to the deepest terminal node. Therefore, the depth con-
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trols the size and shape of the individual.

In both ‘full’ and ‘grow’ methods, the individuals are generated randomly without exceed-

ing the maximum depth selected by the users. The ‘full’ method, as its name implies, allows

an individual to generate a full tree, which in turn forces the depth of the node on each

branch to equal the maximum depth. Therefore, in the ‘full’ method, each individual has the

same depth and a symmetrical shape. However, this does not mean the individual has the

same number of nodes, as it is also referred to as the size of the individual. It will happen

only when all function sets have the same arity. Figure 2.2 shows two examples of individuals

having maximum depth 2 using the ‘full’ initialisation method. We can observe that the right

individual has one more node than the left because it contains a sin function, which has one

arity, instead of the ‘+’ symbol, which has two arities.

Conversely, the ‘grow’ method introduces greater variability in the size and shape of in-

dividuals. Here, nodes are randomly selected from both function and terminal sets. Once a

terminal set is selected, the branch ends. When the depth of the nodes reaches the maximum

depth, the terminal set is forced to be selected, and the branch ends. The ‘grow’ method

allows the individual to develop a branch with a lower depth. The individual could have a

branch not reach the maximum depth, as Figure 2.3 shows. The individuals derived from

the ‘grow’ method are controlled not only by the maximum depth but also by the proportion

between the terminal sets and function sets. For example, when terminal sets predominate,

the individuals can have very small sizes and shapes regardless of the maximum depth, be-

cause the likelihood of selecting terminal sets is very high. On the contrary, in the situation

that the function sets are significantly greater than terminal sets, there will not be too much

difference between the ‘grow’ and ‘full’ methods.

In addition, the combination of the ‘grow’ and ‘full’ methods was raised by [29]. It uses a

range of depth limits instead of one maximum depth. Meanwhile, the ‘ramped half-and-half’

method forces half of the population to generate individuals following the ‘grow’ method and

the other half to follow the ‘full’ method. This dual approach enhances the diversity of the

initial population by incorporating individuals of varied sizes and shapes, thereby enriching

the genetic pool available for the evolutionary process.
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Figure 2.2: Examples for two individuals having maximum depth 2 using the ‘full’ initialisa-
tion method.

Figure 2.3: Examples for two individuals having maximum depth 2 using the ‘grow’ initial-
isation method.

2.2.4 Genetic Operators

Genetic operators play a pivotal role in guiding the evolution of individuals within the GP

framework, ensuring both the generation of offspring and the maintenance of population

diversity. The primary genetic operators include crossover, mutation, and reproduction, each

serving distinct functions in the evolutionary process.

Crossover draws inspiration from biological reproduction, wherein offspring inherit ge-

netic material from both parents. This genetic exchange aims to create new gene combin-

ations that could enhance the offspring’s ability to solve problems more effectively. Various

crossover techniques exist, such as one-point, two-point, and uniform crossover. For illus-

trative purposes, we consider the one-point crossover, where two parents are selected, and a

single crossover point is identified for each. Sub-trees from these crossover points are then

swapped between the parents, resulting in the creation of two new offspring, as shown in

Figure 2.4. While the two-point crossover involves two such points for exchange, the uniform

crossover employs a probabilistic approach for node exchange, potentially increasing diversity
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but also risking the disruption of parental strategies [33]. In this work, the one-point cros-

sover is employed due to its simplicity and effectiveness.

Mutation, unlike crossover, introduces new genetic variations without altering the existing

gene pool. It requires only a single parent to produce offspring, applying random modifica-

tions to the individual. Common mutation strategies include one-point mutation, whereby a

single node is replaced, and sub-tree mutation, which replaces an entire sub-tree from a ran-

domly chosen node. These mutations enable the preservation and enhancement of population

diversity across generations.

Reproduction is the simplest genetic operator, involving the direct copying of an individual

to the subsequent generation. This method is particularly useful for retaining high-performing

individuals within the population. In our experiments, we implement elitism, a form of re-

production that ensures the individual with the highest fitness is carried over to the next

generation, thereby guaranteeing the maintenance or improvement of the GP’s performance

over time.

Figure 2.4: Examples for crossover between two individuals.
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2.2.5 Breeding method

The breeding method in GP encompasses three critical components that decide the evolution-

ary progression of the population, specifically: 1) the strategy for constructing the subsequent

population; 2) the restriction for mating selection; and, 3) the selection and application of

genetic operators.

First we consider the strategy for constructing the subsequent population. The main re-

placement techniques include ‘Generational’ and ‘Steady-State’. In the generational method,

an empty population is created, and the offspring produced by either crossover or mutation

are saved in the new population. This process of employing genetic operators continues un-

til the new population matches the size of the existing population. Subsequently, the GP

advances to the next generation, and the preceding population is discarded. Thus, in the

generational method, the newly established population is comprised solely of the offspring.

Conversely, the ‘Steady-State’ method diverges from the generational approach by maintain-

ing continuity within the same population. The Steady-State indicates there is no generation

and new population. All the selection and breeding processes occur within the original pop-

ulation. Specifically, offspring are integrated directly into the existing population, effectively

replacing the existing individuals. This method ensures a constant population size through

the immediate substitution of selected individuals with their offspring.

Additionally, there is another way to maintain the diversity of the population, which is

restricting the mating target. Some examples are introduced in the following. The panmictic

approach, as proposed by [34], permits unrestricted mating across the population. [35] in-

troduced a concept of segregating populations into sub-groups, restricting mating to within

these sub-populations. Moreover, [36] proposed the so-called ‘age-layered population struc-

ture’, which organises individuals into groups based on their age (the number of generations

passed) and forces them to mate the individual in the neighbouring group (the last or next

generations).

The final strategy pertains to the choice of genetic operators. [29] highlighted the use of

crossover, which was later augmented by the incorporation of mutation, an approach that is

increasingly favoured in research. The occurrence of crossover or mutation is determined by
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a predefined probability. Traditionally, crossover, as the primary process, is assigned a higher

probability (e.g., 95% in this thesis), leaving mutation to the remaining 5%. It is essential to

note the operational difference wherein crossover necessitates two parents, whereas mutation

requires only one, introducing a distinctive dynamic to the GP process.

2.2.6 Selection

The selection mechanism plays a crucial role in GP by dictating which individuals from the

population are chosen for mating. This process is grounded in the principles of Darwinian

evolution, wherein individuals exhibiting superior performance are afforded a greater chance

of survival. That is achieved by the selection method. The majority of selection methods

use the fitness function as the determining metric, including widely used methods such as

tournament selection, which will be used in the experiments of this thesis, as well as the

roulette wheel approach. The tournament method randomly selects a user-defined number

of individuals. The individual with the best fitness function then becomes the parent for sub-

sequent genetic operations. Conversely, the roulette wheel takes the whole population to be

a ‘wheel’ in which each individual takes a certain part of the space according to the propor-

tion of its fitness function value in the population. The process casts a ‘dart’ at this wheel,

with those individuals occupying larger segments—indicative of higher fitness—having an

increased probability of selection.

Beyond traditional fitness-based selection, alternative metrics can be employed to accom-

modate specific evolutionary objectives. An illustrative example is the NSGA-II, a multi-

objective optimisation GA-based algorithm, one which utilises crowding distance as a se-

lection criterion instead of fitness values. It calculates the distance of the individual relative

to two neighbouring individuals within the solution space. NSGA-II is introduced in Section

2.3.1.
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2.3 Multi-objective optimisation

In the real world, many problems require trade-off solutions among multiple conflicting ob-

jectives rather than focusing on a single objective. For instance, in the field of finance, traders

seek a balance between profit and risk. They look for a trading strategy that combines high

profit with low risk. In other words, they are solving a problem that maximises a profit ob-

jective and minimises a risk objective. It is vital to recognise that profit and risk represent two

inherently conflicting objectives, where, traditionally, high profit is often associated with high

risk, while low risk tends to correlate with reduced profit. Usually, traders consider profit and

risk together, trying to achieve a good balance between the two. One way of tackling this

problem is by using aggregate metrics. These involve combining all the different objectives

into a single mathematical expression that is to be optimised directly as a single objective. A

common example of such an aggregate metric is the Sharpe ratio [37], defined as the ratio

of the expected rate of return over the risk. Fusing multiple objectives in this manner can

be appealing, as this can simplify the evaluation of the genetic algorithm considerably. It

also easily allows one to specify ‘weights’ for each objective, denoting the extent to which an

investor values each of the different components of the problem. However, using such a pre-

defined ‘recipe’ for condensing multiple factors into a single number, risks oversimplifying the

complex relationship which underlies the different objectives, and thus increases the chances

of misrepresenting the performance evaluation of the investment portfolios in question dur-

ing the algorithmic process. On the other hand, in a multi-objective optimisation (MOO)

approach, the different objectives (e.g., both return and risk) are optimised independently.

2.3.1 NSGA-II algorithm

NSGA-II [38] is a state-of-the-art genetic algorithm, effectively an extension of the traditional

single-objective genetic algorithm approach, which allows the user to efficiently tackle prob-

lems with multiple, potentially conflicting objectives. NSGA-II is built on the GA framework.

As an evolutionary algorithm inspired by the process of natural selection, GA follows almost

the same process as GP. The main difference between GA and GP is in their representation,
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wherein GA uses fixed-length strings, whereas GP uses tree structures. The tree structure in

GP allows for the evolution of both the structure and parameters of the solutions, while in

GA, the solution structure is fixed and only the values within the strings are evolved. In our

experiments, we use NSGA-II which follows the GP process rather than GA.

Based on the original GP, NSGA-II employs three changes, namely (1) fast non-dominated

sorting approach; (2) the crowding distance sorting; and, (3) a competition between parents

and offspring. The pseudocode of NSGA-II is detailed in Algorithm 2. The primary process of

this algorithm is introduced below.

2.3.1.1 Fast non-dominated sorting approach

To enforce a ranking among the pool of potential candidate solutions that comprise the Pareto

fronts, NSGA-II implements a non-dominated sorting technique that relies on the concept of

Pareto dominance. A candidate solution is said to Pareto-dominate another solution if it is

better in at least one objective, and not worse in any other objective. This methodology

entails sequentially building and removing each Pareto front from the initial population until

no individuals remain. The detailed process is introduced below.

First, as with other evolutionary algorithms, NSGA-II generates a pre-defined quantity of

individual solutions, represented as tree-based strategy, to form the original population. Fol-

lowing this, it computes and records multiple fitness functions for each individual, designated

as f1, f2, f3, and fm, respectively, referring to m fitness functions that need to be optimised.

Then, NSGA-II compares each individual and calculates the domination relationship, which

is the number of the individual i that is dominated by others, marked as ni. When ni=0,

it indicates that there are no individuals dominating the individual i. Therefore, these in-

dividuals with 0 ni value are regarded as the first Pareto front, marked as r=1. They are

deleted from the population and saved into the new population. Subsequent iterations replic-

ate this process for the residual population, assembling successive Pareto fronts (r=2, and so

forth) which are then integrated into the newly formed population. This iterative procedure

continues until the initial population is empty, thereby dividing it into various Pareto fronts.

Through this methodical approach, NSGA-II efficiently divides the population into mul-
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Algorithm 2 Pseudocode for NSGA-II

Require: population P, Pareto front rank r, individuals p and q, cross over probability k, a
random number m (0<m<1).

1: Initialisation: Create the initial parent population by filling it with n randomly generated
individuals

2: Evaluation: Evaluate all objectives for each of the individuals in the initial parent popu-
lation

3: Fast Non-dominated Sorting:
4: while P = ∅ do
5: for i ∈ P do
6: r = r + 1
7: for q ∈ P do
8: if q dominates i then
9: ni = ni + 1

10: end if
11: end for
12: if ni = 0 then
13: Paretor append i
14: remove i from P
15: end if
16: end for
17: end while
18: Crowding Distance Calculation: Calculate the crowding distance for individuals of each

Pareto front
19: while stopping criterion is not satisfied do
20: Offspring population generation:
21: while number of offspring population ̸= number of P do
22: Parent selection: Apply tournament selection to select two individuals based on

the r and crowding distance.
23: if m > k then
24: Crossover: Apply the crossover operator to two individuals to produce two

offspring
25: else
26: Mutation: Apply the mutation to two individuals to produce two offspring
27: end if
28: end while
29: Evaluation: Evaluate all objectives for each of the individuals in both parent popula-

tion and offspring population
30: Fast Non-dominated Sorting: Apply Fast Non-dominated Sorting for both parent and

offspring populations
31: Crowding Distance Calculation: Calculate the crowding distance for individuals of

each Pareto front
32: A competition between parents and offspring: Rank all the individuals in both the

parent population and offspring population and remove the half individuals with lower
rank to keep same number of population

33: end while
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tiple Pareto fronts, building a hierarchical structure of solutions based on their degree of

non-domination. This approach helps identify the Pareto front of best solutions across dif-

ferent objectives, allowing for a detailed exploration of the solution space in multi-objective

optimisation.

2.3.1.2 Crowding distance

Based on the concept of the Pareto front, it is clear that the individual in the front with a

higher rank dominates the individuals in the front with a lower rank, while the individuals

within the same Pareto front are regarded as being equivalent. Hence, within each front,

no individual is dominated by other individuals. NSGA-II further ranks individuals within

the same Pareto front by introducing the concept of crowding distance, which encourages

the spread of solutions by considering the density of solutions around each candidate. The

crowding distance is calculated as the normalised Manhattan distance between the two indi-

viduals closest to the solution of interest within the same front. This is effectively calculated

as the sum of absolute differences between the two individuals, across the various objectives.

An example of crowding distance calculation for a return-risk two-objective problem is shown

in Figure 2.6, where points i−1 and i+1 are the two neighbouring points of point i within

the same front. The generic formula for a crowding distance with k objectives is presented

by Equation 2.20. It is worth noting that the individuals with the best value on a particular

function are assigned a maximum crowding distance since they lack nearby individuals with

comparable fitness values. First, NSGA-II divides the population into several Pareto fronts.

For each front, NSGA-II calculates the crowding distance for each individual, assuming the

maximum value for the individual has the best value on a particular objective. The higher

crowding distance indicates better performance. Therefore, NSGA-II prioritises the Pareto

front rank first and the value of crowding distance second, as Section 2.3.1.3 shows. In

this way, NSGA-II effectively ranks each individual, aiding in the identification of promising

solutions within the population, as shown in Figure 2.5.

27



Figure 2.5: Example of Pareto fronts using E[RoR] and Risk as the objectives.

Figure 2.6: An example of crowding distance.
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Crowding distance for individual i =
k∑

x=1

∣∣∣∣∣ fx(i+1) − fx(i−1)
maxj

[
fx(j)

]
−minj

[
fx(j)

]∣∣∣∣∣ (2.20)

where fx(i) represents how well the i-th individual in the population performs with respect to

a specific objective ‘x’. In addition, fx(0) shows the performance of the individual when ‘x’ has

its most favourable value, and fx(1) corresponds to the individual with the least favourable

‘x’ value.

2.3.1.3 Competition of parents and offspring

During selection, NSGA-II first compares the Pareto front rank whereupon the individual with

a lower rank survives. For the individuals with equal Pareto front rank, the one with a higher

crowding distance is selected.

After a new population has been formed through genetic operators, both the original/par-

ent and new population are evaluated and ranked, enabling the selection of the better half

of individuals based on their Pareto front rank and crowding distance. Eventually, an equal

number of individuals with lower Pareto front rank and higher crowding distance survive to

form the next population.

2.3.2 α-dominance strategy

While NSGA-II has been very successful, it measures solutions based on the Pareto dominance

criterion, meaning that one solution outperforms another only if it is better in one objective

and at least equal in other objectives. However, this strict Pareto dominance criterion can lead

to some solutions remaining in the later generations, even when they exhibit extreme superi-

ority in one objective and yet perform poorly in others. This issue arises due to the difficulty

in optimising different objectives within GP, as the objectives are often in conflict, meaning

that improving one objective can lead to a diminution of performance in another. As a result,

these solutions are frequently generated in the early generations of GP and survive into the

later generations. To overcome this, in our experiments, we will also use the α-dominance

strategy [15], which relaxes the strict dominance criteria by introducing a parameter α that
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controls the trade-offs among objectives. This strategy allows for weak trade-offs between

objectives, providing a more flexible way to compare solutions. Equation 2.21 presents the

α-dominance strategy:

Gi(A,B) = fi(A)− fi(B) +
1...m∑
j ̸=i

αij(fj(A)− fj(B)) (2.21)

where Gi(A,B) represents the evaluation of the comparison between solutions A and B with

respect to an objective ‘i’, where fi(A) and fi(B) represent the values of objective ‘i’ in solu-

tions A and B; fj(A) and fj(B) represent the values of objective ‘j’ in solutions A and B; and

αij is the parameter controlling the trade-offs.

The key change here is that α-dominance considers not only the differences in objective

values, but also the weighted trade-offs (αij) for each pair of objectives. When αij is set to

0, the traditional strict Pareto dominance is observed. On the other hand, by adjusting the

values of αij , we can allow for weaker dominance relationships, capturing more diverse and

potentially valuable solutions.

Choosing an appropriate αij is crucial and three adaptation schemes have been proposed

[15] to determine suitable values. These adaptation schemes include linear, sigmoid, and

cosine functions, each defined as follows:

flinear(x) = C − Cx

50
,

fsigmoid(x) = C · 1

1 + e(x−25)
,

fcosine(x) =
C

2
·
(
cos

(πx
10

)
+ 1

) (2.22)

where C is a sufficiently large constant.

In our work, we will use each one of these adaptation schemes. We will further discuss

this in Section 6.2.2.
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2.4 Conclusion

In this chapter, we have introduced the necessary background information for this thesis.

First, we demonstrated traditional physical time series predictions and a novel event-based

prediction in the field of financial forecasting. Next, we presented information on the frame-

work of GP, including representation, population initialisation, genetic operators, breeding

methods, and selection. This provides a comprehensive overview of GP. Finally, we intro-

duced the multi-objective optimisation approach, NSGA-II, detailing its distinctive features.

In the next chapter, we discuss the relevant literature of our work.
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Chapter 3

Literature review

As presented in Section 2.1, financial forecasting is a way to predict the market’s future move-

ment. Because of the potential profit and unstable market, there has been extensive research

into financial forecasting. To meet the growing need for accurate predictions in complex mar-

kets, algorithmic trading, particularly using machine learning algorithms, is widely employed.

Therefore, in this literature review, we will discuss recent advancements and investigate gaps

in the existing literature.

In the rest of this chapter, we first present the latest research of several well-known ma-

chine learning techniques in the field of physical time series prediction in Section 3.1, as this

is the focus of Chapter 4. Section 3.2 discusses relevant works in the literature around the use

of genetic programming – the primary algorithm used in this thesis – for financial forecasting.

Further, in Section 3.3, we introduce works in the area of directional changes, which is the

focus of chapter 5. Lastly, Section 3.4 reviews the machine learning application in the field of

multi-objective optimisation, since MOO is the focus of Chapter 6.

3.1 Physical time series prediction

Physical time series prediction, as introduced in Section 2.1.1, is a prediction method based

on fixed time series. Since most of the original data sets on the market are fixed time series,

they are adopted quickly and widely. Predominantly, this research domain focuses on the
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prediction of future movements within various financial time series. The scope of predictions

encompasses a variety of targets, including stock price forecasting, index prediction, foreign

exchange (forex) price prediction, commodity price forecasting, and volatility forecasting.

Despite the variation in these forecasting targets, they share common underlying dynamics.

With the development of ML techniques, a significant evolution has occurred in the field

of financial forecasting. ML techniques can quickly identify hidden features in large data

volumes and are therefore able to achieve profits using a speed and frequency that is im-

possible for human traders. Since their introduction, various models have been built and

applied to financial forecasting. ML applications in financial forecasting typically fall into

two major categories:- price forecasting and directional movement forecasting. The extant

research into price forecasting regards stock time series as being a predictable regression.

The goal is to reveal the hidden regression within the historical data, thereby facilitating the

prediction of future prices. Conversely, directional movement forecasting research aims to

solve a classification problem in determining the potential trend of the current stock market.

In this section, we will introduce some popular ML algorithms used in this thesis and their

applications in financial forecasting.

3.1.1 Gradient boosted machine

Gradient boosting machines (GBMs), as proposed by [39], represent an ensemble learning

approach that iteratively refines predictions by incorporating new models to address the er-

rors of preceding ones. This method has been employed for both classification and regression

purposes. Specifically, as a classification tool, GBMs have been applied to the prediction of

price movements, as evidenced by [40] and [41]. An enhanced variant of GBM, known as

extreme gradient boosting (XGBoost), introduced by [42], has gained prominence in various

data and ML competitions, as detailed by [43]. With outstanding RMSE and MAPE values,

XGBoost has shown superior forecasting capabilities in the Forex market [44]. Additionally,

the deployment of the XGBoost tree model in constructing a financial risk prediction frame-

work has demonstrated significant accuracy and stability, outperforming alternatives such as

support vector regression and back propagation (BP) neural network models, as discussed in
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[45].

Moreover, GBM’s applicability extends to price prediction, as illustrated by [46]. Its imple-

mentation with advanced deep learning methodologies, particularly long short-term memory

(LSTM) networks, has been extensively researched, with notable contributions from [47] and

[48]. A recent study by [49] innovatively employs critical features identified by XGBoost for

the training of LSTM models, resulting in a predictive model that surpasses the performance

of traditional autoregressive integrated moving average techniques in the Forex market.

3.1.2 Support vector machine

The introduction of the support vector machine (SVM) was made by [50]. As a kernel-based

machine learning model, SVM has proven to be a powerful tool for solving classification and

regression tasks. With its regression version, support vector regression, SVM become one of

the most common ML algorithms applied in financial forecasting due to its solid theoretical

foundations and strong generalisation capacity.

Most SVM applications focus on market movement direction forecasting, as demonstrated

in studies such as [51] [52] [53]. Moreover, [54] explored the efficacy of SVM in conjunction

with particle swarm optimisation (PSO) for cryptocurrency forecasting, revealing that SVM

enhanced with PSO optimisation outperforms a normal SVM.

SVM has consistently been utilised for stock price predictions, with notable applications

documented by [55] and [56]. Additionally, [57] employed SVM to forecast the closing

prices of USD/TRY and EUR/TRY exchange rates, utilising varying kernel scale values, and

found that the proposed model surpassed other algorithms in terms of performance. SVM’s

applications extend to addressing the challenges posed by high volatility in high-frequency

data, as outlined by [58].

In more recent research, [59] discussed that a straightforward SVM model could achieve

60%-70% accuracy, with potential improvements when integrated with other algorithms such

as random forest and genetic algorithm (GA).
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3.1.3 Multi-layer perceptron

Multi-layer perceptron neural network (NN) is an NN with multiple interconnected layers

[60], employing the back propagation algorithm for training the model. Notably simple in its

architecture, the MLP has been extensively utilised within the domain of financial forecasting,

serving primarily as a classifier, as evidenced by research conducted by [61] and [62].

The Forex market generates large amounts of high-frequency data every minute, whereas

traders tend to make decisions over longer periods of days, weeks, months, or quarters.

Therefore, [63] implemented interval time series1 combined with interval MLP, an advanced

version of MLP introduced by [64]. This approach integrates interval data, resulting in out-

comes that show promise compared to the interval random walk.

In innovative research, [65] proposed a novel algorithm containing MLP tuning by an

improved GA. The four main parameters, namely network depth, network width, density layer

activation function, and network optimiser, were tuned by the GA. The empirical findings of

this exploration underscore the hybrid model’s superiority over traditional ML counterparts

in achieving higher predictive precision. Other related works containing evolution algorithms

could be found in[66] [67].

Moreover, the application of MLP is not confined to classification challenges but extends

to regression problems, as illustrated by [68], [69], and [70]. An intriguing adaptation, the

evolving multi-layer perceptron (EMLP), which merges evolving connectionist systems with

MLP, was employed by [71] for the precise forecasting of gold prices. This methodology,

which leverages daily price fluctuations and a comprehensive dataset, has demonstrated ex-

ceptional accuracy, as evidenced by its MAPE metrics.

3.1.4 K-nearest neighbours

The K-nearest neighbours (KNN) algorithm is one of the prominent supervised learning meth-

ods used in both classification and regression. First introduced by Fix and Hodges Jr. in 1951

[72], it makes forecasts based simply on the nearest neighbours to a given data point. Despite

1Interval time series assign an interval of values at each period, such as daily or monthly minimum and
maximum values.
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its simplicity, KNN has been successfully applied in time series forecasting.

In the field of financial forecasting, KNN has garnered increased preference due to its

adaptability and effectiveness. [73] applied principal components analysis to overcome the

high calculation requirements and reduce the redundant information inherent in the KNN.

[74] implemented the KNN algorithm for the prediction of monthly gold prices, illustrating

its applicability in commodity markets. [75] presented a novel approach combining LSTM

and KNN in the Forex market. Furthermore, [76] developed a complex approach combining

empirical mode decomposition and KNN to predict the opening price and closing price of the

stocks. [77] proposed an improved KNN approach that considers the price trend of several

previous trading days, showing precise results in short-term prediction.

More relative works could be found in [78, 79, 80, 81].

3.1.5 Decision tree

A decision tree is one of the simplest ML algorithms which comprises a tree-like structure. As

a top-down modality, a decision tree is built from the root node to the internal node and ends

with the terminal node [82]. Through these nodes, data is divided into smaller subsets with

similar values.

Despite its simplicity, the decision tree performs effectively and is frequently used as a

benchmark in comparisons with other ML algorithms in financial forecasting [83] [84]. For

instance, [85] evaluated the performance of four algorithms—neural network, decision tree,

naive Bayes, and K-nearest neighbours—for future market prediction, finding that a decision

tree model with three classes was the most effective. Additionally, [86] compared the decision

tree and support vector Regression to develop a model for gold price prediction, demonstrat-

ing that the decision tree achieved lower mean square error and faster computation. More

recently, [87] combined traditional data analysis and sentiment analysis to predict future

market trends. The decision tree incorporating sentiment analysis was shown to have more

than 90% accuracy on real-world datasets.
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3.1.6 Random forest

Random forests (RFs) [88], based on the bagging technique over decision trees, have become

an efficient and extensively used statistical learning algorithm, gathering attention to both

classification and regression problems.

The application of RFs in forecasting market movements is well-documented, with signi-

ficant contributions made by [89] and [90]. In an innovative approach, [91] transformed

financial forecasting into a four-class categorisation, introducing categories for ‘strong posit-

ive’ and ‘strong negative’ movements. These additional signals were identified as a key factor

in enhancing predictive capability. Further, [92] explored an ensemble technique that integ-

rates RF with XGBoost, aiming to ascertain the directional movement of stock prices from a

pre-defined point in time. The effectiveness of this model was corroborated across a range of

metrics, underscoring its robustness.

In the realm of regression prediction, RF has demonstrated commendable performance,

as evidenced by studies such as [93] and [94]. An extensive comparison by [95] among

various regression models—including linear regression, SVR, decision tree, RF, and extra tree

regression—revealed that RF and decision tree models exhibited superior outcomes.

Due to its superior performance, RF has been identified as a tool to advance deep learn-

ing models. Specifically, [96] proposed a novel integration of LSTM and RF to address the

overfitting issue commonly associated with LSTM models. This hybrid model not only de-

livered stable performance, but also offered insights through variable importance analysis,

enhancing interpretability. Additional research employing RF to enhance forecasting models

includes [97], [98], and [99], illustrating the potential of RF in improving the predictive

accuracy and reliability of financial forecasting models.

3.1.7 Extra trees

Extra trees (ETs), or extremely randomised trees, represents an advancement in tree-based

ensemble ML models, designed as an extension of the RF framework to overcome overfitting

issues, as elucidated in [100].
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This model has demonstrated efficacy in addressing regression challenges, as highlighted

in [95]. In [101], a variety of regression models were assessed, including the CatBoost re-

gressor, gradient boosting regressor, ET regressor, AdaBoost regressor, K-nearest neighbour

regressor, and the Theil-Sen regressor. The findings from this examination revealed that the

ET model exhibited the highest MAE value, signifying its prominent performance in the con-

text of Bitcoin price prediction.

Furthermore, an exploration of the existing literature reveals the frequent application of

ET within ensemble models for classification tasks [102]. [103] compare the effectiveness of

tree-based ensemble ML models, including RF, XGBoost, Bagging Classifier (BC), AdaBoost

Classifier (Ada), ET, and Voting Classifier (VC) in forecasting the direction of stock price

movements. Additionally, the Kendall W test was employed to rank these tree-based models.

It was determined that the ETs classifier surpassed the performance of its counterparts.

3.2 Genetic programming (GP)

GP was initially introduced by [29] and has since been used in solving financial forecasting

problems for over 20 years [8]. Due to its evolutionary process and symbolic regression, GP

can generate profitable and human-readable models. Consequently, GP has been employed to

address various issues in financial forecasting. Many studies focus on forecasting in different

markets. For instance, [104] used GP to establish technical trading rules in the Forex market.

Similarly, [105] investigated the predictability of GP in the Forex market, constructing trad-

ing rules based on predicted values. Their findings indicated that GP provided a profitable

trading strategy with modest predictability for one-day-ahead forecasting, though this pre-

dictability disappeared when forecasting further ahead. In addition, the profitability of the

models disappeared after taking transaction costs into account. Some other works of the GP

application in the Forex market could be found in [106] [107].

GP has also been applied to the stock market. For example, [108] presented GP-based

technical trading rules that were able to outperform the buy-and-hold trading strategy on

S&P500 when taking into account transaction costs. Other notable works include [109] and
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[110].

Further, the application of GP could use data from various periods. [111] conducted

research using daily data, while [112] adopted high frequency data at millisecond intervals.

In [10], GP was compared with traditional forecasting devices across different data periods,

including yearly, quarterly, monthly, and others.

GP has demonstrated competitiveness against other algorithms. For example,[113] built

a 1-day-ahead trading system based on GP, allowing them to investigate stock trades made by

groups of artificial traders. The result showed the GP-based system dominated several bench-

mark models, including the random walk model and the buy-and-hold strategy, at least in

terms of short-term predictions. Besides, GP was also compared with a NN, another popular

ML model, and again revealed its effectiveness[13]. More recently, [11] created an auto-

mated system, one that combines multi-objective optimisation, GP, technical analysis, and

feature selection. They evaluated the performance of the system in six BOVESPA2 shares for

two periods, from 2013 to 2015 and from 2015 to 2016. The system makes a profit even

when the asset is devalued. Moreover, [10] provided evidence that the GP system is com-

petitive against traditional algorithms such as the auto-regressive integrated moving average

and exponential smoothing (in some cases with statistical significance). Another common and

successful application of GP is under directional changes[114]. These authors provided evid-

ence that the new approach, when combined with GP and directional changes, was able to

generate new and profitable trading strategies.

Lastly, technical analysis, particularly through the use of technical indicators, is able to en-

hance the prediction performance of GP by focusing on the potential features and minimising

market errors. [115] presented a GP-based system that incorporates six well-known technical

indicators, showing better performance than the individual technical rules. More recently,

[116] used five trend-following indicators as the input of the GP to develop the trading rules

on daily Bitcoin historical prices, outperforming the buy-and-hold strategy. Another recent

GP application is [117], which combined indicators from technical and sentiment analysis.

2BOVESPA stands for the São Paulo Stock Exchange and is the largest stock exchange in Brazil.
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3.3 Directional changes

Directional changes (DCs), originally introduced by [14] and defined formally by [9], is a

novel approach summarising fixed time series into event-based series. Although physical

time series predictions yield results in the financial forecasting domain, it nonetheless has the

drawback of including a discontinuous time series. Instead of analysing historical data at fixed

intervals, event-based prediction focuses on significant events in the market. A significant

event is defined and identified as the price movement over a user-defined threshold, while

movements below this threshold are considered to be irrelevant information and noise. As

a relatively new method, DC has demonstrated success in financial forecasting. This section

will introduce the state-of-the-art application of DCs.

DCs have gained traction in handling non-constant time intervals and high-frequency

data, notably in tick data derived from the Forex market, as evidenced in works such as

[118, 119, 120, 114, 121]. A notable DC-based trading strategy, ZI-DC0, was developed by

[122] using trend-following and contrary trading technical indicators. Based on the ZI-DC0,

[123] proposed an improvement, and ZI-DC1 demonstrated improved performance. Addi-

tionally, [124] introduced an automated system, DCT2, one that can observe price changes

in the market and adjust dynamically.

There are two major aspects of the DC framework. Firstly, the forecasting of the directional

changes (DC) and overshoot (OS) events holds significant importance for maximising profits.

Some empirical scaling laws3 under the DC framework were proposed as [125] and [28]

defined empirical scaling laws to quantitatively connect price movements and transactions

within the Forex market. Building on this work, [126] extended it with additional scaling

laws, yielding positive outcomes in the Forex market. One notable scaling law indicates that,

on average, an OS event takes twice as long as the DC event to achieve the same price change.

These empirical scaling laid the foundation for the later research [126].

For example, [127] introduced DC-based trading strategies based on the average over-

shoot length scaling law proposed by [125], resulting in positive returns across various stock

3Scaling laws establish the mathematical relationship of how certain properties of financial markets change
with different scales or thresholds.
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market indices. [128] identified three independent variables, all of which were relevant to

predicting OS event endpoints. Moreover, they formulated a forecasting problem of whether

the next OS event endpoint value would exceed a user-defined threshold. [129] proposed one

single independent variable to answer the question of whether the current trend will continue

for a specific percentage before the trend ends. Subsequently, [130] proposed a dynamic

threshold definition method that outperformed other algorithms using a fixed threshold. In

[131], they applied their finding to detect the events under the DC framework.

Following this, [132] proposed a novel DC trading strategy challenging the assumption

that DC events are always succeeded by OS events, thereby demonstrating a superior per-

formance as compared to other DC-based strategies and the buy-and-hold approach across

20 Forex currency pairs. A recent study, [133] utilised genetic algorithms to optimise mul-

tiple DC-based trading strategies using data from 20 Forex markets, outperforming single

DC-based strategies, traditional technical indicators, and the buy-and-hold approach.

The second significant aspect revolves around the application of technical analysis within

the DC framework. Traditionally, technical analysis has been applied in physical time, primar-

ily employing technical indicators, revealing hidden features for algorithms. Like physical

time, technical analysis also could be applied under the DC framework. [5] introduced the

first set of DC-specific indicators, with additional DC indicators proposed in [6] and [134].

More recently, [135] used the average true range indicator to dynamically determine the DC

thresholds. [136] used both DC-based indicators and scaling laws under the DC framework

to construct trading strategies.

3.4 Multi-objective optimisation

In 2008, [137] developed a MOO algorithm containing particle swarm optimisation using

end-of-day data to optimise two objectives, namely the Sharpe ratio and per cent profit. This

model exhibited superior performance when compared to five distinct technical indicators.

Subsequently, Butler and Daniyal attempted to make accurate predictions on the movements

of the stock market. To achieve their goal, they constructed an evolutionary artificial neural
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network (ANN) trained by 23-year data. Their findings revealed that the MOO approach

yielded higher investment returns than the Single-Objective Optimisation (SOO) methods

[138].

Further advancing this field, Lohpetch and Corne [139] observed the robust performance

of the buy-and-hold strategy attributed to its infrequent trading approach. They proposed

a MOO strategy that outperformed not only the buy-and-hold approach, but also the SOO

methods, particularly by employing a more frequent decision-making strategy.

[140] proposed a differential evolution model analysing four technical indicators to op-

timise profit, risk and the number of trades. To do so, they used the MOO procedure to

generate Pareto fronts for each indicator. The research took place over a 10-year period, us-

ing daily data from the IBOVESPA index. By benchmarking the default values of the respective

technical indicators used and the buy-and-hold strategy, the proposed differential evolution

algorithm was shown to have superior performance.

In addressing the inadequacy of optimal technical indicators for complex market move-

ments in the real world, [141] proposed a rule change trading system using a GA to maximise

two objectives, specifically the pay-off ratio and profit. The proposed system showed a com-

plete result compared with the system not using GA and the buy-and-hold strategy.

More recently, [142] conducted an in-depth study regarding the performance of the de-

cision model on three of the state-of-the-art dynamic multi-objective optimisation algorithms4.

They evaluated dynamic vector-evaluated particle swarm optimisation, multi-objective particle

swarm optimisation with crowded distance, and dynamic NSGA-II in the Forex market. The

result revealed that the dynamic NSGA-II was the most stable algorithm. In addition, [143]

developed a new model based on support vector regression with a wrapper-based feature

selection approach employing MOO. The primary aim of their work was to forecast future

prices of crude oil, demonstrating the potential of this advanced methodology in predictive

analysis.

Lastly, it should be noted that to the best of our knowledge, no DC literature currently

uses MOO.
4Dynamic multi-objective optimization algorithms aim to determine changes in the Pareto front and respond

accordingly throughout the algorithm’s process.
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3.5 Conclusion

From the investigation of the literature on physical time series prediction in Section 3.1, we

can conclude that ML algorithms have been widely adopted to solve time series forecasting

problems in finance. However, due to the unpredictability and complexity of the stock mar-

ket, there was not one ML algorithm that showed significant and outstanding performance.

From Section 3.2, we can see that GP has been used successfully in financial forecasting.

However, experiments take place over a limited number of markets (usually 1-2), e.g., [108].

In general, GP has only been compared with a few benchmark algorithms, usually less than

6 (e.g., [13] and [10]). It is also worth noting that some works took transaction costs into

account, but others did not. In addition, there is a great deal of variation in terms of stock

markets, data periods, and forecasting days ahead in existing published works, making any

form of comparison between various published works very challenging. Therefore, one of

our goals in this thesis is to address these gaps by considering all the aforementioned factors

and thoroughly investigating a financial GP algorithm. In Chapter 4, we will investigate the

performance of a GP algorithm and benchmark it against 9 ML algorithms taking transaction

costs into account within our trading strategy.

In Section 3.3, the literature on DC was introduced. As a novel method, DC has achieved

notable performance in financial forecasting. However, the majority of existing literature

under the DC framework has focused on the Forex market. There is however relatively limited

research on the application of DC indicators in the stock market. Specifically, no previous

work has successfully predicted future stock movement using a large number of DC indicators.

Furthermore, exploiting indicators from the DC paradigm for constructing trading strategies

is still largely unexplored compared to the technical analysis in the physical time domain.

Given that GP did a great job in combining diverse indicators for profitable trading strategies,

as observed in [117, 144, 145, 2], it is natural to explore the potential of using DC-based

indicators as part of a GP trading algorithm. We are thus investigating using the DC-based

indicators as part of the GP introduced in Chapter 4. This will allow us to investigate the

advantages and disadvantages of using DC, as outlined in Chapter 5.
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Finally, Section 3.4 discussed the effectiveness of MOO in predicting stock market move-

ments and revealed the research gap of limited studies considering multi-objective approaches

under the DC framework. MOO will form the basis of Chapter 6, in which we will explore the

advantages of using MOO under a DC framework against a single objective GP algorithm.
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Chapter 4

Genetic programming application on

physical time scale

4.1 Motivation

This chapter introduces the first contribution of this thesis, and we will focus on physical-

time data. As mentioned in Section 3.1, technical analysis is a very commonly used tech-

nique under the physical-time paradigm. ML algorithms have been successfully adopted in

many real-world applications, including financial forecasting [108] [113] [10] [11]. Such al-

gorithms tend to use technical indicators and report results under both high-frequency (e.g.,

minute-by-minute, hourly, etc.) and low-frequency (e.g., daily) data [146] [147][148][149].

ML is favoured by traders because it can effectively discover patterns in historical price data

over different time periods. GP is one of the most common ML algorithms applied to finan-

cial forecasting due to its ability to perform global search in terms of both exploration and

exploitation, as well its capacity to produce white box models.

However, as mentioned in Chapter 3.5, most published works in this domain tend to

examine and compare GP with only a small selection of ML algorithms (usually less than

four, e.g., [13] and [10]). Additionally, such published works tend to focus on datasets from

a limited number of international markets (usually one or two, e.g., [108]). It is also worth

noting that some works do not even take transaction costs into account, which can inflate
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their results and create a misleading impression of their real-world performance.

Therefore, our goal in this chapter is to fill the gap in the literature by considering all the

aforementioned factors and conducting an in-depth investigation of a financial GP algorithm.

To achieve this goal, we apply a GP-based trading strategy and compare it with nine popu-

lar ML algorithms, namely gradient boost (GB), stochastic gradient descent (SGD), random

forest (RF), multi-layer perceptron (MLP), extra tree (ET), passive aggressive classifier (PAC),

C-support vector classification (SVC), k-nearest neighbors (KNN), and decision tree (DT). The

experiments take place over 100 datasets from 10 international markets. Additionally, we in-

vestigate the effect of using different period lengths for training/testing purposes, using both

a 5-year and a 10-year period. This essentially doubles the number of datasets from 110 to

220. The reason behind this investigation is that many references in the ML literature indicate

that more data can allow an ML algorithm to better generalize. We also summarize our res-

ults in terms of different stock markets and countries, in an attempt to identify more strongly

performing markets. Finally, we compare the GP with a traditional financial benchmark (i.e.,

buy and hold). Our overall aim is to conduct an in-depth analysis of the performance of

different ML algorithms and report on how various factors (such as the period length and fin-

ancial market) can affect the algorithms’ financial respective performance. Transaction costs

are taken into account for each trading action an algorithm performs.

The rest of this chapter is organised as follows. Our proposed methodology is provided in

Section 4.2, in which we first present the details of the GP and then discuss how the GP models

are used as part of a trading strategy. Section 4.3 provides a description of our experimental

setup and presents the datasets used in our experiments, together with the benchmarks and

the parameter tuning process. Then, in Section 4.4, we discuss the results of our experiments.

Finally, Section 4.5 concludes this chapter by highlighting its major findings.

4.2 Methodology

In this section, we present in detail the physical-time GP algorithm used in this chapter. We

start by discussing in Section 4.2.1 important GP components, such as the terminal and the
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function sets, the representation of the GP individuals, and the selection method, along with

the genetic operators used. Then, in Section 4.2.2 we present an overview of the trading

strategy that the GP employs and conclude by how it is evaluated (Section 4.2.3).

4.2.1 Genetic programming model

4.2.1.1 Terminal set

Here we employ 146 different technical indicators as terminals in our GP trees. All the tech-

nical indicators that are used in this work are as listed in Table 4.1. We selected 5, 10, 15,

and 30 days as the periods for most indicators. For those indicators that require two peri-

ods, we have selected pairs of periods as [5,10], [5,15], [10,15], [10,30], and [15,30]. It is

worth noting that few indicators do not need periods, e.g., On Balance Volume, Ease of Move-

ment, and Market Facilitation Index. We introduced some indicators earlier in Chapter 2.1.2.

Since technical indicators are not the primary focus of the thesis, the remaining indicators,

alongside their respective formula, are provided in Appendix A.

In conjunction with these indicators, we employ an ephemeral random constant (ERC)

which, upon invocation, generates a random number distributed uniformly between -1 and

1. To ensure consistency with ERC’s range, the DC indicators have been appropriately norm-

alised.

4.2.1.2 Function set

The function set includes two logical operators, namely AND and OR. It also includes two

logical expressions, namely less than (<) and greater than (>).

4.2.1.3 Model representation

The GP evolves logical expressions using operators like AND, OR, <, or >. These expressions

become the first branch of an if-then-else (ITE) statement, as shown in Part 1 of Figure 4.1.

The ITE tree also includes a ‘then’ branch, which stands for a buy action, and always returns

a value of 1, and an ‘else’ branch, which represents a hold action and consistently returns a
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Table 4.1: Technical indicators and the corresponding periods used in this thesis.

Categories Indicators Periods (days)

Market Strength Indicators
Money Flow Index (MFI) [Equation A38] 5,10,15,30
Accumulation/Distribution (A/D) [Equation A21]
On Balance Volume (OBV) [Equation 2.10]

Momentum Indicators Momentum (MTM) [Equation A2] (5,10,15,30)
Relative Difference in Percentage (RDP) [Equation
A3]

(5,10,15,30)

Rate of Change (ROC) [Equation A4] (5,10,15,30)
Disparity index [Equation A5] (5,10,15,30)
Percentage Price Oscillator (PPO) [Equation A6] ([5,10],[5,15],[10,15],[10,30],[15,30])
Ease of Movement (EOM) [Equation A30]
Stochastic Momentum Index (SMI) [Equation A51] (5,10,15,30)
Vertical Horizontal Filter (VHF) [Equation A56] (5,10,15,30)

Volatility Indicators Average True Range (ATR) [Equation 2.7] (5,10,15,30)
Relative Volatility Index (RVI) [Equation A16] (5,10,15,30)

Oscillating Indicators Relative Strength Index (RSI) [Equation 2.1] (5,10,15,30)
Relative Momentum Index (RMI) [Equation A46] ([5,10],[5,15],[10,15],[10,30],[15,30])
Stochastic Oscillator (K% and D%) [Chapter 8] (5,10,15,30)
Commodity Channel Index (CCI) [Equation 2.3] (5,10,15,30)
Williams’ %R [Section 2.1.2] (5,10,15,30)
Chande Momentum Oscillator (CMO) [Equation
A9]

(5,10,15,30)

De-trended Price Oscillator (DPO) [Equation A22] (5,10,15,30)
Klinger Oscillator (KO) [Equation A32]
Mass Index (MI) [Equation A39]
Percentage Volume Oscillator (PVO) [Equation
A41]

([5,10],[5,15],[10,15],[10,30],[15,30])

Trend Indicators Moving average (MA) [Equation 2.2] (5,10,15,30)
Exponential Moving Average (EMA) [Equation 2.9] (5,10,15,30)
Double Exponential Moving Average (DEMA)
[Equation A23]

(5,10,15,30)

triple exponential average (TRIX) [Equation A54] (5,10,15,30)
Volume Adjusted Moving Average (VAMA) [Equa-
tion A57]

(5,10,15,30)

Moving Average Convergence/Divergence (MACD)
[Equation A58]

([5,10],[5,15],[10,15],[10,30],[15,30])

Aroon Indicator (up and down) [Equation A7 and
A8]

(5,10,15,30)

Donchian Channels [Equation A15] (5,10,15,30)
Directional Movement Index (DMI) [Equation
A24]

(5,10,15,30)

Other indicators Market Facilitation Index (MF) [Equation A11]
Negative Volume Index (NVI) [Equation A40]
Parabolic SAR [Equation 2.11]
Polarised Fractal Efficiency indicator (PFE) [Equa-
tion A42]

([5,10],[5,15],[10,15],[10,30],[15,30])

Random Walk Index (High and low) [Equation A44
and A45]

(5,10,15,30)

48



Figure 4.1: Example of the GP tree structure and the if-then-else structure

Table 4.2: Configuration of the GP algorithm

Configuration Value

Function set AND, OR, >, <
Terminal set 146 technical indicators
Genetic operators Elitism, subtree crossover and point mutation
Selection Tournament

value of 0. Note that this structure does not cover a sell action, and we will provide more

details on that in Section 4.2.2. Part 2 of the GP is not involved in evolution because it

deals with constant values (0 or 1). The choice between the ‘then’ branch (indicating a buy

signal) and the ‘else’ branch (indicating a hold signal) depends on whether the GP individual’s

expression evaluates to True or False.

4.2.1.4 Selection method

In our framework, we employ elitism, sub-tree crossover, and point mutation as genetic oper-

ators. Furthermore, we utilise tournament selection to determine the parental candidates for

the aforementioned genetic operators [150]. An overview of the GP configuration is provided

in Table 4.2.
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4.2.2 Trading strategy

The objective of a GP individual, representing a trading strategy, is to predict whether the

price will increase by a given percentage, denoted as r%, within a predefined time frame of n

days. If the GP individual generates a ‘True’ prediction, we initiate a purchase of a single unit

of the stock unless we currently hold it. Conversely, if the prediction is ‘False’, we maintain

our current position (hold). In instances where we already possess the stock and its price rises

by at least r% within the subsequent n days, we execute a sale on the day of the increase. If

the price fails to increase by the defined threshold within the specified time frame, we sell the

stock on the n-th day (note that our trading strategy does not involve short-selling). After each

selling action, we compute the resulting profit, incorporating transaction costs set at 0.025%

per trade. The summarisation of our trading strategy is outlined in Algorithm 3.

Algorithm 3 Our trading strategy with input the threshold r% and the number of days n

Require: O is the outcome of the GP tree and flag ∈ {0, 1} indicates whether we already
hold the stock (i.e., 1) or not (i.e., 0)

1: if O = 1 and flag = 0 then
2: Buy one share of stock and set flag ← 1
3: t0 ← t //Mark the time of trade: t is used for the current time
4: p0 ← p //Mart the price when buying: p is used for the current price
5: else
6: if (flag = 1 and p > (1 + r/100)× p0) OR (t− t0) > n then
7: Close the trade and set flag ← 0
8: Calculate the resulting profit
9: end if

10: end if

To assess the trading strategy’s performance for a specific stock, we rely on two key met-

rics, specifically the expected rate of return (E[RoR]) and risk. The rate of return (RoR) is

a measure of how profitable a particular trade turned out to be. It is a particularly useful

metric for short-term investors, as it allows them to evaluate individual trades. The expect-

ation E[RoR] over all such events in a given period (e.g. the training or test periods) is,

therefore, a measure of how profitable trades were for that period on average, given a par-

ticular trading strategy. The second metric, risk, serves as an indicator of the uncertainty and

potential for financial loss associated with the fluctuation of the RoR, as expressed in Equa-
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tion 4.3. Additionally, we use total return (TR) to assess the overall efficacy of the algorithm

when comparing the GP-based algorithm with the buy-and-hold strategy, as the risk metric

requires multiple trades, whereas the buy-and-hold strategy has only one trade through the

whole trading period. Because buy-and-hold makes only a single trade (while the GP-based

algorithm makes several), it is fairer to compare them across the TR rather than also using

the E[RoR]. Furthermore, TR’s advantage over the E[RoR] as a metric is that, in the presence

of more trade events having a similar RoR, the TR will be higher, accurately reflecting the

fact that the trades during that period resulted in better overall profit. TR is calculated by

aggregating the returns listed in the RoR dataset and then dividing this sum by the initial cost

incurred during the first transaction, as formalised in Equation 4.1. Among the three metrics,

the TR and E[RoR] are maximisation objectives, and risk is a minimisation one.

TR =

∑
i∈RoR

[
(1− c) · Ps(i)− (1 + c) · Pb(i)

]
(1 + c) · Pb(i0)

· 100% (4.1)

RoR(n) =
(1− c) · Ps(i)− (1 + c) · Pb(i)

(1 + c) · Pb(i)
· 100% (4.2)

Risk =
√

Var(RoR) (4.3)

where the i indices here correspond to completed trade events (i.e. where both a buy and a

sell event have taken place for a particular asset) within the period of interest; Ps(i) refers

to the sell price for that event; Pb(i) refers to the buy price for that event; Pb(i0) denotes the

buy price of the first ever trade event for that period; and, c is the transaction cost.

4.2.3 Fitness function

We use the Sharpe ratio, defined in Equation 4.4, as the fitness function for the proposed

algorithms. That is, each algorithm’s objective is to maximise the Sharpe ratio which takes

into account both returns and risk.
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Sharpe ratio =
E[RoR]−Rf

Risk
, (4.4)

where E[RoR] stands for the sample mean of the list of the rate of returns for a given stock

and Rf is the risk-free rate.

In this way, we optimise trading strategies based on a comprehensive metric that considers

both returns and risk rather than focusing solely on one aspect.

4.3 Experimental set-up

In this section, we introduce the financial data employed and present the benchmarks used

for the experimental comparison. Further, we discuss the parameter-tuning process for the

GP and the associated trading strategy.

4.3.1 Data

As discussed before, our goals in this Chapter can be summarised as follows: (i) Compare the

performance of the GP algorithm against 9 popular ML algorithms; (ii) investigate the effects

of using a longer period (10 years) against a shorter period (5 years); (iii) identify those

markets and countries that perform better than others; and, (iv) compare the GP performance

against the buy-and-hold benchmark.

In order to achieve the above, we used daily data for 110 stocks derived from 10 markets

across 6 countries. These markets are the Dow Jones Industrial Average (DJIA); the Nasdaq

Stock Market (NASDAQ); the New York Stock Exchange (NYSE); the Russell 2000 Index;

and the Standard and Poor 500 (S&P500) in the United States, in addition to the Nifty Fifty

(NIFTY 50) in India; the Taiwan Stock Exchange Corporation (TSEC); the DAX performance

index in Germany; the Nikkei 225 in Japan, and the Financial Times Stock Exchange 100

Index (FTSE 100) in the United Kingdom. To investigate the effects of using a longer training

and test period, we use two sets of periods, specifically of 5 and 10 years. Thus, the selected

110 stocks are first examined over the period from 2015-2020 (5 years) and then for the

period 2010-2020 (10 years). While fundamental statistical principles dictate that more data
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leads to improved statistical efficiency, there is, however, also evidence that old data might

be irrelevant to solving financial problems, e.g., [12]. Therefore, since we used two different

periods to train and test the algorithms, we ended up with 220 datasets. We divided each

period into a training, validation and test set with the following ratio 60%:20%:20%. The

validation set is used for parameter tuning.

Before conducting the experiments, we first cleaned the data, including removing incor-

rect, missing, and null values from each dataset. Furthermore, these data were converted

into technical indicators as presented in the previous sections. Data normalisation was also

performed to set indicator values to between -1 to 1.

4.3.2 Benchmarks

In order to evaluate the performance of GP, we need to compare it with some benchmarks.

As noted earlier, we have selected nine ML algorithms, namely GB, SGD, RF, MLP, ET, PAC,

SVC, KNN, and DT. We use the above algorithms to tackle a binary classification problem in

the form of ‘Is the stock price going to increase by r% within the next n days?’ Class 1 denotes

a buy action, while Class 0 denotes a hold action. The sell action takes place again as a part

of the trading strategy that was described earlier in Section 4.2.2. All nine ML algorithms are

implemented via Scikit-learn library on Python.

Apart from that, we compare proposed algorithms against the buy-and-hold strategy, a

trading strategy wherein traders buy a stock and hold it for a long time with the hope of

an increase over a long period [151]. Buy-and-hold allows us to compare the GP-based al-

gorithms’ performance against the market. However, the net profit in buy-and-hold is the

difference between the price at the beginning and the end of the trading period. This means

that there is only one buy option and one sell option that occurred throughout the entire

trading period for each data set, and this causes issues when evaluating using E[RoR] and

risk. Therefore, we apply TR as the metric when comparing the proposed model and the

buy-and-hold strategy in Section 4.4.4.

53



Table 4.3: Selected parameters of the GP algorithm after parameter tuning

Parameter Value

Max depth 6
Population size 500
Crossover probability 0.95
Crossover probability 0.05
Tournament size 2
Numbers of generation 50

4.3.3 Parameter tuning

We conducted a grid search to determine the optimal GP parameters for three GP-based al-

gorithms, with parameter tuning carried out using the validation set. Table 4.3 presents the

selected parameters and their corresponding values after tuning.

For the trading strategy, we need to decide two parameter values from the question, ‘Will

the price increase by at least r% in the next n days?’ to make sense of our findings.

Instead of globally tuning these parameters to come up with the best set of values across

all datasets (as performed for the GP), we opted for customised values for each individual

dataset. This approach aimed to maximise the performance of the trading strategy on a per-

dataset basis. These three parameters take values from the following space:

• n (prediction horizon): 1, 5, 15

• r (price movement percentage): 1%, 5%, 10%, 20%

4.4 Results and analysis

The analysis is divided into four parts. In the first part, Section 4.4.1, we present the GP

results and compare them against the 9 selected ML algorithms. In Section 4.4.2, we study

the GP’s performance across different financial markets and countries. In Section 4.4.3, we

present the results from the comparison between 5 and 10 years’ worth of data. Finally,

in Section 4.4.4, we present the buy-and-hold results and compare them against the GP’s

results. All results are presented in terms of two financial metrics, namely expected rate
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Table 4.4: Average (standard deviation) E[RoR] and risk results of GP and other ML al-
gorithms. Best value per metric is shown in boldface.

Algorithms Expected Rate of Return Risk
GP 0.2376%(0.0678) 0.0395 (0.0632)
DT 0.7601% (0.0522) 0.1126 (0.0952)
ET 1.3826% (0.1039) 0.0663 (0.0848)
GB 1.2284% (0.0665) 0.1054 (0.0958)
KNN 1.0568% (0.0393) 0.0771 (0.0784)
MLP 1.0889% (0.0605) 0.0942 (0.0766)
PAC 1.9016% (0.0738) 0.0974 (0.0817)
RF 1.6348% (0.1162) 0.0768 (0.0839)
SGD 1.9761% (0.0613) 0.0864 (0.0992)
SVC 1.5736% (0.0648) 0.0275 (0.0729)

of return (E[RoR]) and risk. All the metrics are calculated by the average performance of

50 independent runs. To examine the statistical significance of each section’s results, we

performed the non-parametric Kolmogorov-Smirnov (KS) test.

4.4.1 GP vs ML algorithms

The analysis commences with a comparison of the performance of GP with 9 common classi-

fication models. Table 4.4 presents the average (standard deviation) E[RoR] and risk on GP

and 9 classification algorithms. From Table 4.4, we can observe that, in terms of expected rate

of return, all algorithms have yielded positive returns, with SGD having the highest return at

1.97621% per trade. The lowest return is delivered by the GP at 0.2376% per trade. In terms

of risk, the lowest risk comes from SVC (0.0275), while the GP has the second lowest risk

at 0.0395. By looking at standard deviation values, GP and 9 classification algorithms have

similar values in terms of expected rate of return and risk, where GP and KNN achieved the

best standard deviation values.

Additionally, we performed the non-parametric KS test for GP and other ML algorithms.

We used GP as the control algorithm, and each KS test compares the GP’s distribution against

a different ML algorithm’s distribution. The null hypothesis is that the two distributions come

from the same continuous distribution. To account for the nine multiple comparisons (nine

ML algorithms compared to the GP), we apply the Holm-Bonferroni correction. Consequently,
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the minimum acceptable p-value for achieving statistical significance at a 5% level is determ-

ined by Equation 4.5.

αrank =
α

m+ 1− rank
(4.5)

where alpha = 0.05 for the 5% significance level, m = 9, since we have 9 multiple

comparisons, and rank ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, and 9-rank+1, which varies for different

ranks of the p-values found. The rank denotes the order of magnitude of the p-values, with

1 representing the smallest and 9 the largest. The ranked p-values reveal any significant

differences arising between the samples, wherein the first p-value should be less than 0.0056,

the second less than 0.0063, the third less than 0.0071, the fourth less than 0.0083, the fifth

less than 0.01, the sixth less than 0.0125, the seventh less than 0.0166, the eighth less than

0.025, and the ninth less than 0.05.

Table 4.5 presents the results of the KS test. When a difference is statistically significant

at the 5% level, this is indicated by putting the relevant p-value in boldface. As we can

observe, in terms of expected RoR, there are no statistically significant differences apart from

the pairing of GP and SVC. So, even though the mean expected RoR of the GP was lower when

compared to the other ML algorithms’ mean expected RoR, this difference was not statistically

significant at a 5% level.

In terms of risk, we can observe that all comparisons of the distribution pairs are statistic-

ally significant. Given that the GP ranked second best, this indicates that the GP statistically

outperformed DT, ET, GB, KNN, MLP, PAC, RF, and SGD, while it was statistically outper-

formed by SVC.

4.4.2 Market and countries

In this section, we analyse the results in terms of different financial indices and countries to

investigate if there are any particular markets with stronger performance. In particular, we

delve into the GP results, given its competitive performance from the previous section.

Table 4.6 shows that there are six indices with positive E[RoR] and a risk value around
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Table 4.5: Kolmogorov-Smirnov tests between GP (control) and nine ML algorithms (first
column) for E[RoR] and risk. p-values (second column) below the adjusted significance level
(third column) appear in boldface to indicate statistical significance at 5% level. The calcula-
tion of the adjusted significance level is shown in brackets in the third column.

(a) Expected Rate of Return

Algorithm p-value Adj. significance level

SVC 6.75E-06 0.0056 (0.05/9)
DT 0.0125 0.0063 (0.05.8)
MLP 0.0227 0.0071 (0.05/7)
GB 0.0302 0.0083 (0.05/6)
PAC 0.0397 0.010 (0.05/5)
SGD 0.1087 0.013 (0.05/4)
ET 0.2557 0.017 (0.05/3)
RF 0.3696 0.025 (0.05/2)
KNN 0.8260 0.05 (0.05/1)

(b) Risk

Algorithm p-value Adj. significance level

DT 1.54E-31 0.0056 (0.05/9)
PAC 1.77E-21 0.0063 (0.05.8)
GB 4.56E-21 0.0071 (0.05/7)
MLP 1.16E-20 0.0083 (0.05/6)
SGD 3.29E-11 0.010 (0.05/5)
SVC 3.29E-11 0.013 (0.05/4)
KNN 1.86E-08 0.017 (0.05/3)
RF 1.04E-07 0.025 (0.05/2)
ET 6.78E-05 0.05 (0.05/1)

Table 4.6: GP’s average (standard deviation) performance under different stock markets. Best
value per financial metric is shown in boldface.

Indexes Expected Rate of Return Risk
DAX -0.6112% (0.0715) 0.0317 (0.0495)
DJIA 0.3523% (0.0701) 0.0391 (0.0645)
FTSE100 1.5427% (0.0229) 0.0350 (0.0369)
NASDAQ 1.6302% (0.1200) 0.0823 (0.1187)
NIFTY 50 1.2593% (0.0539) 0.0368 (0.0495)
NIKKEI 225 -1.5516% (0.0634) 0.0210 (0.0380)
NYSE -0.4442% (0.0574) 0.0494 (0.0787)
RUSSELL 2000 -0.8550% (0.0984) 0.0476 (0.0654)
S&P500 0.6264% (0.0378) 0.0233 (0.0308)
TSEC 0.4271% (0.0232) 0.0290 (0.0373)

0.03, indicating a higher return relative to their risk. The best average E[RoR] is 1.6302%

on the NASDAQ. Risk values range from around 0.03 to 0.05, with NASDAQ being the only

exception, having a higher risk of 0.0823. Additionally, the standard deviation values for each

index are similar in terms of expected RoR and risk. In general, GP achieved good and stable

performance on each index.

In addition, we split the results into 6 countries based on where each market is located.

Table 4.7 shows the average result for each country’s market. Again we can see good perform-

ances in terms of risk across all countries, especially for China, showing that the GP performs

stably, regardless of the dataset used. In terms of E[RoR], results are less uniform, with the

lowest E[RoR] being observed for Japan (-1.5516) and Germany (-0.6112), respectively.
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Table 4.7: GP’s average performance under different countries

Country Expected Rate of Return Risk
US 0.4282% 0.0464
China 0.4271% 0.0290
Germany -0.6112% 0.0317
Japan -1.5516% 0.0210
UK 1.5427% 0.0350
India 1.2593% 0.0368

Table 4.8: Average result for GP on 5 years versus 10 years

GP Expected Rate of Return Risk
5 years -0.5632% 0.0442
10 years 1.0384% 0.0349

In summary, for E[RoR], GP’s performance varies widely across countries and markets

from -1.5516% to 1.6302%. For risk, GP’s performance is relatively close to each country and

market and is very good at around 0.03.

4.4.3 Periods

From time period view, we run GP for two different periods: 5 years (from 2015 to 2020) and

10 years (from 2010 to 2020). Our goal was to investigate whether longer data is beneficial,

or if it adds unnecessary noise, given that values from so long ago might contain information

that is no longer relevant to the current state of the market [12]. Table 4.8 shows the average

result of GP for 5 and 10 years. From Table 4.8, it can be observed that E[RoR] on 10 years

GP is higher than 5 years GP. Risk is at similar levels for both time periods, with the 10 year

period risk being slightly lower. To conclude, the information presented in Table 4.8 shows

that 10 years’ worth of data is more beneficial in terms of expected RoR and risk.

4.4.4 Buy-and-hold strategy

So far, we have evaluated GP’s forecasting performance by comparing it with ML algorithms

and investigating its performance across different markets and data periods. In this section,

we will look at the differences rising between the GP and the popular financial benchmark

of buy-and-hold strategy. We would like to reiterate that we use total return (TR) instead of
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E[RoR] and risk as the evaluation metric, as the buy-and-hold strategy has only one trade

during the entire trading period, making E[RoR] and risk metrics unsuitable.

Before proceeding with the comparison, we noticed that, on many occasions, the GP

model was deciding not to perform any trades. In fact, of the 220 datasets, the GP traded in

only 155 of them. On the other hand, buy-and-hold always performs a trade, given that it

buys one amount of stock on the first day of the data and then sells it on the last. To make the

comparison between the two algorithms fairer, we used the 155 datasets instead of the 220.

In addition, we observed that both the GP and buy-and-hold contained outliers, which could

significantly skew the distribution results. To deal with this issue, we removed these outliers

by only using those results that were within three SDs of the median. In the end, we removed

four outliers from the GP and three outliers from the buy-and-hold.

Our results yielded a TR of around 6.11% for the GP and 14.05% for buy-and-hold. Other

ML algorithms were similar to the GP TR performance. This could be explained by two factors.

Firstly the data period we have used is predominately during a bull market, especially when

we take into account the first and last day of each stock. Thus this puts the buy-and-hold

strategy in a very advantageous position. In addition, the GP algorithm was trained by having

the Sharpe ratio as its fitness function. However, as we cannot calculate the Sharpe ratio for

buy-and-hold1, we can only compare the TR for GP and buy-and-hold strategy.

4.5 Conclusion

To conclude this chapter, the main contribution is an in-depth comparison of a GP algorithm

against different ML algorithms. Experiments took place over 220 datasets derived from 10

international markets. We have shown that GP was able to statistically outperform most

algorithms in terms of risk, while it also returned profitable results. This is an important

finding because, until now, published works have tended to focus on fewer ML algorithms

and/or fewer datasets. Further analysis also showed the differences in terms of international

indices and market performance.

1There’s only two trades, one at the beginning and one at the end, and thus the standard deviation, which is
the denominator in the Sharpe ratio formula, cannot be calculated
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GP demonstrated a profitable trading strategy with significantly lower risk than for the

nine ML algorithms selected. However, the experiments also showed that the SVC signific-

antly outperformed our proposed GP-based algorithm, which motivates us to continue ex-

ploring GP’s potential using event-based predictions, particularly when focusing on DC. In

the next chapter, we will assess the performance of the GP algorithm when applied within the

DC framework and compare it against the same GP-based algorithm operating under a phys-

ical time framework. Additionally, we propose an exploration of a combination approach that

integrates both physical time and event-based prediction methodologies. This investigation

aims to ascertain whether such a combined method can yield an enhanced performance.
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Chapter 5

GP application to an event-based

framework

5.1 Motivation

In the last chapter, we compared a GP-based algorithm under the physical time paradigm

alongside several other ML algorithms. The result indicated that GP is quite competitive

when compared with most other algorithms, especially when considering a panel of factors.

However, the GP-based algorithm was significantly outperformed by the SVC algorithm.

In this chapter, we explore the potential of directional changes (DC) as a complementary

technique to physical time. Our goal is to achieve performance improvements that outperform

the nine ML algorithms using DC-based indicators. As discussed in Chapter 3, DC has been

applied successfully in the domain of algorithmic trading, although predominantly in the

Forex market, leaving its application in the stock market largely unexplored. Furthermore,

there is no published work, to the best of our knowledge, that utilises a large number of

DC-based indicators.

Given GP’s ability to effectively combine diverse indicators and create profitable trading

strategies [117, 144, 145, 2], this chapter will present a novel GP algorithm that utilizes 28

DC-based indicators. We call this GP as GP-DC. We aim to demonstrate that the GP can create

novel trading strategies that yield competitive trading performance. For completeness, we
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also propose another GP algorithm, namely GP-DC-PT, which will use both 28 DC indicators

and 28 physical time (technical analysis) indicators. These two novel GP-based algorithms are

benchmarked against the GP algorithm presented in Chapter 4. To distinguish the two, we

will refer to this algorithm as GP-PT. Experiments will be conducted on the same 220 datasets

as used in the previous chapter.

The rest of this chapter is organised as follows. The proposed methodology is provided

in Section 5.2, while Section 5.3 presents the benchmarks and the parameter tuning process.

Then, in Section 5.4 we discuss the results of our experiments and conclude this chapter in

Section 5.5.

5.2 Methodology

As the three GP algorithms explored within this chapter share several characteristics with the

GP in Chapter 4, we will present only those components of the algorithms that differ from

those of the previous chapter. Hence, Section 5.2.1 will introduce indicators that will be used

by the algorithms, and Section 5.2.2 will present the representation of the GP individuals

under GP-DC, GP-PT, and GP-DC-PT.

5.2.1 Directional changes and technical indicators

We use 28 specific DC indicators, which have been previously introduced and discussed in [5].

These DC indicators are conceptually similar to the technical indicators used in traditional

time-based technical analysis, as detailed in [152]. Again, we employ the ERC that generates

a random number distributed uniformly between -1 and 1. Therefore, the DC indicators have

been appropriately normalised.

Table 5.1 provides a comprehensive listing of these 28 DC indicators. Notably, among

these indicators, 10 involve calculations over specific time intervals, such as the total count

of DC events denoted as NDC , which can be computed over varying time windows, including

10, 20, 30, 40, or 50 days. This brings the total count of indicators to 28. For indicators

that do not depend on a specific time window, such as OSV, TMV, TDC , and RDC , Table 5.1
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Table 5.1: DC indicators; see also [5] and [6]

Indicator Periods (days)

Total price movements value at extreme points (TMV) [Equation 2.12] N/A
Overshoot Values at Extreme Points (OSV) [Equation 2.13] N/A
Average OSV [Equation 2.14] 3, 5, 10
Time-adjusted return of DC (RDC) [Equation 2.15] N/A
Average RDC [Equation 2.16] 3, 5, 10
Time for completion of a trend (TDC) [Definition in 2.1.4] N/A
Average TDC [Equation 2.17] 3, 5, 10
Number of directional change events (NDC) [Definition in 2.1.4] 10, 20, 30, 40, 50
Time independent Coastline (CDC) [Equation 2.18] 10, 20, 30, 40, 50
Up and down trends asymmetry in time intervals (AT ) [Equation 2.19] 10, 20, 30, 40, 50

designates them as ‘N/A.’

In addition to the above 28 DC-based indicators, our study also incorporates 28 PT indic-

ators derived from technical analysis to complement our analytical framework. It’s important

to note that, in the preceding chapter, a more extensive set of 146 PT technical indicators

was utilised. However as the GP-DC-PT algorithm will be using both DC and physical time

indicators in its terminal set, it was important to have an equal number of indicators to avoid

the GP being biased towards PT indicators. Hence the number of PT indicators used by the

GP-DC-PT is restricted to 28, as per the DC indicators. In addition, we will also use the same

28 PT indicators for GP-PT to ensure a fair comparison among the GP algorithms. This choice

of PT indicators is informed by the work of [7], which highlights the most common indicators

within the domain of financial forecasting. Some of these indicators (MA, CCI, RSI, and Wil-

liam’s %R) are considered for periods of 10, 20, 30, 40, and 50 days, and a couple of them

(ATR and EMA) are considered for periods of 3, 5, and 10 days, while finally, OBV and PSAR

do not involve periods. The above periods are commonly used values in the literature [153].

Table 5.2 summarises these indicators.

The proposed GP-DC algorithm uses only DC indicators in its terminal set and thus only

the indicators presented in Table 5.1. On the other hand, GP-PT uses only physical time

technical analysis indicators in its terminals and therefore the indicators presented in Table

5.2. Lastly, the proposed GP-DC-PT algorithm uses both DC and technical analysis indicators

in its terminal set, i.e. the indicators from both Tables 5.1 and 5.2.
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Table 5.2: Physical time (technical analysis) indicators; see also [7]

Indicator Periods (days)

Moving average (MA) [Equation 2.2] 10, 20, 30, 40, 50
Commodity Channel Index (CCI) [Equation 2.3 to 2.5] 10, 20, 30, 40, 50
Relative Strength Index (RSI) [Equation 2.1] 10, 20, 30, 40, 50
William’s %R [Equation 2.6] 10, 20, 30, 40, 50
Average True Range (ATR) [Equation 2.7 and Equation 2.8] 3, 5, 10
Exponential Moving Average (EMA) [Equation 2.9] 3, 5, 10
On Balance Volume (OBV) [Equation 2.10] N/A
Parabolic Stop and Reverse (PSAR) [Equation 2.11] N/A

5.2.2 Model representation

Figure 5.1 presents illustrative tree structures corresponding to the GP-PT, GP-DC, and GP-

DC-PT algorithms. To ensure comparability, identical tree structures are maintained across

the examples, with variations confined to the terminal sets. As depicted in Figure 5.1, the

GP-PT and GP-DC algorithms generate trees with all PT and DC indicators. Conversely, the

GP-DC-PT algorithm possesses the capability to construct trees incorporating both PT and DC

indicators. It is worth noting that GP-DC-PT could also produce a GP tree with all PT or DC

indicators.

Figure 5.1: An example tree for GP-PT, GP-DC, and GP-DC-PT.

5.2.3 Remainder of the GP configuration

As discussed earlier, all three GPs follow the configurations of the GP introduced in Chapter

4. Hence, the Function set is the same across all of them, i.e., AND, OR, less than (<), and
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greater than (>). Similarly, they all follow the same trading strategy as previously intro-

duced in Section 4.2.2. The Sharpe ratio is again the fitness function employed across all

GP algorithms. In addition, the same genetic operators are applied as presented in Section

4.2.1.4.

5.3 Experimental set-up

In this section, because we use the same data introduced in Section 4.3.1, we only introduce

the benchmarks of the experimental comparison and parameter tuning.

5.3.1 Benchmarks

The two novel GP algorithms, namely GP-DC and GP-DC-PT, are benchmarked against GP-

PT, which only uses physical time. This allows us to understand the added value of using

GP algorithms that include DC-based indicators, rather than those that incorporate physical

time.

Our second benchmark is the nine ML algorithms presented in Section 4.3, as one of

the main goals of this chapter is to enhance the GP-based algorithm to outperform these nine

algorithms. In addition, we also benchmark the proposed algorithm against trading strategies

derived from physical time technical analysis indicators. Such indicators are very common

in the financial literature and the trading industry, so we consider it important to compare

our proposed algorithms’ performance against such indicators. We run trading experiments

for the following indicators: Moving Average Convergence/Divergence (MACD), On Balance

Volume (OBV), and Momentum (MTM). For MACD and OBV, a buy signal is produced when

their long-term moving average (50 days) has a higher value than their short-term moving

average (10 days); and vice versa for a sell action. For MTM, a buy signal is generated when

the current price is higher than the price of 10 days ago, and vice versa for the sell action.

All of the above values (10 and 50 days for MACD and OBV; 10 days for MTM) were selected

through a grid search.

Finally, the final benchmark is the buy-and-hold strategy. As introduced in Section 4.3.2,
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the buy-and-hold strategy is another traditional approach that could be used in finance fore-

casting. The motivation for including this trading strategy is because it represents a different

type of trading preference, namely a passive one, where traders buy a stock and hold it for a

lengthy period. Given that the three GPs used in this chapter employ different indicators to

the GP in Chapter 4, it is important to evaluate their performance against buy-and-hold.

5.3.2 Parameter tuning

In Section 4.3.3, we executed a grid search to identify the optimal GP parameters and two

key trading strategy parameters for the proposed GP-based algorithms. This chapter extends

this optimisation process to include a novel parameter derived from the DC framework, desig-

nated θ. It controls the magnitude of the DC event under the DC framework. In other words,

it decides what event could be viewed as significant, which, traditionally, should be specified

by the users. Similarly to the n and r parameters, we also conduct a grid search for θ across

all 220 datasets. The advantage of this is that each dataset will be using a tailored value

of θ and, as a result, a more appropriate generated event-based series. Hence, GP-DC and

GP-DC-PT will perform a grid search for all three parameters n, r, and θ, while GP-PT, which

does not use directional changes, will perform a grid search for n and r only. The range of

values for the grid search tuning for n, r, and θ, are as follows:

• n (prediction horizon): 1, 5, 15

• r (price movement percentage): 1%, 5%, 10%, 20%

• θ (DC threshold): 0.001, 0.002, 0.005, 0.01, 0.02

5.4 Results and analysis

The goal of our experiments was to explore the potential of DC as a complementary technique

to physical time. To achieve this goal, we evaluated GP-DC using GP-PT as a benchmark, and

we further studied GP-DC-PT to evaluate whether the two indicator sets can complement each

other.
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In Section 5.4.1.1, we compare GP-DC and GP-DC-PT with GP-PT over distinct period

lengths of 5 and 10 years. In this section, we provide comprehensive results and insights

across all four metrics: total return (TR), expected rate of return (E[RoR]), risk, and the

Sharpe ratio. Once the above comparisons are complete, we identify the best GP algorithm

and compare it against the benchmarks of technical indicators (Section 5.4.3) and buy-and-

hold (Section 5.4.4).

5.4.1 Comparison of the GP-based algorithms

5.4.1.1 Periods

Recall that our datasets were created over two periods, i.e. for 5 and 10 years, respectively.

In this section, we will consider the influence of the period on the performance of the three

GP-based algorithms. In addition to TR, E[RoR], and risk, as evaluation metrics, we now also

consider the portfolio Sharpe ratio for GP-DC, GP-PT, and GP-DC-PT. The portfolio Sharpe

ratio assumes an equal distribution of the 110 stocks (i.e., each stock has the same weight

in the portfolio). Since it is calculated across the entire portfolio of all stocks, there are no

summary statistics to calculate, just a single value, which is presented in the table.

As we can observe in Table 5.3, our proposed algorithms perform very well over the 5-

year period, particularly in terms of TR and E[RoR]. GP-DC has the highest average (13.89%)

and median (9.63%) values for both metrics, while GP-DC-PT comes second. With regards

to risk, GP-DC-PT again yields the lowest average (0.06) and median (0.05) values, while

GP-PT comes second and GP-DC marginally third. When looking at the 10-year data, we find

that GP-PT has the highest average TR (21.38%), which is probably affected by the outliers

(e.g. maximum value 571.21%)1. GP-DC has the highest median TR (10.96%). In terms of

E[RoR], GP-PT has the best average (2.47%) and median (1.00%) values. Furthermore, in

terms of risk, GP-DC-PT is again showing strong performance, as it has the lowest values, with

GP-DC coming second.

1Such outliers can be explained by a combination of a heavily bull market and a very passive trading strategy.
For example, a particular GP model might recommend a buy action at the beginning of the 2-year test set period
(for the 10-year dataset), and then sell towards the end of the test set period. Assuming that the respective
dataset’s prices were in a strong upward trend, such an action can lead to a very profitable trade.
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Table 5.3: Summary statistics of the GP-based algorithms on 5 and 10-year periods. We use
boldface for the best values for each metric.

Period Measure Algorithm

Total return

GP-DC GP-PT GP-DC-PT

5 year

Average 13.89% 2.82% 10.23%
Median 9.63% 3.83% 9.02%
Standard deviation 0.28 0.21 0.18
Maximum 187.98% 130.44% 130.98%
Minimum -33.08% -57.50% -40.45%

10 year

Average 15.91% 21.38% 14.29%
Median 10.96% 10.13% 10.85%
Standard deviation 0.37 0.77 0.38
Maximum 147.52% 571.21% 186.61%
Minimum -149.59% -53.59% -229.56%

Expected Rate of Return

GP-DC GP-PT GP-DC-PT

5 year

Average 1.58% 0.58% 1.13%
Median 1.37% 0.61% 1.17%
Standard deviation 0.02 0.03 0.02
Maximum 10.07% 9.08% 7.74%
Minimum -7.55% -10.93% -3.82%

10 year

Average 1.28% 2.47% 0.91%
Median 0.89% 1.00% 0.77%
Standard deviation 0.03 0.08 0.01
Maximum 27.00% 46.06% 6.00%
Minimum -2.83% -22.31% -3.33%

Risk

GP-DC GP-PT GP-DC-PT

5 year

Average 0.10 0.09 0.06
Median 0.08 0.07 0.05
Standard deviation 0.08 0.07 0.04
Maximum 0.48 0.45 0.22
Minimum 0.01 0.00 0.01

10 year

Average 0.08 0.10 0.06
Median 0.07 0.07 0.05
Standard deviation 0.06 0.10 0.04
Maximum 0.39 0.53 0.24
Minimum 0.01 0.01 0.01

Table 5.4: Sharpe ratio of the GP-based algorithms on 5 and 10-year periods. We use boldface
for the best values for each period.

Period GP-DC GP-PT GP-DC-PT

5 year 0.5451 0.1867 0.7214
10 year 0.4266 0.3100 0.7081
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Finally, for a comprehensive evaluation of each algorithm’s risk-adjusted return perform-

ance, we establish portfolios for each GP variant (GP-DC, GP-PT, GP-DC-PT) within the 5 and

10-year time frames. This results in six distinct portfolios, each comprising 110 datasets with

an equal allocation weight per dataset.2 This methodology allows us to gain a holistic per-

spective on the performance of each algorithm across different periods. Thus, in Table 5.4,

we present the Sharpe ratio performance of each GP’s portfolio. It is clear that the ranking

remained consistent for both the 5-year and 10-year periods, with GP-DC-PT achieving the

top result, followed by GP-DC in second place, and GP-PT trailing in third. It reveals the

consistent profit-generating capability of GP-DC-PT.

We use the non-parametric KS test, together with the Holm-Bonferroni correction, to eval-

uate the above results. Table 5.5 and Table 5.6 present the p-values of the KS test between

the GP-DC algorithm (control algorithm) and each of the GP-PT and GP-DC-PT algorithms in

terms of TR, E[RoR], and risk; p-values indicating statistical significance appear in boldface.

We remark that the distribution of GP-DC and GP-PT algorithms is statistically and sig-

nificantly different in terms of TR and E[RoR] in the 5-year datasets. Combined with Table

5.3, we can conclude that GP-DC outperforms, in a statistically significant manner, the GP-PT

algorithm in terms of TR and E[RoR] for these datasets. Meanwhile, the difference between

GP-DC and GP-DC-PT is also significant in terms of 5-year and 10-year risk. This further

shows a considerable improvement in risk for the GP-DC-PT algorithm. For the rest of the

comparisons, the differences in performance are not statistically significant.

In conclusion, the GP-DC algorithm generally performs better than the GP-PT algorithm in

the short term (5 years). In contrast, the GP-PT algorithm generally outperforms the GP-DC

algorithm over the long term (10 years), whereas the GP-DC and GP-PT algorithms exhibit

statistically significant differences in TR and E[RoR] in 5 years (both TR and E[RoR] are

higher for GP-DC). Moreover, the GP-DC-PT algorithm significantly reduces the risk with a

similar distribution of TR to the GP-DC algorithm in both 5- and 10-year datasets. In addition,

the higher Sharpe ratio of the GP-DC-PT algorithm reflects stability. Apart from providing

2It’s worth noting that this thesis primarily centres on algorithmic trading, and the optimization of portfolio
weights falls beyond its current scope. Therefore, for simplicity, equal weights have been assigned. Future
research will delve into the optimization of portfolio allocations.
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Table 5.5: Kolmogorov-Smirnov tests between GP-DC (control) with GP-PT and GP-DC-PT for
TR, E[RoR], and risk on 5 years. p-values (second column) below the adjusted significance
level (third column) appear in boldface to indicate statistical significance at a 5% level. The
calculation of the adjusted significance level is shown in brackets in the third column.

(a) TR

Algorithm p-value Adj. significance level

GP-PT 0.0034 0.025 (0.05/2)
GP-DC-PT 0.2395 0.05 (0.05/1)

(b) Expected Rate of Return

Algorithm p-value Adj. significance level

GP-DC-PT 0.0055 0.025 (0.05/2)
GP-PT 0.0137 0.05 (0.05/1)

(c) Risk

Algorithm p-value Adj. significance level

GP-DC-PT 6.9784e-05 0.025 (0.05/2)
GP-PT 0.5060 0.05 (0.05/1)

Table 5.6: Kolmogorov-Smirnov tests between GP-DC (control) with GP-PT and GP-DC-PT for
TR, E[RoR], and risk on 10 years. p-values (second column) below the adjusted significance
level (third column) appear in boldface to indicate statistical significance at 5% level. The
calculation of the adjusted significance level is shown in brackets in the third column.

(a) TR

Algorithm p-value Adj. significance level

GP-PT 0.5060 0.025 (0.05/2)
GP-DC-PT 0.6186 0.05 (0.05/1)

(b) Expected Rate of Return

Algorithm p-value Adj. significance level

GP-DC-PT 0.2395 0.025 (0.05/2)
GP-PT 0.5060 0.05 (0.05/1)

(c) Risk

Algorithm p-value Adj. significance level

GP-DC-PT 7.2247e-04 0.025 (0.05/2)
GP-PT 0.2395 0.05 (0.05/1)

further evidence that DC-based algorithms could complement physical time methods, this

demonstrates the advantage of the GP-DC-PT algorithm over the GP-DC algorithm.

5.4.1.2 Summary

By comparing the three GP-based algorithms’ performance over different periods, we conclude

that both DC-based algorithms outperformed GP-PT. This remark fulfils the objective of this

chapter, i.e. to demonstrate that DC-based trading strategies constitute a promising altern-

ative to traditional physical time-based approaches. Furthermore, the GP-DC-PT algorithm

has a significantly lower risk than the GP-DC algorithm. Meanwhile, although the GP-DC

algorithm achieved better TR in many cases, the difference between GP-DC and GP-DC-PT

algorithms is not statistically significant. Finally, when analysing the Sharpe ratio results, it
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becomes evident that GP-DC-PT exhibits significantly higher values compared to GP-DC, with

approximately a 33% improvement for the 5-year period and a remarkable 66% improvement

for the 10-year period (refer to Table 5.4). The Sharpe ratio, being a comprehensive metric

that incorporates both returns and risk, carries substantial significance, mirroring real-world

behaviours of financial analysts and traders. Therefore, we emphasise the importance of pla-

cing greater weight on the insights derived from this metric. Consequently, we assert that,

when it comes to striking a balance between return and risk, GP-DC-PT emerges as the pre-

ferred choice among the three GP-based algorithms. As a result, the subsequent sections will

involve benchmarking the GP-DC-PT algorithm against technical indicators and a traditional

buy-and-hold trading strategy.

5.4.2 Comparison of GP-DC-PT algorithm to the nine ML algorithms

We now compare GP-DC-PT with the nine ML algorithms tested previously in Chapter 4, as

the GP algorithm was not able to outperform some of them. Note that in order to make a fair

comparison to GP-DC-PT, they all use the same 28 physical time indicators (rather than the

146 indicators used in the previous chapter). The summary statistics of the comparison are

given in Table 5.7 and Table 5.8. Note that GP-DC-PT has the best average and median TR

in 5 years, three times higher than the rest of the algorithms. In terms of the expected RoR,

the GP-DC-PT ranks first on all metrics except for the maximum value, indicating a strong

overall performance. In terms of risk, all algorithms show similarly low risk values, with SVC

having the lowest average and median. Importantly, GP-DC-PT achieved the best Sharpe ratio

of 0.72, which is also three times higher than achieved with the other algorithms.

Over the 10-year period, the advantage of GP-DC-PT persists in terms of TR, ranking

second in average value, just 0.06% below the best performer, while showing a significant

improvement in median value. While SGD outperforms in terms of both the average and me-

dian expected rate of return, its median value is only 0.10% higher than GP-DC-PT’s (0.87%

vs 0.77%). In contrast, although GP-DC-PT has a slightly lower average and median E[RoR]

compared to SGD, it produces more stable profits as the standard deviation is five times lower

than SGD’s (0.01 vs 0.05). Additionally, the risk level of GP-DC-PT remains consistent with
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that observed in the 5-year period. Lastly, the better performance of GP-DC-PT is further

highlighted by its top Sharpe ratio of 0.71.

To compare the GP-DC-PT with nine ML algorithms, we use the Friedman test to meas-

ure the average rank among them. As we can observe from Table 5.9 and Table 5.13, the

GP-DC-PT algorithm ranks first on four out of six comparisons. More specifically, GP-DC-PT

statistically and significantly outperforms all other ML algorithms in terms of total return un-

der the 5-year period. In terms of E[RoR], it again ranks first and statistically and significantly

outperforms PAC, SVC, RF, GB, and KNN. In terms of risk, PAC ranks first and statistically and

significantly outperforms GP-DC-PT at the 5% significance level. Results are very similar for

the 10-year period. However, it is worth noting that GP-DC-PT’s risk is improved and ranks

third and is not statistically outperformed by the control algorithm (RF).
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Table 5.7: Summary statistics of the GP-DC-PT algorithm and other nine machine learnings on a 5-year period. Best value per row is
denoted in boldface.

Total return

GP-DC-PT DT ET GB KNN MLP PAC RF SGD SVC

Average 10.24% 3.17% 3.08% 1.91% 2.42% 2.61% 1.89% 3.25% 2.87% 2.40%
Median 9.03% 2.19% 1.85% 1.23% 0.00% 2.03% 2.18% 1.42% 2.30% 0.00%
StDev 0.18 0.19 0.14 0.16 0.16 0.14 0.11 0.15 0.12 0.12
Max 130.98% 78.52% 43.82% 65.94% 69.84% 43.33% 31.75% 58.18% 48.82% 59.74%
Min -40.45% -85.46% -33.21% -62.78% -60.19% -41.54% -32.69% -29.85% -37.29% -33.63%

Expected Rate of Return

GP-DC-PT DT ET GB KNN MLP PAC RF SGD SVC

Average 1.14% 0.67% 0.70% 0.26% 0.50% 0.48% 0.57% 0.51% 0.59% 0.48%
Median 1.17% 0.44% 0.32% 0.35% 0.00% 0.31% 0.59% 0.25% 0.45% 0.00%
StDev 0.02 0.03 0.04 0.04 0.02 0.03 0.03 0.03 0.02 0.02
Max 7.74% 16.52% 17.50% 16.80% 10.64% 8.38% 8.45% 8.58% 7.62% 7.24%
Min -3.82% -11.30% -16.77% -17.44% -5.76% -10.13% -7.59% -7.18% -8.31% -6.69%

Risk

GP-DC-PT DT ET GB KNN MLP PAC RF SGD SVC

Average 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05
Median 0.06 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.04
StDev 0.04 0.05 0.06 0.06 0.05 0.05 0.04 0.05 0.05 0.04
Max 0.22 0.39 0.32 0.34 0.34 0.28 0.27 0.27 0.31 0.24
Min 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Sharpe ratio

GP-DC-PT DT ET GB KNN MLP PAC RF SGD SVC

0.72 0.20 0.19 0.07 0.23 0.17 0.22 0.17 0.25 0.21
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Table 5.8: Summary statistics of the GP-DC-PT algorithm and other nine machine learnings on a 10-year period. Best value per row is
denoted in boldface.

Total return

GP-DC-PT DT ET GB KNN MLP PAC RF SGD SVC

Average 14.29% 4.57% 6.72% 10.53% 9.78% 9.51% 9.29% 8.78% 14.35% 11.78%
Median 10.85% 0.00% 1.44% 1.52% 0.72% 1.35% 3.29% 1.65% 4.32% 0.00%
StDev 0.38 0.25 0.30 0.37 0.40 0.36 0.30 0.31 0.37 0.40
Max 186.62% 125.52% 128.85% 263.53% 323.73% 225.97% 232.80% 132.87% 231.65% 259.37%
Min -229.56% -51.58% -114.26% -43.88% -95.37% -50.44% -61.89% -45.46% -72.21% -50.13%

Expected Rate of Return

GP-DC-PT DT ET GB KNN MLP PAC RF SGD SVC

Average 0.91% 0.42% 0.78% 0.88% 0.75% 0.86% 1.05% 1.14% 1.70% 0.95%
Median 0.77% 0.05% 0.31% 0.28% 0.17% 0.29% 0.56% 0.37% 0.87% 0.00%
StDev 0.01 0.02 0.03 0.03 0.02 0.02 0.03 0.05 0.05 0.03
Max 6.00% 7.45% 14.59% 21.45% 17.48% 14.26% 15.20% 32.56% 25.55% 19.15%
Min -3.34% -5.58% -9.68% -12.02% -6.10% -7.13% -11.49% -11.84% -7.39% -4.92%

Risk

GP-DC-PT DT ET GB KNN MLP PAC RF SGD SVC

Average 0.06 0.06 0.07 0.07 0.05 0.06 0.07 0.07 0.07 0.07
Median 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05
StDev 0.04 0.07 0.09 0.07 0.05 0.05 0.06 0.08 0.06 0.09
Max 0.38 0.51 0.58 0.47 0.38 0.31 0.38 0.55 0.30 0.68
Min 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Sharpe ratio

GP-DC-PT DT ET GB KNN MLP PAC RF SGD SVC

0.71 0.22 0.23 0.25 0.29 0.34 0.34 0.21 0.36 0.32
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Table 5.9: Friedman with Bonferroni’s post-hoc test between GP-DC-PT algorithms and ML
algorithms on a 5-year period. Statistically significant differences at a 5% level are shown in
boldface.

Table 5.10: Total return

Algorithm Average rank pBonf

GP-DC-PT(c) 4.063636 -

ET 5.281818 5.48E-3
SVC 5.372727 2.92E-3
MLP 5.445455 2.41E-3
SGD 5.445455 2.41E-3
DT 5.454545 2.41E-3
RF 5.672727 3.86E-4
PAC 5.754545 2.05E-4
KNN 5.854545 1.12E-4
GB 5.5.918182 1.12E-4

Table 5.11: Expected Rate of Return

Algorithm Average rank pBonf

GP-DC-PT(c) 4.381818 -

ET 5.190909 0.14
SGD 5.218182 0.14
DT 5.354545 0.08
MLP 5.381818 0.07
PAC 5.490909 0.04
SVC 5.645455 0.01
RF 5.790909 4.87E-3
GB 5.881818 3.36E-3
KNN 6.000000 1.80E-3

Table 5.12: Risk

Algorithm Average rank pBonf

PAC(c) 4.881818 -

MLP 4.936364 0.65
RF 4.990909 0.61
ET 5.036364 0.61
SGD 5.090909 0.59
GB 5.190909 0.43
KNN 5.663636 0.08
DT 5.763636 0.07
GP-DC-PT 6.263636 3.80E-3
SVC 6.936364 1.20E-5

From the above, we can conclude that this chapter’s proposed GP-DC-PT is a competitive

algorithm and is able to do much better when compared to other ML algorithms in terms

of total return and expected rate of return. When it comes to risk, ML algorithms perform

better. However, we should keep in mind that qualitatively the differences in performance

are not large, e.g. in Table 5.7 we saw that the differences in average and median risk values

between GP-DC-PT and the best performing algorithm (SVC) were only 0.02%. In terms of

the 10-year period (Table 5.8), the differences were even smaller. In addition to the above,

we should always keep in mind that traders don’t consider metrics in isolation as we discussed
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Table 5.13: Friedman with Bonferroni’s post-hoc test between GP-DC-PT algorithms and ML
algorithms on a 10-year period. Statistically significant differences at a 5% level are shown
in boldface.

Table 5.14: Total return

Algorithm Average rank pBonf

GP-DC-PT(c) 4.227273 -

SGD 4.900000 0.20
SVC 5.245455 1.93E-2
KNN 5.309091 1.93E-2
MLP 5.318182 1.74E-2
PAC 5.445455 9.20E-3
GB 5.518182 7.77E-3
RF 5.700000 1.55E-3
ET 5.727273 1.55E-3
DT 5.836364 7.83E-4

Table 5.15: Expected Rate of Return

Algorithm Average rank pBonf

GP-DC-PT(c) 4.60000 -

SGD 4.618182 0.86
PAC 5.272727 0.18
MLP 5.300000 0.15
SVC 5.418182 0.10
KNN 5.436364 0.10
GB 5.554545 0.08
RF 5.618182 0.06
ET 5.718182 0.05
DT 5.827273 0.03

Table 5.16: Risk

Algorithm Average rank pBonf

RF(c) 4.890909 -

KNN 5.027273 0.77
GP-DC-PT 5.272727 0.76
PAC 5.336364 0.69
DT 5.381818 0.54
GB 5.381818 0.57
SGD 5.381818 0.68
MLP 5.436364 0.53
ET 5.445455 0.53
SVC 6.809091 3.30E-5
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in Section 2.3. So while return and risk offer valuable insights, an aggregate metric like the

Sharpe ratio is preferred when comparing trading strategies. Hence, the fact that GP-DC-PT

has a significantly higher Sharpe ratio than all other ML algorithms indicates that it offers a

more favourable risk-adjusted return, making it a stronger overall trading strategy.

5.4.3 Comparison of GP-DC-PT algorithm to other technical indicators

To compare the effectiveness of our approach to traditional technical analysis, we benchmark

the GP-DC-PT algorithm against three commonly used indicators: Moving Average Conver-

gence Divergence (MACD), On Balance Volume (OBV), and Momentum (MTM), also used in

[154]. The outcome of this comparison can be seen in Table 5.17 and Table 5.18, where a

value of 0 means that the respective algorithm did not perform any trades. Note that GP-DC-

PT exhibits a very high median TR on both 5- and 10-year data, together with a best average

TR on 5-year data and a second-best average TR on 10-year data. In terms of E[RoR], GP-DC-

PT has the second-best average value and the best median on both 5- and 10-year data. With

respect to risk, GP-DC-PT has the lowest risk in most cases, except for the median risk derived

from the 5-year data. In addition, we calculate the Sharpe ratio of the portfolio, where each

of the 110 datasets is given equal weight, for 5- and 10-year datasets separately. The previous

findings are also fully reflected in the Sharpe ratio, where GP-DC-PT demonstrated a clear

advantage, both in the 5-year and 10-year datasets, relative to the other three indicators.

Table 5.19 and Table 5.20 present the KS test that confirms the above results. As we

can observe, by considering the Holm-Bonferroni correction for the three comparisons, all p

values below the significance level reject the null hypothesis at the 5% significance level and

indicate that the differences are statistically significant in terms of TR, E[RoR], and risk for

both 5- and 10-year periods.

From the discussion above, it is reasonable to conclude that our proposed algorithm, GP-

DC-PT, has a significant advantage over more popular technical indicators. For some specific

stocks, technical indicators perform well, with even better TR and E[RoR] than the GP-DC-PT

algorithm. On both 5- and 10-year periods, however, the GP-DC-PT algorithm significantly

outperforms the other three technical indicators at the 5% significance level.
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Table 5.17: Summary statistics of the GP-DC-PT algorithm and technical analysis on a 5-year
period. Best value per row is denoted in boldface.

Total return

GP-DC-PT MACD OBV MTM

Average 10.24% 7.80% 2.93% 6.72%
Median 9.03% 0.01% 0.01% 0.48%
StDev 0.18 0.39 0.31 0.48
Max 130.98% 191.07% 152.31% 252.25%
Min -40.45% -97.24% -98.39% -98.49%

Expected Rate of Return

GP-DC-PT MACD OBV MTM

Average 1.14% 1.31% -0.03% 0.32%
Median 1.17% 0.00% 0.00% 0.02%
StDev 0.02 0.07 0.05 0.02
Max 7.74% 31.84% 21.52% 10.98%
Min -3.82% -24.31% -24.60% -2.59%

Risk

GP-DC-PT MACD OBV MTM

Average 0.07 0.09 0.07 0.12
Median 0.06 0.05 0.05 0.08
StDev 0.04 0.15 0.07 0.15
Max 0.22 1.05 0.35 0.95
Min 0.01 0.01 0.01 0.02

Sharpe ratio

GP-DC-PT MACD OBV MTM

0.72 0.19 -0.01 0.17

5.4.4 Buy-and-hold strategy

We now compare GP-DC-PT with the state-of-the-art baseline approach, namely the buy-and-

hold strategy. Recall that the buy-and-hold strategy only makes one trade during the whole

period, during which we buy one unit of stock on the first day of trading, and sell it on the

last day. Hence, the risk and E[RoR] are unsuited for such a comparison.

As we can observe from Table 5.21 and Table 5.22, the GP-DC-PT algorithm has the bet-

ter median TR on the 5-year period. In contrast, the buy-and-hold strategy performs better

on the rest of the average and median TR. It is worth noting that the buy-and-hold strategy

achieves the highest maxima (1753.05%), indicating that extreme values cause its high av-

erage effect. This is because some of the datasets were derived from a predominately bull
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Table 5.18: Summary statistics of the GP-DC-PT algorithms and technical indicators over a
10-year period. Best value per row is denoted in boldface.

Total return

GP-DC-PT MACD OBV MTM

Average 14.30% 13.99% 2.63% 18.43%
Median 10.85% 2.22% 1.73% 7.44%
StDev 0.38 0.58 0.43 0.67
Max 186.62% 360.11% 148.28% 514.56%
Min -229.56% -90.38% -177.72% -112.67%

Expected Rate of Return

GP-DC-PT MACD OBV MTM

Average 0.91% 1.71% 0.77% 0.32%
Median 0.77% 0.14% 0.18% 0.11%
StDev 0.01 0.06 0.05 0.01
Max 6.00% 36.01% 35.65% 6.95%
Min -3.34% -9.04% -11.11% -1.48%

Risk

GP-DC-PT MACD OBV MTM

Average 0.06 0.12 0.12 0.15
Median 0.05 0.07 0.09 0.09
StDev 0.04 0.22 0.12 0.20
Max 0.38 1.58 0.76 1.82
Min 0.01 0.01 0.01 0.03

Sharpe ratio

GP-DC-PT MACD OBV MTM

0.71 0.26 0.15 0.29

market (i.e., there was a strong upward trend in the price series). Therefore, the last price

can differ significantly from the first (especially for the 10-year datasets, where the test set is

2 years long). For example, the above return of 1753.05% comes from NASDAQ’s Plug Power

Inc. which, for the period from 2018-2020 saw its daily price increase sharply due to a com-

bination of factors such as the increasing interest in clean energy, significant partnerships and

deals, and strong financial performance. As a result, such a high TR result can significantly

affect the mean values, which are sensitive to outliers. It could be told by the better standard

deviation of GP-DC-PT. To deal with this issue, we also analysed the results by only using all

results within two SDs of the mean. Therefore, the average (standard deviation) TR of the

buy-and-hold strategy becomes 3.21% (0.18) and 6.98% (0.19) on the 5- and 10-year period,
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Table 5.19: Kolmogorov-Smirnov tests between GP-DC-PT (control) and three technical in-
dicators for TR, E[RoR], and risk on a 5-year period. p-values (second column) below the
adjusted significance level (third column) appear in boldface to indicate statistical signific-
ance at the 5% level. The calculation of the adjusted significance level is shown in brackets
in the third column.

(a) TR

Algorithm p-value Adj. significance level

OBV 2.46E-06 0.017 (0.05/3)
MACD 1.94E-05 0.025 (0.05/2)
MTM 1.94E-05 0.05 (0.05/1)

(b) Expected Rate of Return

Algorithm p-value Adj. significance level

OBV 8.31E-13 0.017 (0.05/3)
MTM 4.52E-11 0.025 (0.05/2)
MACD 2.63E-07 0.05 (0.05/1)

(c) Risk

Algorithm p-value Adj. significance level

OBV 1.01E-13 0.017 (0.05/3)
MACD 1.29E-04 0.025 (0.05/2)
MTM 4.14E-04 0.05 (0.05/1)

where the GP-DC-PT algorithm becomes 8.87% (0.12) and 10.69% (0.31). Last but not least,

as indicated in Table 5.23, GP-DC-PT outperforms the buy-and-hold strategy in terms of the

Sharpe ratio when considering both 5-year and 10-year datasets. In this case, the GP-DC-PT

algorithm performs better than the buy-and-hold strategy.

Even so, we need to examine the statistical results. As before, the KS test is used. Since

there is only one comparison between the GP-DC-PT algorithm and the buy-and-hold strategy,

we did not apply the Holm-Bonferroni correction. The p-values between the GP-DC-PT al-

gorithm and buy-and-hold strategy are 0.0012 and 4.14E-04, respectively, below 0.05 (the

5% significance level), indicating that the differences are statistically significant. Combined

with the preceding discussion, we argue that the GP-DC-PT algorithm significantly outper-

forms the buy-and-hold strategy.

Lastly, it is worth noting that the GP-DC-PT algorithm could use the TR as the fitness

function in lieu of the current Sharpe ratio. In this case, its average TR jumps to over 30%,

which is higher than the buy-and-hold strategy’s 27.21%.3

3Of course, since risk would no longer be part of the fitness function, the risk of GP-DC-PT would increase
from 0.06 to 0.10. Nevertheless, this shows the flexibility of GP algorithms, which can easily adapt their fitness
function to the different needs of traders.
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Table 5.20: Kolmogorov-Smirnov tests between GP-DC-PT (control) and three technical in-
dicators for TR, E[RoR], and risk on a 10-year period. p-values (second column) below the
adjusted significance level (third column) appear in boldface to indicate statistical signific-
ance at the 5% level. The calculation of the adjusted significance level is shown in brackets
in the third column.

(a) TR

Algorithm p-value Adj. significance level

OBV 3.71E-05 0.017 (0.05/3)
MACD 0.0055 0.025 (0.05/2)
MTM 0.0055 0.05 (0.05/1)

(b) Expected Rate of Return

Algorithm p-value Adj. significance level

MTM 1.03E-08 0.017 (0.05/3)
OBV 5.65E-07 0.025 (0.05/2)
MACD 1.29E-04 0.05 (0.05/1)

(c) Risk

Algorithm p-value Adj. significance level

OBV 2.98E-10 0.017 (0.05/3)
MACD 7.22E-04 0.025 (0.05/2)
MTM 6.37E-12 0.05 (0.05/1)

Table 5.21: Summary statistics between GP-DC-PT algorithm with buy-and-hold on the 5-year
period. We use boldface for the best values for each measure.

Total return

Measurement GP-DC-PT buy-and-hold

Average 10.24% 13.31%
Median 9.03% 2.05%
Standard deviation 0.18 0.84
Maximum 130.98% 755.68%
Minimum -40.45% -82.85%

5.5 Conclusion

Our study explored the advantages of using genetic programming together with indicators

based on the framework of DCs to create novel trading strategies. Our main achievement

was conducting a thorough investigation of the performance of these trading strategies, con-

ducting experiments on 220 datasets from 10 different markets, covering periods of 5 and 10

years.

Our investigation showed that both our proposed GP-DC and GP-DC-PT algorithms outper-

formed the baseline GP-PT in terms of total return (TR) and risk, with GP-DC-PT demonstrat-

ing the lowest overall risk across all tested datasets. The 5-year period saw GP-DC leading in

TR and expected rate of return (E[RoR]) while maintaining a lower risk when compared to
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Table 5.22: Summary statistics between GP-DC-PT algorithm with buy-and-hold on the 10-
year period. We use boldface for the best values for each measure.

Total return

Measurement GP-DC-PT buy-and-hold

Average 14.30% 41.11%
Median 10.85% 11.44%
Standard deviation 0.38 1.81
Maximum 186.62% 1753.05%
Minimum -229.56% -89.62%

Table 5.23: Kolmogorov-Smirnov tests between GP-DC-PT (control) and buy-and-hold
strategy for TR, E[RoR], and risk on a 10-year period. p-values below 0.05 appear in boldface
to indicate statistical significance at the 5% level.

Algorithm p-value

Buy-and-hold (5 years) 0.0012
Buy-and-hold (10 years) 4.14E-04

GP-DC-PT. However, GP-DC-PT proved its consistency by achieving the highest Sharpe ratio

across both 5 and 10-year periods, even when GP-PT yielded the highest average TR in the

10-year analysis. Notably, even the best-performing models showed that GP-DC-PT could sur-

pass both GP-DC and GP-PT in TR and E[RoR], albeit with slightly higher risk as compared to

GP-DC for these top models. Furthermore, GP-DC-PT successfully outperformed the nine ML

algorithms in terms of TR and E[RoR], achieving the expected goal.

When GP-DC-PT was compared to technical analysis trading strategies, it significantly

outperformed three commonly used technical indicators (MACD, OBV, MTM) in terms of

return, risk, and the Sharpe ratio. GP-DC-PT also showed a better performance of TR across

both 5- and 10-year periods when compared to buy-and-hold.

In conclusion, our findings highlight the effectiveness of combining a GP with DC-based

indicators. This approach yielded profitable results at low risk, outperforming traditional

physical time strategies such as buy-and-hold. Both GP-DC and GP-DC-PT achieved a me-

dian TR of around 10% across a large dataset, with remarkably low risk levels. Additionally,

GP-DC-PT consistently ranked first in terms of the Sharpe ratio, followed by GP-DC, across dif-

ferent time frames. Their ability to outperform GP-PT across various tests further strengthens
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their potential.

While the above results are very positive, they were all under the aggregate fitness func-

tion of the Sharpe ratio. A disadvantage of such fitness functions is that they do not look into

each component (i.e. expected rate of return, risk) separately. This can lead to certain ‘un-

desirable’ behaviours, e.g. evolving passive trees with only two trades throughout the whole

trading period so that the standard deviation (the denominator in the Sharpe ratio formula)

becomes very small and, as a result, the Sharpe ratio becomes very large. To avoid such

behaviours, in the following chapter, we propose using a multi-objective optimisation fitness

function.
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Chapter 6

Genetic programming application on

multi-objective optimisation

6.1 Motivation

This chapter extends the work presented in Chapter 5 by using a multi-objective optimisa-

tion fitness function for GP-DC-PT, which has, so far, been the best-performing algorithm.

However, a behaviour often observed during our experiments was that the GP would show

a preference for individuals favouring passive trading, i.e. very few trades during the trad-

ing period. This would result in a very small standard deviation (risk) value. Indeed, as we

observed in Chapter 5, GP-DC-PT often showed the best risk performance as compared to

other algorithms. This low risk could frequently be attributed to a low number of trades. On

the other hand, because the Sharpe ratio is an aggregate fitness function, the GP would also

completely disregard the expected RoR performance (the numerator of the Sharpe ratio), as

it was already achieving extremely high fitness values due to the low risk. While the above

behaviour fulfils the purpose of maximizing the Sharpe ratio, it would not be appropriate in

real-life trading as, essentially, it would yield a relatively low expected RoR.

To overcome this behaviour, we propose using the NSGA-II algorithm to optimise the ex-

pected RoR and risk simultaneously, rather than as part of an aggregate fitness function. This

will allow the GP algorithm to place emphasis on both metrics during search and produce
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trading strategies that yield high returns while maintaining low-risk values. The NSGA-II is

applied to the GP-DC-PT, which was the best performer in the previous chapter. This is the

first proposed algorithm in this chapter, which we call MOO2 since it is a multi-objective op-

timisation algorithm which optimises two metrics. In addition, we extend MOO2 by applying

the α-dominance strategy presented in Chapter 2. As previously explained, NSGA-II applies

strict Pareto dominance criteria, meaning a solution is considered better than another only if

it improves on at least one objective without worsening any others. This strict criterion can

however lead to undesired behaviour, as a solution with a strong performance in one objective

but poor performance in others can persist through the NSGA-II generations1. On the other

hand, the α-dominance strategy relaxes the strict Pareto dominance criteria by adding a coef-

ficient that considers other objectives when comparing one objective between two solutions.

This allows for a more balanced evaluation of solutions across the two objectives of MOO2.

We call this extended algorithm αMOO2. Lastly, we propose another multi-objective optim-

isation algorithm we call MOO3, which optimizes total return, the expected RoR, and risk.

The reason for adding the additional objective of total return is so that long-term profitability

is also taken into account. We do not need to apply α-dominance to MOO3, because the

problem that the strict dominance caused was not observed in the experiments of the MOO3.

This could be explained by the additional fitness function total return (TR) in MOO3. The

local optimal, which was reached by MOO2, is overcome by MOO3 when considering TR. In

other words, the conflict between E[RoR] and risk is relieved when optimising TR, E[RoR],

and risk simultaneously, which is an interesting finding. However, since it is not the main

focus of this thesis, we will defer this issue to future work.

The rest of this chapter is organised as follows. Section 6.2 presents the methodology used

in this chapter, then Section 6.3 discusses the benchmarks in our experiments, while Section

6.4 presents and discusses the results. Finally, Section 6.5 concludes this chapter.

1NSGA-II has parents compete with offspring, retaining the top half of solutions with better performance. This
ensures that a solution with strong performance in one objective will always survive, as no other solutions can
dominate it.

85



6.2 Methodology

As mentioned above, in this chapter we will be using the GP-DC-PT algorithm with a multi-

objective optimisation fitness function. The end goal of the algorithm is to evolve trading

strategies that are optimal in the multi-objective sense. Specifically, we aim to discover

strategies that achieve a desirable balance between the two (expected RoR and risk) or three

(total return, expected RoR, and risk) key objectives. To this end, we employ NSGA-II [38]

as the main GP evolution strategy. Once the set of suitable, Pareto-optimal solutions has been

obtained via this process, we make a final, singular choice from within that set, by using

a predefined criterion designed to reflect trader preference (i.e. the desired balance among

the various objectives). The sections that follow explore the different parts of the process

described above in more detail.

6.2.1 Selection and genetic operators for MOO2, αMOO2, and MOO3

In the GP process, the crossover and mutation are applied to simulate the natural evolutionary

processes. To decide which individuals will be used in crossover or mutation, a selection

method is employed. In this thesis, we use the tournament as the GP selection method,

as discussed in Section 4.2.1.4. The tournament selection first chooses randomly a certain

number of individuals and then the fitness function of these individuals is compared. The

individual with the best fitness function will be considered the winner and progress to the

crossover or mutation. However, in the NSGA-II, multiple objectives need to be optimised,

making the direct comparison of fitness function impossible. Thus to select the winner of a

tournament, NSGA-II considers the Pareto front rank and the crowding distance instead of

the fitness functions. After obtaining a certain number of individuals for the tournament,

NSGA-II first compares the Pareto front rank—the individual with a lower rank survives. For

individuals with equal Pareto front rank, the one with a higher crowding distance is selected.

With regards to genetic operators, we still use subtree crossover and point mutation.
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6.2.2 α-dominance strategy αMOO2

As previously mentioned, to overcome the problem that solutions with extremely poor per-

formance in one objective remain in the later generations of the NSGA-II, caused by Pareto’s

strict dominance criterion, we use the α-dominance strategy, as introduced in Equation 2.21.

The proposed MOO GP algorithm has two objectives, namely the expected rate of return

(E[RoR]) and risk. Hence, the objectives i and j from the original Equation 2.21 now be-

come E[RoR] and risk, respectively. In addition, because the two objectives are conflicting

(one maximisation, one minimisation), the sign in front of the α parameter from Equation

2.21 needs to change from positive (+) to negative (-). Hence, the α-dominance strategy for

expected RoR is:

GRoR(A,B) = fRoR(A)− fRoR(B)− αRoR,Risk(fRisk(A)− fRisk(B)) (6.1)

Similarly, the α-dominance strategy for risk is:

GRisk(A,B) = fRisk(A)− fRisk(B)− αRisk,RoR(fRoR(A)− fRoR(B)) (6.2)

Further, as mentioned in Section 2.3.2, there are three adaptation schemes to determine

the value of αi,j , namely flinear, fsigmoid, and fcosine (see Equation 2.22). In our experiments,

we apply each one of these three adaption schemes to Equations 6.1 and 6.2. Hence, we

end up with six different α-dominance strategy configurations: (i) E[RoR] with sigmoid ad-

aptation (αMOO2SigRoR); (ii) E[RoR] with cosine adaptation (αMOO2Cos
RoR); (iii) E[RoR] with

linear adaptation (αMOO2LinRoR); (iv) Risk with sigmoid adaptation (αMOO2SigRisk); (v) Risk

with cosine adaptation (αMOO2Cos
Risk); and, (vi) Risk with linear adaptation (αMOO2LinRisk).

‘MOO2’ refers to the fact that each algorithm is a two-objective optimisation algorithm. It is

worth noting that we only include the α-dominance strategy in MOO2 because the results for

MOO3 were not satisfactory.
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6.2.3 Designating the final solution

In our experiments, we will present summary statistics for the single and MOO GP algorithms

over 50 independent runs. The output of the NSGA-II at the end of this process is not a single

solution, but rather an entire front of solutions that are optimal in the Pareto sense. While ob-

taining such a Pareto front is a desired property of any multi-objective algorithm in theory, in

practice it is useful to designate a single, definitive choice from that front, as the desired, most

representative solution resulting from this process. This serves at least two purposes. Firstly,

it provides a single, final solution (i.e., trading strategy), whose performance or quality can

be evaluated and compared directly against other trading algorithms or strategies serving as

benchmarks. Secondly, it allows the trader to select the ‘best’ solution from the set, according

to some criteria valued by the trader, namely the differential extent to which they value each

of the multiple objectives. Note that prior to this point in the process, such a preference would

not have played any part in the genetic process.

Since we propose MOO2 and MOO3, we have different ways to identify the ‘best’ solu-

tions. When we optimise the two fitness functions to select the best model from SOO, we look

into the 50 independent runs in training, find the best model (in terms of Sharpe ratio), and

report its test set value. With regards to the MOO2 algorithms, although we cannot strictly

talk about a ‘best’ solution on the Pareto front, we needed to define a way of selecting a single

solution to compare it with the SOO. Given that the two objectives of MOO2 are the expected

RoR and risk, which are also the components of SOO’s fitness function of Sharpe ratio, we

decided to look into the 50 independent GP runs’ Pareto fronts from the final generation in

the training set and select the model with the best Sharpe ratio. We then report the model’s

Sharpe ratio in the test set.

When considering the three fitness functions (TR, E[RoR], and Risk), we also need to

compare the SOO and MOO3 algorithms in terms of a single ‘best’ solution. In order to do

this, we define a new aggregate metric, which effectively acts as a generalisation of the Sharpe

ratio that is able to take into account total return as well as the expected rate of return and

risk. In order to be able to calculate the metric, we first need to normalise the three objectives

into the range [0, 1]; we do so by considering the range of values resulting for each objective
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in the final Pareto front. This ‘modified Sharpe Ratio’ (mSR) metric is then defined as per

Equation 6.3:

mSR =
(T̂R + 1)a × (Ê[RoR] + 1)b

(R̂isk + 1)c
(6.3)

where T̂R is the normalised total return value of the particular individual, Ê[RoR] is its

normalised expected rate of return, R̂isk is its normalised risk value, while a, b, and c are

weights that determine the importance of each term in the metric, whereupon we impose the

additional constraint here that a+ b+ c = 1. It is necessary to add 1 to each normalised value

here so that each term becomes monotonically non-decreasing as its corresponding weight

increases. Under this scheme, each term can achieve a minimum value of 1, and a maximum

value of 2. By adjusting the values of a, b, and c, we can control the emphasis placed on each

metric within the GP process. For example, a term with zero weight will achieve the minimum

value of 1, thus having no influence in the end score; a term with a maximum weight of 1,

results in that term dominating the calculation and all other terms being ignored due to the

constraint. In the special case where b and c are equal to 0.5 (and thus a = 0), the metric

disregards total return, effectively reducing to the square root of the Sharpe ratio (assuming

normalised values).

It is important to note here that, due to the normalisation requirement, the above metric

primarily serves as a way of scoring solutions within a given Pareto front (or population of

solutions more generally); it is not a general aggregate metric that can be used to evaluate

individual solutions directly outside of a population context, such as in the case of the original

Sharpe Ratio. If we did want to use this metric to compare against benchmark solutions, these

would first need to have their objectives normalised within the same range, as dictated by the

Pareto front of interest.
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6.3 Experimental set-up

In this section, we present what benchmarks we used to compare our proposed approach

in Section 6.3.1. The datasets and parameter tuning follow the same process presented in

Section 4.3.1 and Section 5.3.2.

6.3.1 Benchmarks

6.3.1.1 MOO2

We benchmark the MOO2 algorithms against a single-objective optimisation (SOO) GP-based

approach that employs the Sharpe ratio as its fitness function.

Furthermore, we benchmark the MOO2 algorithms against trading strategies derived from

three popular technical analysis indicators: MACD, OBV, and MTM, as introduced in Section

5.3.1.

Lastly, we also compare the proposed MOO2 algorithms against the passive trading strategy

of buy-and-hold.

6.3.1.2 MOO3

To benchmark MOO3, we also compare it to a SOO GP-based approach. As mentioned in

Section 6.2.3, the fitness function we use is the aggregate function presented in Equation 6.3.

We designed the seven SOOs following seven setups listed in Section 6.4.2.1.

Further, we benchmark MOO3 against the three technical indicators MACD, OBV, and

MTM, together with the buy-and-hold strategy.

6.4 Results and analysis

We run all GP algorithms for 50 independent runs and report the results below.

In this section, we report and analyse the performance of MOO2 and MOO3 against the

benchmark approaches. We first present the results for MOO2 (Section 6.4.1) and then
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present the results for MOO3 (Section 6.4.2). Lastly, we present a comparison of MOO2

and MOO3 algorithms (Section 6.4.3).

6.4.1 MOO2

6.4.1.1 Pareto front

Figure 6.1 shows the Pareto front for the αMOO2cosRoR algorithm, along with the best model

(highest Sharpe ratio) from the SOO GP, which was selected across the 50 independent GP

runs. The αMOO2cosRoR algorithm was selected as a representative example, and the results

are similar to the other multi-objective GPs. As we can observe from the two plots, there are

several solutions on the Pareto front. For Accenture (Figure 6.1a), the majority of solutions

have a higher expected rate of return than the one by SOO. Several solutions dominate the

SOO model, as they have both a higher return and lower risk. For Experian (Figure 6.1b)

the results are even better for αMOO2cosRoR, as the majority of its solutions dominate the SOO

solution.

(a) Accenture plc (S&P500) (b) Experian plc (FTSE100)

Figure 6.1: Comparison of the Pareto front solutions with the best single objective optimisa-
tion GP.

6.4.1.2 Comparison of MOO2 to corresponding SOO approaches

Although MOO algorithms are able to find solutions in the Pareto front that dominate solu-

tions from the SOO GP, in the real world a trader would be interested in identifying a single
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trading strategy to use in the market. As Section 6.2.3 introduced, this section compares the

best model derived from SOO and the ‘best’ model obtained from the MOO2 algorithms.

Table 6.1 presents the performance of the SOO, MOO2, and αMOO2 algorithms over a

5-year period. We can observe that αMOO2SigRoR achieves the best average (1.82%) and me-

dian (1.66%) value for E[RoR], while SOO observes the worst average (1.13%) and median

(1.17%) values. It is worth noting that MOO2 also yields the same median E[RoR] values as

SOO but achieves a better average E[RoR] value (1.66%) ranked second across all algorithms.

Regarding risk (middle part of Table 6.1), SOO is the top performer, followed by the αMOO2

algorithms, which exhibit similar risk levels; MOO2 has slightly worse risk figures across all

statistics. Lastly, the bottom part of the table presents the Sharpe ratio of the portfolio of

110 stocks (assuming equal weight) per algorithm. Note that this is a single value for the

portfolio and hence no summary statistics are presented for the Sharpe ratio. As we observe,

αMOO2SigRisk has the highest value (0.83), followed by αMOO2SigRoR.

Table 6.2 presents the performance of the SOO, MOO2, and αMOO2 algorithms over a

10-year period. We can observe that αMOO2RoR
Cos achieves the best average (1.84%) and

median (1.68%) value for the expected RoR, while SOO observes the worst average (0.91%)

and median (0.77%) values. Regarding risk (middle part of Table 6.2), the performance is

the same for the 5 years. Lastly, in terms of the Sharpe ratio metric, αMOO2RoR
Sig has the

highest value (1.11). This figure is 0.4 higher than the benchmark SOO algorithm.

We also conduct pairwise comparisons between SOO and the MOO2 algorithms using

the Kolmogorov-Smirnov (KS) non-parametric statistical test to assess the significance of the

observed results. Our focus was on understanding the enhancements brought about by each

MOO2 algorithm over the SOO. The null hypothesis is that the two distributions originate

from the same continuous distribution. Given the seven pairwise comparisons, we again

apply the Holm-Bonferroni correction to account for these multiple comparisons.

Table 6.3 and Table 6.4 present the KS test results for the expected RoR and risk. As

observed, all MOO algorithms statistically and significantly outperform the SOO’s expected

RoR over a 10-year period. In 5-year data, there is no significant difference observed. In

terms of risk, MOO2’s poor performance is statistically outperformed by SOO over both 5

92



and 10-year periods. No other statistical differences between the αMOO2 algorithms and

SOO are observed, which confirms our earlier observation that the αMOO2 algorithms have

a similar risk performance to SOO. We can thus conclude that the αMOO2 algorithms have

statistically and significantly improved the expected rate of return over the SOO algorithm

while maintaining similar risk levels for the 10-year period.
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Table 6.1: Comparison between SOO and MOO2 algorithms on 5-year periods. Best values per row appear in boldface.

Measurement Expected Rate of Return

Algorithm SOO MOO2 αMOO2Sig
Risk αMOO2Sig

RoR αMOO2Cos
Risk αMOO2Cos

RoR αMOO2Lin
Risk αMOO2Lin

RoR

Average 1.13% 1.66% 1.62% 1.82% 1.28% 1.58% 1.35% 1.65%
Median 1.17% 1.19% 1.42% 1.66% 1.27% 1.37% 1.21% 1.50%
Standard deviation 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02
Max 7.74% 19.95% 9.88% 12.06% 8.55% 11.24% 7.38% 11.73%
Min -3.82% -6.60% -7.24% -4.32% -8.91% -8.10% -4.86% -6.53%

Measurement Risk

Algorithm SOO MOO2 αMOO2Sig
Risk αMOO2Sig

RoR αMOO2Cos
Risk αMOO2Cos

RoR αMOO2Lin
Risk αMOO2Lin

RoR

Average 0.06 0.10 0.07 0.08 0.07 0.07 0.07 0.08
Median 0.05 0.08 0.05 0.06 0.06 0.06 0.06 0.07
Standard deviation 0.04 0.07 0.05 0.05 0.05 0.05 0.04 0.05
Max 0.22 0.55 0.32 0.34 0.38 0.33 0.25 0.35
Min 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Measurement Sharpe ratio

Algorithm SOO MOO2 αMOO2Sig
Risk αMOO2Sig

RoR αMOO2Cos
Risk αMOO2Cos

RoR αMOO2Lin
Risk αMOO2Lin

RoR

0.72 0.82 0.83 0.82 0.63 0.67 0.73 0.71
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Table 6.2: Comparison between SOO and MOO2 algorithms on 10-year periods. Best values per row appear in boldface.

Measurement Expected Rate of Return

Algorithm SOO MOO2 αMOO2Sig
Risk αMOO2Sig

RoR αMOO2Cos
Risk αMOO2Cos

RoR αMOO2Lin
Risk αMOO2Lin

RoR

Average 0.91% 1.64% 1.65% 1.67% 1.81% 1.84% 1.49% 1.65%
Median 0.77% 1.55% 1.66% 1.66% 1.55% 1.68% 1.46% 1.50%
Standard deviation 0.01 0.04 0.02 0.01 0.02 0.02 0.02 0.02
Max 6.00% 29.91% 8.22% 7.98% 11.35% 7.21% 8.28% 9.24%
Min -3.33% -6.04% -5.22% -1.91% -2.34% -2.18% -2.54% -4.45%

Measurement Risk

Algorithm SOO MOO2 αMOO2Sig
Risk αMOO2Sig

RoR αMOO2Cos
Risk αMOO2Cos

RoR αMOO2Lin
Risk αMOO2Lin

RoR

Average 0.06 0.09 0.07 0.07 0.07 0.07 0.07 0.07
Median 0.05 0.07 0.06 0.06 0.06 0.06 0.06 0.06
Standard deviation 0.04 0.06 0.05 0.05 0.04 0.05 0.04 0.06
Max 0.24 0.45 0.32 0.33 0.28 0.29 0.24 0.46
Min 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Measurement Sharpe ratio

Algorithm SOO MOO2 αMOO2Sig
Risk αMOO2Sig

RoR αMOO2Cos
Risk αMOO2Cos

RoR αMOO2Lin
Risk αMOO2Lin

RoR

0.70 0.92 0.93 1.11 0.86 1.08 0.91 0.81
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Table 6.3: Kolmogorov-Smirnov tests between SOO (control) and MOO2 algorithms (first
column) for E[RoR] and risk over a 5-year period. p-values (second column) below the
adjusted significance level (third column) appear in boldface to indicate statistical significance
at the 5% level. The calculation of the adjusted significance level is shown in brackets in the
third column.

(a) Expected Rate of Return

Algorithm p-value Adj. significance level

MOO2 0.0461 0.0071 (0.05/7)
αMOO2Sig

RoR 0.0944 0.0083 (0.05/6)
αMOO2Lin

RoR 0.3141 0.010 (0.05/5)
αMOO2Cos

RoR 0.5060 0.013 (0.05/4)
αMOO2Sig

Risk 0.5060 0.017 (0.05/3)
αMOO2Lin

Risk 0.7336 0.025 (0.05/2)
αMOO2Cos

Risk 0.9237 0.05 (0.05/1)

(b) Risk

Algorithm p-value Adj. significance level

MOO2 5.65E-07 0.0071 (0.05/7)
αMOO2Lin

RoR 0.1790 0.0083 (0.05/6)
αMOO2Cos

RoR 0.2395 0.010 (0.05/5)
αMOO2Sig

RoR 0.3141 0.013 (0.05/4)
αMOO2Lin

Risk 0.4033 0.017 (0.05/3)
αMOO2Cos

Risk 0.5060 0.025 (0.05/2)
αMOO2Sig

RoR 0.9998 0.05 (0.05/1)

Table 6.4: Kolmogorov-Smirnov tests between SOO (control) and MOO2 algorithms (first
column) for E[RoR] and risk over a 10-year period. p-values (second column) below the
adjusted significance level (third column) appear in boldface to indicate statistical significance
at the 5% level. The calculation of the adjusted significance level is shown in brackets in the
third column.

(a) Expected Rate of Return

Algorithm p-value Adj. significance level

αMOO2Sig
RoR 1.29E-04 0.0071 (0.05/7)

αMOO2Cos
RoR 1.29E-04 0.0083 (0.05/6)

αMOO2Sig
RoR 4.14E-04 0.010 (0.05/5)

αMOO2Lin
RoR 7.22E-04 0.013 (0.05/4)

MOO2 0.0034 0.017 (0.05/3)
αMOO2Cos

Risk 0.0055 0.025 (0.05/2)
αMOO2Lin

Risk 0.0137 0.05 (0.05/1)

(b) Risk

Algorithm p-value Adj. significance level

MOO2 2.33E-04 0.0071 (0.05/7)
αMOO2Sig

RoR 0.0461 0.0083 (0.05/6)
αMOO2Lin

RoR 0.0461 0.010 (0.05/5)
αMOO2Sig

RoR 0.0944 0.013 (0.05/4)
αMOO2Cos

Risk 0.0944 0.017 (0.05/3)
αMOO2Lin

Risk 0.0944 0.025 (0.05/2)
αMOO2Cos

RoR 0.1312 0.05 (0.05/1)

6.4.1.3 Comparison of MOO2 algorithms to technical analysis trading strategies

In this section, we are interested in selecting the best performing αMOO2 algorithms to bring

forward for comparison with technical analysis indicators. Looking back at Table 6.2, we can

observe that αMOO2RoR
Cos and αMOO2RoR

Sig had the highest average and median expected rate

of return in 5 and 10-year periods, separately. In terms of risk, all algorithms showed very

similar performance. Given that the above two algorithms had the best performance in terms

of the expected RoR, we will use both in the comparisons with trading strategies derived from

technical indicators.

Table 6.5 and Table 6.6 compare the performance of the two MOO2 algorithms and the
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technical indicators in 5 and 10-year periods. Both αMOO2SigRoR and αMOO2Cos
RoR have high

average and median expected RoR values for both periods. MACD appears to be competitive

when looking at its average values (1.31% and 1.71%), but this is due to outliers; its median

values are only 0% and 0.14% over the 5- and 10-year periods, respectively. The two αMOO2

algorithms also have the lowest risk values for both average (0.07) and median (0.06), which

are almost 50% lower than the risk values of MACD, OBV, and MTM over the 10-year period.

Over the 5-year period, however, the OBV indicator and αMOO2RoR
Cos are the top performers,

both having the same average and median risk values. This could be explained by the sacrifice

of OBV’s negative average RoR values. Lastly, αMOO2SigRoR has the highest Sharpe ratio value

(0.82 and 1.11), closely followed by αMOO2Cos
RoR, while the highest value by a technical

indicator is MACD (0.19 and 0.26) across 5 and 10-year periods, separately.

Table 6.5: Summary statistics of the best two αMOO2 algorithms and technical indicators
over a 5-year period. Best value per row is denoted in boldface.

Expected Rate of Return

αMOO2Sig
RoR αMOO2Cos

RoR MACD OBV MTM

Average 1.82% 1.58% 1.31% -0.03% 0.32%
Median 1.66% 1.37% 0.00% 0.00% 0.02%
StDev 0.02 0.02 0.07 0.05 0.02
Max 12.06% 11.24% 31.84% 21.52% 10.98%
Min -4.32% -8.10% -24.31% -24.60% -2.59%

Risk

αMOO2Sig
RoR αMOO2Cos

RoR MACD OBV MTM

Average 0.08 0.07 0.09 0.07 0.12
Median 0.06 0.06 0.05 0.05 0.08
StDev 0.05 0.05 0.15 0.07 0.15
Max 0.34 0.33 1.05 0.35 0.95
Min 0.01 0.01 0.01 0.01 0.02

Sharpe ratio

αMOO2Sig
RoR αMOO2Cos

RoR MACD OBV MTM

0.82 0.67 0.19 -0.01 0.17

To compare the performance among the different algorithms (rather than performing pair-
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Table 6.6: Summary statistics of the best two αMOO2 algorithms and technical indicators.
Best value per row is denoted in boldface.

Expected Rate of Return

αMOO2Sig
RoR αMOO2Cos

RoR MACD OBV MTM

Average 1.67% 1.84% 1.71% 0.77% 0.32%
Median 1.66% 1.68% 0.14% 0.18% 0.11%
StDev 0.01 0.02 0.06 0.05 0.01
Max 7.98% 7.21% 36.01% 35.65% 6.95%
Min -1.91% -2.18% -9.04% -11.11% -1.48%

Risk

αMOO2Sig
RoR αMOO2Cos

RoR MACD OBV MTM

Average 0.07 0.07 0.12 0.12 0.15
Median 0.06 0.06 0.07 0.09 0.09
StDev 0.05 0.05 0.22 0.12 0.20
Max 0.33 0.29 1.58 0.76 1.82
Min 0.01 0.01 0.01 0.01 0.03

Sharpe ratio

αMOO2Sig
RoR αMOO2Cos

RoR MACD OBV MTM

1.11 1.08 0.26 0.15 0.29

wise comparisons as earlier)2 we ran the Friedman non-parametric test, where we calculate

the average rank of each algorithm in terms of return and risk—the lower the rank, the better

the algorithm’s performance. We also perform the Bonferroni post-hoc test and present both

in Table 6.7. For each algorithm, the table shows the average rank (first column), and the

adjusted p-value of the statistical test when that algorithm’s average rank is compared to the

average rank of the algorithm with the best rank (control algorithm) according to Bonferroni’s

post-hoc test (second column) [155, 156]. As we can observe, in terms of both return and

risk αMOO2Cos
RoR ranks first and statistically outperforms all technical indicator strategies.

6.4.1.4 Buy-and-hold

We now compare the two αMOO2 algorithms with the buy-and-hold strategy. Table 6.10 and

Table 6.11 present the performance metrics of the MOO2 algorithms alongside the buy-and-

2In Section 6.4.1.2, we were interested in reporting how each MOO2 algorithm compared to the SOO GP. We
thus used pairwise Kolmogorov-Smirnov comparisons. On the other hand, when comparing the three technical
indicator results, we were more interested in identifying the best algorithm. For this reason, we resorted to the
Friedman test.
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Table 6.7: Friedman with Bonferroni’s post-hoc test between αMOO2 and technical indicat-
ors. Statistically significant differences at 5% level shown in boldface.

Table 6.8: Expected Rate of Return

Algorithm Average rank pBonf

αMOO2Cos
RoR (c) 2.23 -

αMOO2SigRoR 2.41 0.19
MACD 3.31 7.45E-07
OBV 3.43 6.88E-08
MTM 3.60 1.76E-09

Table 6.9: Risk

Algorithm Average rank pBonf

αMOO2Cos
RoR (c) 2.24 -

αMOO2SigRoR 2.30 0.07
MACD 2.86 5.70E-04
OBV 3.55 6.60E-10
MTM 4.03 7.09E-16

hold strategy over 5 and 10-year periods. Over the 10-year dataset, the buy-and-hold has

the highest average value, but this is only due to outliers. When looking at the median, the

two MOO2 algorithms have around a 6% higher total return. Over the 5-year dataset, the

αMOO2SigRoR has the highest average and median TR value. We again use the non-parametric

Friedman test to support the analysis. αMOO2SigRoR and αMOO2Cos
RoR rank first in the 5 and

10-year periods, respectively. Statistically, both of them significantly outperformed buy-and-

hold, as can be seen from Table 6.12 and Table 6.13.

Table 6.10: Summary statistics for the best two MOO2 algorithms and buy-and-hold in terms
of total return on the 5-year period. Best value per row appears in boldface.

Algorithm αMOO2SigRoR αMOO2Cos
RoR Buy-and-hold

Average 15.81% 14.78% 13.31%
Median 13.72% 11.76% 2.05%
Standard deviation 0.23 0.28 0.84
Max 155.12% 181.55% 755.68%
Min -38.93% -64.20% -82.85%

Table 6.11: Summary statistics for the best two MOO2 algorithms and buy-and-hold in terms
of total return over the 10-year period. The best value per row appears in boldface.

Algorithm αMOO2SigRoR αMOO2Cos
RoR Buy-and-hold

Average 30.04% 32.50% 41.11%
Median 17.33% 19.02% 11.44%
Standard deviation 0.52 0.46 1.81
Max 352.30% 294.70% 1753.05%
Min -38.16% -31.20% -89.62%
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Table 6.12: Friedman test with Bonferroni’s post-hoc test between αMOO2 and buy-and-
hold over the 5-year period. Statistically significant differences at the 5% level are shown in
boldface.

Algorithm Average rank pBonf

αMOO2SigRoR (c) 1.72 -
αMOO2Cos

RoR 1.91 0.053
Buy-and-hold 2.37 2E-06

Table 6.13: Friedman test with Bonferroni’s post-hoc test between αMOO2 and buy-and-
hold over the 10-year period. Statistically significant differences at the 5% level are shown in
boldface.

Algorithm Average rank pBonf

αMOO2Cos
RoR (c) 1.83 -

αMOO2SigRoR 1.92 0.16
Buy-and-hold 2.23 0.003

6.4.2 MOO3

6.4.2.1 Trader preference scenarios

As mentioned in section 6.2.3, while a multi-objective optimisation framework is necessary

and beneficial to obtain solutions that optimise conflicting objectives, in the end, a trader will

decide upon a single trading strategy. Therefore it is important to be able to designate a single

solution from the Pareto front, in a manner that allows the trader to specify their preference

over the various objectives. We do this here via the modified Sharpe Ratio, as introduced in

Equation 6.3, by modifying the different weight values (a, b, c), where a corresponds to the

weight given to total return, b to the expected rate of return, and c to risk. In our experiments,

we have focused on seven different scenarios/set-ups, namely:

(i) [a = 0.5, b = 0.5, c = 0]. The fitness function focuses equally on total return and

expected RoR.

(ii) [a = 0, b = 0.5, c = 0.5]. The fitness function focuses equally on an expected RoR and

risk.

(iii) [a = 0.5, b = 0, c = 0.5]. The fitness function focuses equally on total return and risk.
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(iv) [a = 0.33, b = 0.33, c = 0.33]. The fitness function focuses equally on all three metrics.

(v) [a = 1, b = 0, c = 0]. The fitness function focuses only on total return.

(vi) [a = 0, b = 1, c = 0]. The fitness function focuses only on the expected RoR.

(vii) [a = 0, b = 0, c = 1]. The fitness function focuses only on risk.

These set-ups allow us to consider different extreme cases, where only one or two met-

rics are being considered and also evaluate cases where all three metrics are equally being

considered simultaneously.

6.4.2.2 Pareto front

We begin by presenting the results of the MOO3 algorithm and examining the placement of

the MOO3-designated solutions (and the Pareto front solutions more generally) relative to the

SOO solutions for each of the seven scenarios considered. For illustration, we use a single

GP run for each scenario, focusing on the Apple stock. Figure 6.2 displays the generated

solutions and resulting interpolated surface making up the Pareto front (grey mesh/markers);

the designated MOO3-solution from that front (blue triangle marker); and, the corresponding

SOO solution (orange diamond marker) for each of the seven scenarios. The MOO3 and SOO

solutions are accompanied by 2D projections to aid interpretation and comparison. Each

scenario is identified via its [a, b, c] weight-triplet and, to enhance clarity, each triplet is also

expressed as the corresponding subset of the set {T,E,R}, where the choice from T, E, and/or

R represents how preference was distributed among total return, expected RoR, and risk

respectively in the weighting; e.g., {T,R} indicates the scenario where total return and risk are

valued equally and exclusively, therefore corresponding to the weighting [a=0.5, b=0, c=

0.5].

Looking at the figure, we observe the following:

• In the {T} and {T,E} scenarios, the SOO solution dominates a handful of solutions of

MOO3’s Pareto front, but neither SOO nor the MOO3 designated solution dominates

each other.
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Figure 6.2: Representative run of the MOO3 and SOO algorithms for Apple stock. The SOO
and MOO3-designated solutions are overlaid onto the MOO3 Pareto front for all seven scen-
arios considered. Risk, expected rate of return, and total return are shown here in their
original units, rather than the normalised ones used during fitness evaluation.
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• In the {E} scenario, SOO dominates the MOO3-designated solution, as well as the (un-

usually small) Pareto front.

• In the {R}, {T,R}, {E,R}, and {T,E,R} scenarios, the MOO3 designated solution dominates

the SOO solution, and SOO does not dominate any solutions on the Pareto front.

The above suggests that, in this example at least, MOO3 exhibited superior performance

when non-singular objectives were considered, showing its ability to consider multiple ob-

jectives naturally, driven by the concept of the Pareto front, as compared to an aggregate

approach which imposes an arbitrary relationship between the objectives. By contrast, when

dealing with single-objective scenarios, SOO was able to compete well with MOO3, in par-

ticular when considering single-objective scenarios, and SOO achieved a better total return

and expected RoR in the {T} and {E} scenarios, respectively. However, MOO3 achieved better

risk for the {R} scenario. This demonstrates that MOO3 still has the ability to generate good-

quality single-objective designated solutions that may compete with explicitly single-objective

approaches, even though the Pareto front-driven evolution process has to take into account

and accommodate multiple objectives, partly acting as constraints. In the next section, we

perform statistical analyses over multiple runs in order to examine how the two algorithms

compare over multiple runs and datasets more generally.

6.4.2.3 Comparison of MOO3 to corresponding SOO approaches

Table 6.14 and Table6.15 present the summary statistics for SOO and MOO3 across four

metrics, specifically total return (TR), expected rate of return (E[RoR]), risk, and portfolio

Sharpe ratio. Recall that the portfolio Sharpe ratio assumes an equal distribution of the 110

stocks (i.e., each stock has the same weight in the portfolio), taking only a single value in

the table. For the remaining three metrics (TR, E[RoR], Risk) we present the mean, median,

standard deviation, maximum and minimum values across the results from the 110 stocks.

The left-hand side of the table presents the results for the single-objective (SOO) GP, while

the right-hand side presents the results for the multi-objective MOO3 algorithm. Results are

separated by the seven different sets as [a, b, c] weights in Section 6.4.2.1. To enhance clarity,

we also present the algorithms in the format SOOTrRorRisk (or MOOTrRorRisk). The presence
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of TR, E[RoR], and/or Risk in this naming convention depends on whether the [a,b,c] weight

values are non-zero, where a corresponds to Tr, b to E[RoR], and c to Risk.

As we can observe, MOO3 generally has higher mean and median TR across different

weight setups as compared to SOO across both 5 and 10-year periods. In addition, MOO3

shows a higher mean and median E[RoR] relative to SOO for most weight setups. With

regard to risk, both algorithms show similar risk levels, but MOO3 offers small improvements

in a few weight setups. Lastly, MOO3 has a higher Sharpe Ratio in 12 out of the 14 weights

set-ups, suggesting better risk-adjusted portfolio returns.

We again perform a Kolmogorov-Smirnov (KS) test for each of the pairwise comparisons

between SOO and MOO3 on three metrics, specifically the Total Return (TR), expected rate

of return (E[RoR]), and Risk. Recall that the null hypothesis for each KS test is that the

two samples (SOO and MOO3) come from the same population distribution. Since we are

conducting multiple comparisons, we again apply the Holm-Bonferroni correction to control

the family-wise error rate at a significance level of 5%. Specifically, we adjust the p-values for

the three comparisons (TR, E[RoR], Risk) within each [a, b, c] weights set-up. The adjusted

significance level for each rank is calculated in Equation 4.5.

Therefore, we compare the ranked p-values against these thresholds to determine if there

is a significant difference arising between the SOO and MOO3 samples for each metric. The

ranked p-values indicate a significant difference if the smallest p-value is less than 0.0167,

the second smallest is less than 0.025, and the largest is less than 0.05.

Table 6.16 and Table 6.17 present the KS test results, along with the p-value and the ad-

justed significance level across the different weight set-ups ([a, b, c]). As we can observe, the

differences between MOO3 and SOO are statistically significant at the 5% level in 9 out of

21 across the 5-year period and 11 out of 21 over the 10-year period. Particularly, MOO3

shows statistically significant improvements in TR and E[RoR] in most weight configurations

and also in managing risk in some set-ups. The above findings lead us to conclude that our

multi-objective optimisation GP algorithm provides a more robust and efficient optimisation

strategy as compared to the single-objective optimization GP, particularly in terms of balan-

cing return and risk.
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SOO MOO3
[a, b, c] TR E[RoR] Risk SR TR E[RoR] Risk SR
[0.5, 0.5, 0]
(SOOTrRor) (MOOTrRor)
Mean 17.71% 1.89% 0.10 0.60 Mean 26.90% 2.90% 0.10 0.76
Median 11.82% 1.45% 0.08 Median 20.12% 2.32% 0.08
StDev 0.35 0.03 0.07 StDev 0.43 0.04 0.09
Max 269.66% 23.85% 0.52 Max 293.31% 24.35% 0.61
Min -56.45% -5.84% 0.01 Min -59.28% -11.59% 0.01
[0, 0.5, 0.5]
(SOORorRisk) (MOORorRisk)
Mean 6.95% 0.91% 0.07 0.48 Mean 15.52% 1.96% 0.08 0.78
Median 8.23% 0.98% 0.06 Median 13.52% 1.64% 0.06
StDev 0.16 0.02 0.04 StDev 0.22 0.02 0.06
Max 66.63% 8.67% 0.31 Max 133.75% 13.23% 0.40
Min -74.83% -8.70% 0.02 Min -33.96% -3.24% 0.01
[0.5, 0, 0.5]
(SOOTrRisk) (MOOTrRisk)
Mean 22.48% 1.82% 0.09 0.79 Mean 22.40% 1.85% 0.07 0.89
Median 16.65% 1.52% 0.08 Median 17.45% 1.69% 0.06
StDev 0.38 0.02 0.06 StDev 0.31 0.02 0.06
Max 264.96% 8.62% 0.33 Max 173.63% 11.38% 0.35
Min -47.92% -5.34% 0.01 Min -65.99% -5.18% 0.01
[0.33, 0.33,
0.33]
(SOOTrRorRisk) (MOOTrRorRisk)
Mean 20.98% 2.01% 0.09 0.77 Mean 26.38% 2.51% 0.09 0.86
Median 15.44% 1.73% 0.07 Median 21.24% 2.27% 0.07
StDev 0.36 0.03 0.06 StDev 0.38 0.03 0.07
Max 249.33% 10.64% 0.39 Max 251.47% 13.20% 0.53
Min -51.36% -5.06% 0.01 Min -54.43% -6.58% 0.01
[1, 0, 0]
(SOOTr) (MOOTr)
Mean 25.99% 2.41% 0.09 0.76 Mean 27.26% 2.93% 0.09 0.86
Median 16.89% 1.93% 0.07 Median 21.55% 2.33% 0.06
StDev 0.38 0.03 0.07 StDev 0.33 0.03 0.07
Max 210.30% 17.80% 0.46 Max 219.21% 21.90% 0.45
Min -47.43% -3.52% 0.01 Min -48.60% -6.90% 0.01
[0, 1, 0]
(SOORor) (MOORor)
Mean 16.26% 2.45% 0.13 0.44 Mean 23.58% 3.04% 0.10 0.62
Median 8.23% 1.42% 0.10 Median 17.60% 2.28% 0.08
StDev 0.38 0.06 0.11 StDev 0.39 0.05 0.11
Max 240.86% 45.15% 0.90 Max 270.92% 38.56% 1.01
Min -34.53% -4.28% 0.02 Min -36.42% -11.19% 0.01
[0, 0, 1]
(SOORisk) (MOORisk)
Mean 2.70% 0.48% 0.08 0.18 Mean 7.21% 0.94% 0.06 0.49
Median 0.93% 0.22% 0.06 Median 5.30% 0.79% 0.05
StDev 0.17 0.03 0.07 StDev 0.15 0.02 0.05
Max 57.48% 17.12% 0.52 Max 64.34% 6.91% 0.40
Min -62.32% -6.77% 0.02 Min -63.21% -9.26% 0.01

Table 6.14: Summary statistics between SOO and MOO3 for a 5-year period. The best value
for each respective metric is shown in boldface. The values of a, b, c correspond to the weights
as defined in Section 6.4.2.1.
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SOO MOO3
[a, b, c] TR E[RoR] Risk SR TR E[RoR] Risk SR
[0.5, 0.5, 0]
(SOOTrRor) (MOOTrRor)
Mean 38.78% 2.08% 0.09 0.72 Mean 51.90% 2.76% 0.09 1.10
Median 24.94% 1.79% 0.07 Median 37.88% 2.38% 0.07
StDev 0.60 0.03 0.07 StDev 0.61 0.02 0.06
Max 381.49% 21.66% 0.39 Max 324.26% 13.07% 0.41
Min -63.09% -5.17% 0.01 Min -42.72% -2.98% 0.00
[0, 0.5, 0.5]
(SOORorRisk) (MOORorRisk)
Mean 11.94% 0.80% 0.06 0.57 Mean 29.45% 1.85% 0.06 1.03
Median 6.03% 0.69% 0.05 Median 17.97% 1.64% 0.05
StDev 0.28 0.01 0.04 StDev 0.41 0.02 0.04
Max 136.38% 4.72% 0.22 Max 268.50% 10.59% 0.24
Min -106.33% -4.42% 0.01 Min -27.55% -2.22% 0.00
[0.5, 0, 0.5]
(SOOTrRisk) (MOOTrRisk)
Mean 40.11% 2.03% 0.08 0.86 Mean 41.58% 1.63% 0.06 1.12
Median 26.89% 1.53% 0.06 Median 24.18% 1.44% 0.05
StDev 0.62 0.02 0.06 StDev 0.52 0.01 0.04
Max 314.31% 11.20% 0.33 Max 258.04% 6.80% 0.29
Min -219.85% -6.47% 0.01 Min -37.47% -1.23% 0.01
[0.33, 0.33,
0.33]
(SOOTrRorRisk) (MOOTrRorRisk)
Mean 44.73% 2.17% 0.08 0.84 Mean 50.47% 2.51% 0.08 1.03
Median 31.18% 1.66% 0.07 Median 34.98% 2.16% 0.06
StDev 0.57 0.03 0.05 StDev 0.61 0.02 0.05
Max 312.83% 16.18% 0.34 Max 285.05% 11.42% 0.34
Min -43.55% -6.52% 0.01 Min -38.68% -3.74% 0.01
[1, 0, 0]
(SOOTr) (MOOTr)
Mean 47.36% 2.23% 0.08 0.79 Mean 61.33% 3.28% 0.08 0.66
Median 31.25% 1.66% 0.06 Median 41.68% 2.52% 0.06
StDev 0.64 0.03 0.06 StDev 0.67 0.05 0.06
Max 366.13% 18.63% 0.39 Max 341.71% 44.36% 0.43
Min -46.60% -4.05% 0.02 Min -44.63% -4.03% 0.01
[0, 1, 0]
(SOORor) (MOORor)
Mean 29.46% 2.08% 0.11 0.48 Mean 48.29% 3.38% 0.09 0.76
Median 15.92% 1.50% 0.08 Median 32.81% 2.62% 0.07
StDev 0.71 0.04 0.08 StDev 0.69 0.04 0.07
Max 552.10% 24.58% 0.52 Max 544.98% 25.92% 0.49
Min -63.57% -6.10% 0.01 Min -44.89% -4.28% 0.01
[0, 0, 1]
(SOORisk) (MOORisk)
Mean 3.21% 0.14% 0.06 0.10 Mean 15.15% 0.99% 0.05 0.65
Median -0.59% 0.14% 0.05 Median 10.06% 0.86% 0.03
StDev 0.32 0.01 0.04 StDev 0.24 0.02 0.05
Max 279.63% 5.62% 0.19 Max 152.06% 12.24% 0.42
Min -45.49% -4.92% 0.01 Min -32.11% -1.98% 0.01

Table 6.15: Summary statistics between SOO and MOO3 in a 10-year period. The best value
for each respective metric is shown in boldface. The values of a, b, c correspond to the weights
as defined in Section 6.4.2.1.
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Table 6.16: Kolmogorov-Smirnov test results p-values for different weight set-ups ([a, b, c])
for a 5-year period. Statistically significant results at the 5% level are denoted in boldface.

[a, b, c] Metric p-value Adjusted significance
level

[0.5, 0.5, 0]

TR 0.0137 0.025 (0.05/2)
E[RoR] 0.0088 0.0167 (0.05/3)
Risk 0.6186 0.05 (0.05/1)

[0, 0.5, 0.5]

TR 2.33E-04 0.025 (0.05/2)
E[RoR] 2.46E-06 0.0167 (0.05/3)
Risk 0.8399 0.05 (0.05/1)

[0.5, 0, 0.5]

TR 0.506 0.025 (0.05/2)
E[RoR] 0.9237 0.05 (0.05/1)
Risk 1.29E-04 0.0167 (0.05/3)

[0.33, 0.33, 0.33]

TR 0.1312 0.05 (0.05/1)
E[RoR] 0.0944 0.0167 (0.05/3)
Risk 0.0944 0.025 (0.05/2)

[1, 0, 0]

TR 0.4033 0.0167 (0.05/3)
E[RoR] 0.5060 0.025 (0.05/2)
Risk 0.8399 0.05 (0.05/1)

[0, 1, 0]

TR 0.0034 0.025 (0.05/2)
E[RoR] 0.0461 0.05 (0.05/1)
Risk 0.0034 0.0167 (0.05/3)

[0, 0, 1]

TR 0.0012 0.025 (0.05/2)
E[RoR] 2.33E-04 0.0167 (0.05/3)
Risk 0.0209 0.05 (0.05/1)

While the above KS test was useful for making pairwise comparisons between the SOO

and MOO3 algorithms under different weight set-ups and metrics, we are also interested in

gaining a better understanding of the overall performance of all SOO and MOO3 algorithms

across the different weight set-ups. The non-parametric Friedman test is applied to evaluate

the comparison among multiple algorithms across multiple datasets. In each Friedman test

(one per TR, E[RoR], and Risk metric), the algorithms included are the SOO and MOO3

algorithms under the different weight set-ups.

Additionally, we applied the Hommel post-hoc test to ascertain the significance of the

differences between the average ranks. We present both in Table 6.18 and Table6.19. For

each algorithm, the table shows the average rank (first column), and the adjusted p−value
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Table 6.17: Kolmogorov-Smirnov test results p-values for different weight set-ups ([a, b, c])
across a 10-year period. Statistically significant results at the 5% level are denoted in bold-
face.

[a, b, c] Metric p-value Adjusted significance
level

[0.5, 0.5, 0]

TR 0.3141 0.025 (0.05/2)
E[RoR] 0.0209 0.0167 (0.05/3)
Risk 0.9751 0.05 (0.05/1)

[0, 0.5, 0.5]

TR 3.71E-05 0.0167 (0.05/3)
E[RoR] 6.98E-05 0.025 (0.05/2)
Risk 0.0666 0.05 (0.05/1)

[0.5, 0, 0.5]

TR 0.506 0.05 (0.05/1)
E[RoR] 0.179 0.025 (0.05/2)
Risk 0.0088 0.0167 (0.05/3)

[0.33, 0.33, 0.33]

TR 0.7336 0.05 (0.05/1)
E[RoR] 0.0944 0.0167 (0.05/3)
Risk 0.2395 0.025 (0.05/2)

[1, 0, 0]

TR 0.3141 0.025 (0.05/2)
E[RoR] 0.0137 0.0167 (0.05/3)
Risk 0.9958 0.05 (0.05/1)

[0, 1, 0]

TR 0.0034 0.025 (0.05/2)
E[RoR] 0.0021 0.0167 (0.05/3)
Risk 0.0313 0.05 (0.05/1)

[0, 0, 1]

TR 5.41E-08 0.025 (0.05/2)
E[RoR] 2.38E-08 0.0167 (0.05/3)
Risk 2.33E-04 0.05 (0.05/1)

of the statistical test when that algorithm’s average rank is compared to the average rank

of the algorithm with the best rank (control algorithm) according to Hommel’s post-hoc test

(second column). When statistically significant differences arise between the average ranks

of an algorithm and the control algorithm at the 5% level (p ≤ 0.05), the relevant average

rank is put in boldface.

As we can observe from the total return results of Table 6.19, the control algorithm is

MOOTr, i.e. the MOO GP algorithm that extracts the best model from the Pareto front

based on the highest total return value. In addition, it statistically outperforms all other

algorithms significantly at the 5% level. Given that we are currently considering total re-
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(a) Total Return

Avg Rank Adj pHomm

MOOTr 4.936364 -
MOOTrRorRisk 5.418182 1.44E-01
MOOTrRor 5.554545 1.06E-01
SOOTr 5.927273 3.51E-02
MOORor 5.936364 3.32E-02
SOOTrRisk 6.690909 1.20E-03
MOOTrRisk 6.845455 4.69E-04
SOOTrRorRisk 6.954545 2.66E-04
MOORorRisk 7.863636 2.50E-07
SOOTrRor 8.036364 5.81E-08
SOORor 8.627273 1.55E-10
SOORorRisk 10.209091 1.94E-19
MOORisk 10.372727 1.95E-20
SOORisk 11.545455 9.87E-29

(b) Expected Rate of Return

Avg Rank Adj pHomm

MOOTrRor 4.945455 -
MOOTr 5.136364 2.25E-01
MOORor 5.290909 1.75E-01
MOOTrRorRisk 5.809091 4.97E-02
SOOTr 6.645455 1.27E-03
MOORorRisk 7.118182 7.12E-05
SOOTrRorRisk 7.354545 1.58E-05
SOORor 7.390909 1.22E-05
SOOTrRisk 7.754545 7.81E-07
MOOTrRisk 7.863636 2.76E-07
SOOTrRor 8.063636 4.82E-08
SOORorRisk 10.109091 9.66E-19
MOORisk 10.109091 9.66E-19
SOORisk 11.309091 7.37E-27

(c) Risk

Avg Rank Adj pHomm

MOORisk 2.754545 -
MOOTrRisk 4.490909 8.21E-04
SOORorRisk 5.463636 8.90E-07
MOORorRisk 5.536364 5.34E-07
SOORisk 6.063636 4.17E-09
MOOTrRorRisk 7.063636 5.99E-14
MOOTr 7.754545 4.06E-18
SOOTr 8.072727 4.43E-20
SOOTrRisk 8.427273 1.54E-22
SOOTrRorRisk 8.800000 3.21E-25
MOORor 9.063636 2.76E-27
MOOTrRor 9.663636 5.50E-32
SOOTrRor 9.763636 1.22E-32
SOORor 12.036364 3.28E-54

Table 6.18: Statistical test results for average TR, E[RoR], Risk, and Fitness function, accord-
ing to the non-parametric Friedman test with the Hommel post-hoc test of different MOO and
SOO algorithms across the 5-year period. The subscript for each algorithm denotes which
metrics were optimised. When more than one metric is present, equal weights have been
assigned to each metric. Significant differences between the control algorithm (denoted with
(c) and the algorithms represented by a row at the α = 5% level are shown in boldface, in-
dicating that the adjusted p-value is less than 0.05.
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(a) Total Return

Avg Rank Adj pHomm

MOOTr 4.018182 -
MOOTrRor 5.600000 2.58E-03
MOOTrRorRisk 5.863636 6.34E-04
SOOTrRorRisk 5.909091 4.95E-04
SOOTr 6.027273 2.21E-04
SOOTrRisk 6.136364 1.07E-04
MOORor 6.472727 1.06E-05
SOOTrRor 6.718182 1.51E-06
MOOTrRisk 7.145455 3.28E-08
MOORorRisk 8.318182 5.77E-14
SOORor 9.300000 9.98E-20
MOORisk 10.454545 8.41E-28
SOORorRisk 11.009091 2.98E-32
SOORisk 11.945455 1.95E-40

(b) Expected Rate of Return

Avg Rank Adj pHomm

MOORor 4.627273 -
MOOTrRor 4.736364 2.34E-01
MOOTr 4.809091 2.17E-01
MOOTrRorRisk 5.700000 3.42E-05
SOOTr 6.763636 8.05E-05
SOOTrRorRisk 6.890909 3.42E-05
SOOTrRisk 7.045455 1.18E-05
SOOTrRor 7.163636 5.09E-06
MOORorRisk 7.436364 5.21E-07
SOORor 8.000000 2.91E-09
MOOTrRisk 8.318182 1.06E-10
MOORisk 10.390909 4.74E-23
SOORorRisk 10.781818 8.44E-26
SOORisk 12.209091 3.31E-37

(c) Risk

Avg Rank Adj pHomm

MOORisk 2.163636 -
MOOTrRisk 4.845455 1.01E-06
SOORisk 5.109091 1.04E-07
SOORorRisk 5.163636 6.55E-08
MOORorRisk 5.300000 1.66E-08
MOOTrRorRisk 7.509091 2.10E-20
MOOTr 7.681818 1.42E-21
SOOTrRisk 7.990909 8.88E-24
SOOTr 8.300000 4.43E-26
SOOTrRorRisk 9.263636 1.03E-33
MOORor 9.709091 1.35E-37
SOOTrRor 10.027273 1.82E-40
MOOTrRor 10.145455 1.69E-41
SOORor 11.754545 1.52E-57

Table 6.19: Statistical test results for average TR, E[RoR], Risk, and Fitness function, accord-
ing to the non-parametric Friedman test with the Hommel post-hoc test of different MOO
and SOO algorithms over the 10-year period. The subscript for each algorithm denotes which
metrics were optimised. When more than one metric is present, equal weights have been
assigned to each metric. Significant differences between the control algorithm (denoted with
(c) and the algorithms represented by a row at the α = 5% level are shown in boldface, in-
dicating that the adjusted p-value is lower than 0.05.
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turn results in this subtable, it is unsurprising that the control algorithm prioritises total

return. It is also worth noting that the second and third-ranked algorithms are also MOO-

based, namely MOOTrRor and MOOTrRorRisk. The former gives equal weight to total return

and risk (a = b = 0.5, c = 0), while the latter assigns equal weight to all three metrics

(a = b = c = 0.33). This is an important finding because it demonstrates that these multi-

objective algorithms are able to outrank all SOO algorithms, thereby confirming the fact that

considering multiple objectives under a MOO framework like NSGA-II has significant benefits

over the SOO algorithm that employs an aggregate fitness function. Similar findings can be

observed for the expected rate of return and risk results (Tables 6.19b, 6.18b, 6.19c, and

6.18c). More specifically, when looking into the expected rate of return results over the 10-

year period, the best rank algorithm is MOORor, which optimises only the expected RoR. In

the next three positions, there are again MOO algorithms that optimise different combinations

of the metrics, even risk (MOOTrRorRisk. This again shows the advantages of MOO. Further,

when looking into the risk results, MOORisk ranks first, followed by MOOTrRisk. So we again

see the same pattern, whereby the algorithm is specifically optimised for a particular metric

(risk in this instance) and tends to perform best in this specific metric, followed by another

MOO algorithm that considers two or three objectives. The only difference is that, in Table

6.18a, the top-ranked algorithm is MOOTrRor rather than MOORor. However, considering

the p-value of MOORor and MOOTr are above 5%, no significant difference arises, and the

finding remains unchanged. Finally, it is also worth noting that, in the top 2 positions of each

suitable, we have a MOOTr variant (i.e. a MOO3 algorithm that has used total return [alone

or in consideration with another metric] to extract the best model from the Pareto front).

This suggests that prioritising total return in the optimisation process can lead to favourable

outcomes.

To conclude, the Friedman test results highlight the effectiveness of the MOO3 algorithms

over their SOO counterparts. Combining up to two metrics tends to be beneficial (or at least

have comparable performance to the MOO algorithms optimising a single metric), as we

have seen in the case of MOOTrRor, which performs well for both total return and expec-

ted RoR. However, the trade-offs become apparent when more metrics are combined (e.g.
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MOOTrRorRisk), where balancing multiple objectives leads to a slight drop in the perform-

ance of the individual metrics.

6.4.2.4 Comparison of MOO3 algorithms to other technical indicators

The previous section of this chapter has established that our proposed multi-objective GP

algorithm can outperform its SOO counterpart. In the current section, we are interested in

benchmarking the MOO3 algorithm to MACD, OBV, and MTM, as Section 6.4.2.4. From Table

6.18 and Table 6.19, we concluded that MOOTr, MOORor, and MOORisk rank first in their

corresponding Friedman tests. We hence bring forward these algorithms to be compared

against the technical indicators. In addition to MOO3 algorithms optimising a single metric,

we are also interested in bringing forward comparison algorithms that optimise more than

one metric and thus we will also compare MOOTrRor and MOOTrRisk against the technical

analysis benchmarks.

Table 6.20 and Table 6.21 present the results across TR, E[RoR], risk, and portfolio Sharpe

ratio. As we can observe, in all cases, the MOO3 algorithms have significantly improved

values over MACD, OBV, and MTM. As previously noted, MOOTr and MOORor offer the

best performance for total return and expected RoR, respectively, and generally have a good

overall performance in maximising returns. However, this comes at the cost of higher risk.

On the other hand, MOORisk minimises risk effectively, but at the cost of lower returns.

Lastly, MOOTrRisk offers a balanced approach with a high Sharpe ratio, indicating good

risk-adjusted performance.

The above findings are further supported by the Friedman tests (one per metric) presented

in Table 6.22 and Table 6.23. In the half tables, we can observe that, statistically, the first rank

MOO3 algorithm significantly outperforms all other algorithms at the 5% significance level.

In addition, the majority of the MOO algorithms outrank the trading strategies derived by

using technical indicators.
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Table 6.20: Summary statistics of the three-objective optimisation algorithms and technical
indicators over the 5-year period. We use boldface for the best values for each measure.

Measure Algorithm

Total return

MOOTr MOORor MOORisk MOOTrRor MOOTrRisk MACD OBV MTM

Average 27.26% 23.58% 7.21% 26.90% 22.40% 7.80% 2.93% 6.72%
Median 21.55% 17.60% 5.30% 20.12% 17.45% 0.01% 0.01% 0.48%
Standard deviation 0.33 0.39 0.15 0.43 0.31 0.39 0.31 0.48
Max 219.21% 270.92% 64.34% 293.31% 173.63% 191.07% 152.31% 252.25%
Min -48.60% -36.42% -63.21% -59.28% -65.99% -97.24% -98.39% -98.49%

Expected rate of return

MOOTr MOORor MOORisk MOOTrRor MOOTrRisk MACD OBV MTM

Average 2.93% 3.04% 0.94% 2.90% 1.85% 1.31% -0.03% 0.32%
Median 2.33% 2.28% 0.79% 2.32% 1.69% 0.00% 0.00% 0.02%
Standard deviation 0.03 0.05 0.02 0.04 0.02 0.07 0.05 0.02
Max 32.90% 38.56% 6.91% 24.35% 11.38% 31.84% 21.52% 10.98%
Min -6.90% -11.19% -9.26% -11.59% -5.18% -24.31% -24.60% -2.59%

Risk

MOOTr MOORor MOORisk MOOTrRor MOOTrRisk MACD OBV MTM

Average 0.09 0.10 0.06 0.10 0.07 0.09 0.07 0.12
Median 0.06 0.08 0.05 0.08 0.06 0.05 0.05 0.08
Standard deviation 0.07 0.11 0.05 0.09 0.06 0.15 0.07 0.15
Max 0.45 1.01 0.40 0.61 0.35 1.05 0.35 0.95
Min 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02

Sharpe ratio

MOOTr MOORor MOORisk MOOTrRor MOOTrRisk MACD OBV MTM

SR 0.86 0.62 0.49 0.76 0.89 0.19 -0.01 0.17

Table 6.21: Summary statistics of the three-objective optimisation algorithms and technical
indicators over the 10-year period. We use boldface for the best values for each measure.

Measure Algorithm

Total return

MOOTr MOORor MOORisk MOOTrRor MOOTrRisk MACD OBV MTM

Average 61.33% 48.29% 15.15% 51.90% 41.58% 13.99% 2.63% 18.43%
Median 41.68% 32.81% 10.06% 37.88% 24.18% 2.22% 1.73% 7.44%
Standard deviation 0.67 0.69 0.24 0.61 0.52 0.58 0.43 0.67
Max 341.71% 544.98% 152.06% 324.26% 258.04% 360.11% 148.28% 514.56%
Min -44.63% -44.89% -32.11% -42.72% -37.47% -90.38% -177.72% -112.67%

Expected rate of return

MOOTr MOORor MOORisk MOOTrRor MOOTrRisk MACD OBV MTM

Average 3.28% 3.38% 0.99% 2.76% 1.63% 1.71% 0.77% 0.32%
Median 2.52% 2.62% 0.86% 2.38% 1.44% 0.14% 0.18% 0.11%
Standard deviation 0.05 0.04 0.02 0.02 0.01 0.06 0.05 0.01
Max 44.36% 25.92% 12.24% 13.07% 6.80% 36.01% 35.65% 6.95%
Min -4.03% -4.28% -1.98% -2.98% -1.23% -9.04% -11.11% -1.48%

Risk

MOOTr MOORor MOORisk MOOTrRor MOOTrRisk MACD OBV MTM

Average 0.08 0.09 0.05 0.09 0.06 0.12 0.12 0.15
Median 0.06 0.07 0.03 0.07 0.05 0.07 0.09 0.09
Standard deviation 0.06 0.07 0.05 0.06 0.04 0.22 0.12 0.20
Max 0.43 0.49 0.42 0.41 0.29 1.58 0.76 1.82
Min 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.03

Sharpe ratio

MOOTr MOORor MOORisk MOOTrRor MOOTrRisk MACD OBV MTM

SR 0.66 0.76 0.65 1.10 1.12 0.24 0.06 0.28
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Table 6.22: Statistical test results between MOO3 algorithms and technical analysis indicators
for average TR, E[RoR], Risk, and Fitness function, according to the non-parametric Friedman
test with the Hommel post-hoc test of different MOO and SOO algorithms over the 5-year
period. The subscript for each algorithm denotes which metrics were optimised. When more
than one metric is present, equal weights have been assigned to each metric. Significant
differences between the control algorithm (denoted with (c) and the algorithms represented
by a row at the α = 5% level are shown in boldface indicating that the adjusted p-value is
lower than 0.05.

(a) Total Return

Avg Rank Adj pHomm

MOOTr(c) 2.900000 -
MOOTrRor 3.136364 1.98E-01
MOORor 3.500000 3.71E-02
MOOTrRisk 3.972727 7.36E-04
MACD 5.445455 9.53E-14
MOORisk 5.545455 2.07E-14
MTM 5.709091 5.73E-16
OBV 5.736364 5.73E-16

(b) Expected Rate of Return

Avg Rank Adj pHomm

MOOTrRor(c) 2.900000 -
MOOTr 2.981818 2.03E-01
MOORor 3.109091 1.49E-01
MOOTrRisk 4.163636 6.12E-05
MOORisk 5.290909 9.06E-13
MACD 5.336364 3.62E-13
OBV 5.900000 1.78E-18
MTM 6.090909 3.51E-20

(c) Risk

Avg Rank Adj pHomm

MOORisk(c) 2.318182 -
MOOTrRisk 3.318182 2.61E-03
MOOTr 4.600000 1.32E-11
MACD 4.672727 5.72E-12
MOORor 5.000000 2.77E-15
MOOTrRor 5.245455 2.25E-17
OBV 5.309091 6.98E-18
MTM 5.427273 6.95E-19

Table 6.23: Statistical test results between MOO3 algorithms and technical analysis indic-
ators for average TR, E[RoR], Risk, and Fitness function, according to the non-parametric
Friedman test with the Hommel post-hoc test of different MOO and SOO algorithms over
the 10-year period. The subscript for each algorithm denotes which metrics were optimised.
When more than one metric is present, equal weights have been assigned to each metric.
Significant differences arising between the control algorithm (denoted with (c) and the al-
gorithms represented by a row at the α = 5% level are shown in boldface, indicating that the
adjusted p-value is lower than 0.05.

(a) Total Return

Avg Rank Adj pHomm

MOOTr(c) 2.200000 -
MOOTrRor 3.072727 3.62E-03
MOORor 3.527273 3.00E-05
MOOTrRisk 3.863636 2.99E-07
MOORisk 5.600000 6.08E-23
MTM 5.636364 2.97E-23
MACD 5.827273 2.03E-25
OBV 6.272727 6.32E-31

(b) Expected Rate of Return

Avg Rank Adj pHomm

MOORor(c) 2.809091 -
MOOTrRor 2.881818 2.07E-01
MOOTr 3.018182 1.53E-01
MOOTrRisk 4.400000 9.41E-07
MACD 5.390909 1.65E-14
MOORisk 5.527273 1.13E-15
OBV 5.727273 1.46E-17
MTM 6.245455 7.81E-23

(c) Risk

Avg Rank Adj pHomm

MOORisk(c) 1.509091 -
MOOTrRisk 3.063636 1.37E-06
MOOTr 4.154545 4.37E-15
MACD 4.672727 1.70E-20
MOORor 5.136364 7.60E-26
MOOTrRor 5.218182 9.42E-27
OBV 5.645455 3.23E-32
MTM 6.600000 7.28E-46
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Table 6.24: Summary statistics for the three-objective optimisation algorithms and buy-and-
hold in terms of total return over the 5-year period. The best values per metric appear in
boldface.

Algorithm MOOTr MOORor MOORisk MOOTrRor MOOTrRisk Buy-and-hold

Average 27.26% 23.58% 7.21% 26.90% 22.40% 13.31%
Median 21.55% 17.60% 5.30% 20.12% 17.45% 2.05%
Standard deviation 0.33 0.39 0.15 0.43 0.31 0.84
Max 219.21% 270.92% 64.34% 293.31% 173.63% 755.68%
Min -48.60% -36.42% -63.21% -59.28% -65.99% -82.85%

6.4.2.5 Buy-and-hold

We now compare the proposed MOO3 algorithms with the buy-and-hold strategy. Recall that,

due to buy-and-hold making only a single trade (while the MOO GPs make several), it is fairer

to compare them across the TR over the test set period rather than in terms of E[RoR] and

risk.

Table 6.24 and Table 6.26 present the performance metrics of the MOO3 algorithms along-

side the buy-and-hold strategy in the 5 and 10-year period. We can observe that buy-and-hold

has a strong average performance (mainly due to outliers), while its median value of 11.44%

in the 10-year period is only able to outperform MOORisk, which is understandable, given

that the latter does not optimise total return. Further, the buy-and-hold strategy has the worst

median value of 2.05% across the 5-year period. All other algorithms yield significantly higher

average and median values. These results are also confirmed by the Friedman test presented

in Table 6.25 and Table 6.27, which show that buy-and-hold is statistically and significantly

outperformed by MOOTr.

6.4.3 Comparison of MOO2 algorithms to MOO3 algorithms

In the previous sections, both the αMOO2 algorithms and MOO3 algorithms showed a signi-

ficant improvement as compared to the SOO algorithms, technical indicators, and buy-and-

hold strategy. Now, we aim to compare these algorithms among themselves to select the most

profitable and least risky trading strategy. To achieve this, we use the best performers from

the αMOO2 algorithms, αMOO2RoR
Cos and αMOO2RoR

Sig , and the MOO3 algorithms, MOOTr,

MOORor, MOORisk, MOOTrRor and MOOTrRisk.
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Table 6.25: Statistical test results between MOO3 algorithms and technical analysis indicators
for average TR, E[RoR], Risk, and Fitness function, according to the non-parametric Friedman
test with the Hommel post-hoc test of different MOO and SOO algorithms. The subscript for
each algorithm denotes which metrics were optimised. When more than one metric is present,
equal weights have been assigned to each metric. Significant differences between the control
algorithm (denoted with (c) and the algorithms represented by a row at the α = 5% level are
shown in boldface, indicating that the adjusted p-value is lower than 0.05.

Algorithm Avg rank Adj pHomm

MOOTr (c) 2.500000 -
MOOTrRor 2.718182 1.04E-01
MOORor 3.127273 4.87E-03
MOOTrRisk 3.445455 9.03E-05
Buy-and-hold 4.400000 3.10E-13
MOORisk 4.763636 2.84E-17

Table 6.26: Summary statistics for the three-objective optimisation algorithms and buy-and-
hold in terms of total return over the 10-year period. The best values per metric appear in
boldface.

Algorithm MOOTr MOORor MOORisk MOOTrRor MOOTrRisk Buy-and-hold

Average 61.33% 48.29% 15.15% 51.90% 41.58% 41.11%
Median 41.68% 32.81% 10.06% 37.88% 24.18% 11.44%
Standard deviation 0.67 0.69 0.24 0.61 0.52 1.81
Max 341.71% 544.98% 152.06% 324.26% 258.04% 1753.05%
Min -44.63% -44.89% -32.11% -42.72% -37.47% -89.62%

Table 6.27: Statistical test results between MOO3 algorithms and technical analysis indicators
for average TR, E[RoR], Risk, and Fitness function, according to the non-parametric Friedman
test with the Hommel post-hoc test of different MOO and SOO algorithms. The subscript for
each algorithm denotes which metrics were optimised. When more than one metric is present,
equal weights have been assigned to each metric. Significant differences between the control
algorithm (denoted with (c) and the algorithms represented by a row at the α = 5% level are
shown in boldface, indicating that the adjusted p-value is lower than 0.05.

Algorithm Avg rank Adj pHomm

MOOTr (c) 1.97 -
MOOTrRor 2.83 1.24E-04
MOORor 3.26 1.14E-07
MOOTrRisk 3.51 6.24E-10
Buy-and-hold 4.40 2.88E-20
MOORisk 5.00 2.44E-20
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From Table 6.28 and Table 6.29, we can observe that MOO3 algorithms exhibit better

performance across all metrics including TR, E[RoR], risk, and the portfolio Sharpe ratio

across both the 5- and 10-year datasets. The MOO2 algorithms only perform best in a few

cases. For example, the best standard deviation of the E[RoR] and risk is achieved by the

MOO2 algorithms. It could be explained by MOO3 algorithms taking advantage of optimising

TR, while MOO2 algorithms do not. However, for the rest of the metrics, MOO3 still performs

better results. MOORor and MOOTr have the top two average and median E[RoR], which is

almost 50% higher than the MOO2 algorithms. In addition, MOORisk performs best in terms

of risk in both periods. Moreover, MOOTrRisk has the best portfolio Sharpe ratio value.

To validate the above findings and identify the best model, we ran the Friedman non-

parametric test in Table 6.30 and Table 6.34. The results indicate that MOOTr ranks first

in terms of TR, significantly outperforming the other algorithms, except for MOOTrRor for

the 5-year data. Regarding E[RoR], MOOTrRor performs best using the 5-year data, while

MOORor ranks first with the 10-year data. However, there is no significant difference between

MOOTrRor, MOORor, and MOOTr. Additionally, the lowest risk values are achieved by

MOORisk, which outperforms all other algorithms. In conclusion, it is evident that MOO3

algorithms statistically outperform MOO2 across all three metrics. Among the MOO3 al-

gorithms, MOOTr performs the best, as it ranks in the top two for both TR and E[RoR],

while maintaining the same distribution with MOOTrRor for the 5-year data.

6.5 Conclusion

To conclude, this chapter presented two novel multi-objective genetic programming algorithms,

MOO2 and MOO3, leveraging the NSGA-II algorithm. These algorithms incorporate features

from both the event-based concept of directional changes and physical time. We used the

α-dominance strategy to address the challenges with the convergence ability of the multi-

objective GP in MOO2. Additionally, we defined the ‘best’ solutions from the Pareto front to

satisfy the needs of traders by evaluating the performance of the training dataset. We com-

pared the proposed MOO algorithms to the single-objective optimisation (SOO) method using
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Table 6.28: Comparison between MOO2 and MOO3 algorithms on 5-year periods. Best values
per row appear in boldface.

Measurement Total return

Algorithm αMOO2
Sig
RoR

αMOO2Cos
RoR MOOTr MOORor MOORisk MOOTrRor MOOTrRisk

Average 15.81% 14.78% 27.26% 23.58% 7.21% 26.90% 22.40%
Median 13.72% 11.76% 21.55% 17.60% 5.30% 20.12% 17.45%
Standard deviation 0.23 0.28 0.33 0.39 0.15 0.43 0.31
Max 155.12% 181.55% 219.21% 270.92% 64.34% 293.31% 173.63%
Min -38.93% -64.20% -48.60% -36.42% -63.21% -59.28% -65.99%

Measurement Expected Rate of Return

Algorithm αMOO2
Sig
RoR

αMOO2Cos
RoR MOOTr MOORor MOORisk MOOTrRor MOOTrRisk

Average 1.82% 1.58% 2.93% 3.04% 0.94% 2.90% 1.85%
Median 1.66% 1.37% 2.33% 2.28% 0.79% 2.32% 1.69%
Standard deviation 0.02 0.02 0.03 0.05 0.02 0.04 0.02
Max 12.06% 11.24% 32.90% 38.56% 6.91% 24.35% 11.38%
Min -4.32% -8.10% -6.90% -11.19% -9.26% -11.59% -5.18%

Measurement Risk

Algorithm αMOO2
Sig
RoR

αMOO2Cos
RoR MOOTr MOORor MOORisk MOOTrRor MOOTrRisk

Average 0.08 0.07 0.09 0.10 0.06 0.10 0.07
Median 0.06 0.06 0.06 0.08 0.05 0.08 0.06
Standard deviation 0.05 0.05 0.07 0.11 0.05 0.09 0.06
Max 0.34 0.33 0.45 1.01 0.40 0.61 0.35
Min 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Measurement Sharpe ratio

Algorithm αMOO2
Sig
RoR

αMOO2Cos
RoR MOOTr MOORor MOORisk MOOTrRor MOOTrRisk

0.82 0.67 0.86 0.62 0.49 0.76 0.89

the corresponding fitness function.

The experiments, conducted on 220 datasets from 10 different international markets,

showed that the proposed αMOO2 algorithms can significantly outperform the single-objective

GP in terms of expected RoR without compromising on risk, yet also demonstrate the su-

periority of the proposed MOO3 algorithm. The MOO3 algorithm effectively generated a

diverse set of Pareto-optimal solutions that provided optimal trade-offs among the three ob-

jectives. Statistical analysis further reinforced our findings. Kolmogorov-Smirnov tests indic-

ated significant differences arising between MOO3 and SOO in several cases, while the non-

parametric Friedman test with Hommel’s post-hoc analysis showed that MOO3 algorithms

focusing on individual objectives performed best, followed by those combining multiple ob-

jectives. Kolmogorov-Smirnov tests also indicated that proposed αMOO2 algorithms achieved

significant improvement in terms of E[RoR] with the same level of risk as compared to the

SOO algorithms. These results highlight the benefits of considering multiple objectives un-

der a MOO framework. Moreover, the proposed MOO algorithms were benchmarked against

traditional technical indicators (MACD, OBV, and MTM) and the buy-and-hold strategy. The
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Table 6.29: Comparison between MOO2 and MOO3 algorithms on 10-year periods. Best
values per row appear in boldface.

Measurement Total return

Algorithm αMOO2
Sig
RoR

αMOO2Cos
RoR MOOTr MOORor MOORisk MOOTrRor MOOTrRisk

Average 32.04% 32.50% 61.33% 48.29% 15.15% 51.90% 41.58%
Median 17.33% 19.02% 41.68% 32.81% 10.06% 37.88% 24.18%
Standard deviation 0.53 0.46 0.67 0.69 0.24 0.61 0.52
Max 352.30% 294.70% 341.71% 544.98% 152.06% 324.26% 258.04%
Min -38.16% -31.20% -44.63% -44.89% -32.11% -42.72% -37.47%

Measurement Expected Rate of Return

Algorithm αMOO2
Sig
RoR

αMOO2Cos
RoR MOOTr MOORor MOORisk MOOTrRor MOOTrRisk

Average 1.67% 1.84% 3.28% 3.38% 0.99% 2.76% 1.63%
Median 1.66% 1.68% 2.52% 2.62% 0.86% 2.38% 1.44%
Standard deviation 0.01 0.02 0.05 0.04 0.02 0.02 0.01
Max 7.98% 7.21% 44.36% 25.92% 12.24% 13.07% 6.80%
Min -1.91% -2.18% -4.03% -4.28% -1.98% -2.98% -1.23%

Measurement Risk

Algorithm αMOO2
Sig
RoR

αMOO2Cos
RoR MOOTr MOORor MOORisk MOOTrRor MOOTrRisk

Average 0.07 0.07 0.08 0.09 0.05 0.09 0.06
Median 0.06 0.06 0.06 0.07 0.03 0.07 0.05
Standard deviation 0.05 0.05 0.06 0.07 0.05 0.06 0.04
Max 0.33 0.29 0.43 0.49 0.42 0.41 0.29
Min 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Measurement Sharpe ratio

Algorithm αMOO2
Sig
RoR

αMOO2Cos
RoR MOOTr MOORor MOORisk MOOTrRor MOOTrRisk

1.11 1.08 0.66 0.76 0.65 1.10 1.12

proposed MOO algorithms consistently outperformed these benchmarks, demonstrating their

robustness and efficiency in optimising trading strategies. In the last section, we compare the

MOO2 algorithms with the MOO3 algorithm in terms of TR, E[RoR], and risk. The results

suggest that the MOO3 algorithms, specifically MOOTrRor, exhibit better performance than

MOO2 algorithms.

In summary, this chapter provides evidence that MOO using the combination of physical

time and DC indicators offers significant improvements over SOO. The proposed algorithms

not only produce profitable trading strategies, but are also able to consider the variety of

investor preferences, making them a useful tool for algorithmic trading.
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Table 6.30: Friedman with Bonferroni’s post-hoc test between MOO3 algorithms and MOO2
algorithms across a 5-year period. Statistically significant differences at the 5% level are
shown in boldface.

Table 6.31: Total return

Algorithm Average rank pBonf

MOOTr(c) 2.790909 -

MOOTrRor 3.018182 1.04E-01
MOORor 3.509091 4.43E-03
MOOTrRisk 3.800000 2.43E-04
αMOO2SigRoR 4.390909 4.35E-08
αMOO2Cos

RoR 4.627273 5.85E-10
MOORisk 5.809091 1.77E-22

Table 6.32: Expected Rate of Return

Algorithm Average rank pBonf

MOOTrRor(c) 2.972727 -

MOOTr 3.000000 2.57E-01
MOORor 3.181818 1.60E-01
αMOO2SigRoR 4.218182 1.00E-05
MOOTrRisk 4.354545 2.01E-06
αMOO2Cos

RoR 4.481818 3.21E-07
MOORisk 5.736364 2.42E-19

Table 6.33: Risk

Algorithm Average rank pBonf

MOORisk(c) 1.818182 -

MOOTrRisk 2.945455 1.91E-05
αMOO2SigRoR 3.809091 6.00E-12
αMOO2Cos

RoR 3.854545 2.52E-12
MOOTr 4.636364 5.50E-21
MOORor 5.318182 3.37E-30
MOOTrRor 5.590909 5.17E-34
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Table 6.34: Friedman with Bonferroni’s post-hoc test between MOO3 algorithms and MOO2
algorithms over the 10-year period. Statistically significant differences at the 5% level are
shown in boldface.

Table 6.35: Total return

Algorithm Average rank pBonf

MOOTr(c) 2.127273 -

MOOTrRor 3.072727 3.62E-04
MOORor 3.663636 8.66E-08
MOOTrRisk 4.009091 1.29E-10
αMOO2Cos

RoR 4.554545 5.48E-16
αMOO2SigRoR 4.663636 4.03E-17
MOORisk 5.909091 1.06E-33

Table 6.36: Expected Rate of Return

Algorithm Average rank pBonf

MOORor(c) 2.772727 -

MOOTrRor 2.772727 2.86E-01
MOOTr 2.900000 2.06E-01
αMOO2Cos

RoR 4.300000 1.45E-07
αMOO2SigRoR 4.590909 7.35E-10
MOOTrRisk 4.709091 8.42E-11
MOORisk 5.954545 4.89E-25

Table 6.37: Risk

Algorithm Average rank pBonf

MOORisk(c) 1.345455 -

MOOTrRisk 2.990909 7.85E-09
αMOO2Cos

RoR 3.827273 5.58E-17
αMOO2SigRoR 4.081818 8.71E-20
MOOTr 4.481818 6.88E-25
MOORor 5.572727 3.24E-41
MOOTrRor 5.700000 5.14E-43
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Chapter 7

Thesis Contributions

Throughout this thesis, we have focused on the application of ML algorithms, specifically GP

and NSGA-II algorithms under the DC framework in the field of algorithmic trading. More

specifically, we investigated whether the DC approach can be competitive with the traditional

physical time approach. To achieve this goal, we adopted a variety of datasets, exploring

novel trading strategies under the DC framework, a combination of PT and DC indicators,

and even using a MOO algorithm. In this chapter, we present the main contributions from the

preceding chapters.

7.1 Summary of application on physical time scale

7.1.1 Motivation

In Chapter 4, we conducted an in-depth comparison of a GP algorithm against nine differ-

ent ML algorithms, highlighting the advantages of the GP algorithm when utilising technical

indicators. According to the literature, ML techniques have proven to be valuable tools in

financial forecasting, while GP algorithms have demonstrated success in combining diverse

indicators for profitable trading strategies. However, previous experiments have typically

used fewer than four benchmarks when evaluating GP performance. In addition, we also no-

ticed that some factors that influence the performance of the approach were often neglected,

including the number of markets, transaction costs, data periods, and different forecasting

122



days ahead.

7.1.2 Originality

This work conducted a comprehensive comparison of a GP algorithm against nine different

ML algorithms, considering factors such as the variety of stock markets, transaction costs,

variant data periods, and divergent forecasting horizons.

7.1.3 Findings

The results have demonstrated that the GP algorithm statistically outperformed most al-

gorithms in terms of risk, while also yielding profitable outcomes. This is a significant finding,

as previous studies have typically focused on fewer ML algorithms and/or fewer datasets.

Further analysis revealed differences in performance across various international indices and

market conditions.

7.2 Summary of application to event-based framework

7.2.1 Motivation

In the previous experiments, the GP-based algorithm successfully outperforms most bench-

marks. However, it also was outperformed by the SVA algorithm, which motivates us to seek

further improvements. One promising approach is DC, an alternative method that summar-

ises stock movements as a series of events. However, most DC applications have focused on

the Forex market to date, leaving a gap in research regarding its application to the stock mar-

ket. Additionally, to the best of our knowledge, no research has utilised a large number of

indicators in financial forecasting within the DC framework. Previous studies have indicated

that GP algorithms are effective in combining diverse indicators to create profitable trading

strategies. Therefore, we proposed using GP-based algorithms to explore whether DC could

be competitive with the physical time method. Moreover, we investigated whether integrating

both DC and physical time indicators could further enhance financial performance.
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7.2.2 Originality

This work proposed two GP-based algorithms, GP-PT and GP-DC, which incorporated 28 phys-

ical time indicators and DC indicators, respectively. Moreover, in order to evaluate whether

these two families of indicators are complementary, we also created another trading strategy

containing 28 DC and 28 physical time indicators. This gave rise to the GP-DC-PT algorithm

and the ensuing experiments were conducted across a variety of stock markets.

7.2.3 Findings

In conclusion, the proposed DC-based algorithms achieved profitable results that outper-

formed the traditional physical time strategy (GP-PT), while maintaining relatively low risk.

Furthermore, the combined method (GP-DC-PT) successfully enhanced algorithmic trading

performance, surpassing both another DC-based algorithm (GP-DC) as well as the non-GP

benchmarks. Therefore, we argue that the DC approach can not only be a strong compet-

itor to the traditional physical time approach but also enhance performance when used in

conjunction with the physical time approach.

7.3 Summary of application of multi-objective optimisation

7.3.1 Motivation

In the previous chapter, the proposed GP-based algorithms demonstrated significant perform-

ance, exploring the profitable potential of the DC approach. However, we observed the solu-

tions generated by GP-based algorithms showed passive trading behaviour. This was caused

by the Sharpe ratio as an aggregate fitness function, which is calculated based on the expec-

ted RoR and risk. GP could easily achieve low risk by maintaining few trades, consequently

achieving a high Sharpe ratio without necessarily optimising the expected RoR. To overcome

the problem, we extended our work into the MOO field.

In Chapter 6, we investigated the MOO2 model, which optimises the expected RoR and

risk, and the MOO3 model, which optimises the total return, expected RoR, and risk. These
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MOO algorithms all utilised the well-known NSGA-II. Given the similarity between GP and

GA, the NSGA-II approach we employed was based on the GP process. Additionally, we

incorporated the α dominance strategy into MOO2 to address the challenges associated with

the convergence ability of multi-objective GP.

7.3.2 Originality

This work addressed the gap in MOO applications within the DC framework. We explored the

benefits of the MOO algorithm under the DC framework by benchmarking against SOO using

the same indicators. In addition, considering the needs of the traders in real life, we defined

a way to select a single ‘best’ solution from the Pareto front generated by the MOO approach,

based on the performance of the corresponding fitness function in the training dataset.

7.3.3 Findings

The experiments, conducted using the same datasets and trading strategies as in the previous

chapters, demonstrated that both the MOO2 and MOO3 approaches outperform the SOO

approach. It is noteworthy that the results of the MOO algorithms are derived from the

‘best’ solution on the Pareto front which indicates profitability. This strongly suggests that

MOO, specifically MOO3, within the DC framework significantly enhances performance when

compared to SOO. The proposed algorithms not only yield superior trading strategies but

also accommodate diverse investor preferences, making them potentially valuable tools for

algorithmic trading.

7.4 Future work

Our work provides evidence that the DC, which summarises stock market movement from an

alternative view, is able to enhance the traditional tools in SOO and MOO. Future research in

this area could explore several promising directions to further enhance the effectiveness and

robustness of algorithmic trading within the DC framework.

The first potential direction involves employing an approach that distinguishes the search

125



for DC and physical time (PT) indicators using strongly-typed GP. In the current study, these

indicators were directly adopted to train the GP algorithm, resulting in GP trees that integrate

both PT and DC indicators randomly. Strongly-typed GP, however, enforces type constraints

on genetic operations, enabling the generation of trees where one branch contains PT indic-

ators only and another contains DC indicators only. This approach allows for an in-depth

investigation of the information derived from both PT and DC frameworks by generating a

tree with one subtree created from PT indicators and another from DC indicators.

A second potential direction involves developing more sophisticated methods for selecting

a single trading strategy from the Pareto front. In this thesis, the ‘best’ trading strategy was

chosen from the Pareto front based on its performance on the training set to meet traders’

needs. The metrics considered were either the Sharpe ratio or one of the following: total

return, expected RoR, and risk. However, using the single ‘best’ solution loses the advantage

of a MOO algorithm on the concept of the Pareto front. Future research could incorporate

weighting schemes for several solutions within the Pareto front instead of using single ‘best’

solutions. This approach would allow for the development of a complex trading strategy

comprising several solutions with different weights allocated by another algorithm. Such a

strategy could provide richer information and spread risk, thereby enhancing our understand-

ing of the application of MOO in real-life scenarios.

The third potential direction is the adoption of more complex genetic operators and trad-

ing strategies. This thesis employed four operators: AND, OR, <, and >. However, as a

symbolic regression model, GP has the capability to generate more comprehensive solutions

using additional operators and novel approaches. For example, it can incorporate scaling

laws with DC indicators within the DC framework as part of its terminal set to improve fin-

ancial forecasting performance. Scaling laws were explored and favoured within the domain

of DC. There was much DC literature that discovered and used the profitable scaling laws in

[125, 28, 126].

Additionally, the current trading strategy was designed to answer a simple question:

whether the price will increase by a given percentage within a predefined time. When the

GP returns ‘True’, we buy one amount of stock, otherwise, hold. During the whole trading
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strategy, we either hold one amount of stock or nothing. This simplistic strategy was adopted

because this thesis focuses on the comparison between algorithms. Future work could explore

more complex trading strategies to explore the potential of GP. For example, we could add

the amount of buying stock or limit the cost on the first day as an additional parameter to

build a new trading strategy, thereby simulating real trading.
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Chapter 8

Appendix A

8.1 Physical time indicators

In this appendix, we introduce the physical time indicators used in Chapter 4, which were not

previously presented.

1) Stochastic %K

Stochastic %K represents the current price of the security. The formula is presented in

Equation A1.

Stochastic %k = 100−William′s %R (A1)

where the calculation of William’s %R could be found in Equation 2.6.

2) Stochastic %D Stochastic %D is calculated as the moving average of the Stochastic %K.

3) Momentum

Momentum (MTM) is a simple leading momentum indicator. It measures the rate at

which a trend is accelerating or decelerating. The formula is presented in A2.

MTM = Ci−1 − Ci (A2)

where Ci−1 represents the closing price of the previous day and C is the current closing

price.
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4) Relative Difference in percentage

The relative difference in percentage (RDP) is the relative percentage difference arising

between two points. In our experiments, we calculated it between the current point

with a data point in n days ahead. The formula is presented in Equation A3.

RDP =
Ci−n − Ci

Ci
(A3)

where C is the closing price.

5) Rate of Change

Rate of change (ROC) measures the speed at which the stock price changes over a

specific period. The formula is presented in Equation A4.

ROC =
Pi

Pi−n
(A4)

where Pi stands for the price on day i and Pi−n stands for the price at n day before day

i.

6) Disparity index The disparity index shows the relationship between a most recent price

with a particular moving average. The formula is presented in Equation A5.

Disparity =
Pi

MAn
(A5)

where Pi represents the price on day i and MAn is the moving average over n days,

which is presented in Equation 2.2.

7) Percent Price Oscillator

Percent price oscillator (PPO) is a momentum indicator that looks at the relationship

between two exponential moving averages (EMA) of an asset. The formula is presented

in Equation A6.
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PPO =
(short− term EMA)− (long − term EMA)

long − term EMA
(A6)

where short-term EMA and long-term EMA represent the EMA over a shorter period and

a longer period, respectively. The formula for EMA is presented in Equation 2.9.

8) Aroon Indicator

The Aroon indicator determines the changes happening in the uptrend or downtrend.

It consists of Aroon Up and Aroon Down. The formulas are presented in Equation A7

and Equation A8.

Aroon Up =
(Number of periods)− (Number of periods since high)

Number of periods
(A7)

Aroon Down =
(Number of periods)− (Number of periods since low)

Number of periods
(A8)

where the number of periods represents the user-specific periods, and the number of

periods, since high\low is the period after the highest\lowest price occurred.

9) Chande Momentum Oscillator

The Chande momentum oscillator (CMO) is a technical indicator that uses momentum

to identify relative strengths in a market. The formulae are presented in Equation A9

and Equation A10.

CMO =
(Sp)− (Sn)

(Sp) + (Sn)
(A9)

Pi =


UP, if Pi > Pi−1

DOWN, if Pi < Pi−1

(A10)

where Pi is the price on day i. Sp and Sn represent the sum of the up and down prices

over a specific period.
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10) Money flow index

The money flow (MF) index identifies the overbought and oversold signal in an asset

by using price and column data. The formulae are presented from Equation A11 to

Equation A14.

MF =
100

1 +Money F low Ratio
(A11)

Money F low Ratio =
Sum Of Positive Money F low

Sum Of Negative Money F low
(A12)

Money F low = Typical price× V olume (A13)

Typical price =
(H + L+ C)

3
(A14)

where H, L, and C represent the high, low, and closing prices. The positive\ negative

money flow is defined when the current money flow is higher\lower than the previous

money flow.

11) Donchian Channel

Donchian channel is a technical indicator used to determine the relative volatility of a

market. The formula is presented in Equation A15.

DC =
(HH + LL)

2
(A15)

where HH represents the highest high price over a specific period and LL represents the

lowest low price over a specific period.

12) Relative Volatility Index

The relative volatility index (RVI) is a volatility indicator, similar to the relative strength
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index (RSI), although it has a few key differences. The RVI measures the standard

deviation of prices as they change over time. The formulae are presented from Equation

A16 to Equation A20.

RV I =
(UPavg)

UPavg +DOWNavg
(A16)

UPavg =
(UPavg × (n− 1) + UP )

n
(A17)

DOWNavg =
(DOWNavg × (n− 1) +DOWN)

n
(A18)

UPi =


StdDevii−9(Pi), if Pi > Pi−1

0, else
(A19)

DOWNi =


StdDevii−9(Pi), if Pi < Pi−1

0, else
(A20)

where Pi represents the price on day i.

13) Accumulation/Distribution

The accumulation/distribution (AD) line indicates the supply and demand of an asset

using the closing price and volume. The formula is presented in Equation A21.

AD =
(C −O)

H − L
× volume (A21)

where C and O represent the closing and open price, respectively, and H and L are the

high and low prices.

14) De-trended Price Oscillator

The de-trended price oscillator (DPO) is a technical indicator that measures the length

of the price cycle. The formula is presented in Equation A22.
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DPO = Pi−n
2
+1 −MA(n) (A22)

where n represents the number of days used for the look-back period and MA is the

moving average presented in Equation 2.2.

15) Double Exponential Moving Average

The double exponential moving average (DEMA) is an improvement on the EMA, alloc-

ating more weight to recent data. The formula is presented in Equation A23.

DEMA = 2× EMA(C, n)− EMA(EMA(C, n), n) (A23)

where n represents the look-back period and C is the closing price. The formula of EMA

is presented in Equation 2.9.

16) Directional Movement Index

The directional movement index (DMI) helps traders to determine the relative strength

and direction of price trends. The formulas are presented from Equation A24 to Equa-

tion A29.

DMI =
|+DI −−DI|
|+DI +−DI|

(A24)

+DI =

∑n
i=1+DM −

∑n
i=1 +DM

n ++DM∑n
i=1 TR−

∑n
i=1 TR
n + TR

(A25)

−DI =

∑n
i=1−DM −

∑n
i=1 −DM

n +−DM∑n
i=1 TR−

∑n
i=1 TR
n + TR

(A26)

MIN [+DM,−DM ] = 0 (A27)
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+DM =


Hi −Hi−1, if Hi > Hi−1

0, else
(A28)

−DM =


Li−1 − Li, if Li−1 > Li

0, else
(A29)

where the formula for TR is presented in Equation 2.8, n represents the look-back

period, and H and L are the high price and low price, respectively.

17) Ease of Movement

Ease of Movement (EOM) is a technical indicator that measures the price trend using

momentum and volume information. The formulae are presented in Equations A30 and

A31.

EOM =
Hi−Li

2 − Hi−1−Li−1

2

Box Ratio
(A30)

Box Ratio =
volume
10000

H − L
(A31)

where H and L represent the high price and low price, respectively.

18) Klinger Oscillator

The Klinger oscillator (KO) is a technical indicator that measures the long-term trend

of the money flow, thereby maintaining the sensitivity to short-term movement. The

formulas are presented from Equation A32 to Equation A37.

KO = V FEMAi(34)− V FEMAi(55) (A32)

V FEMA = V F × 2

1 + n
+ EMAi−1 × (1− 2

1 + n
) (A33)
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V Fi = volumei ×
∣∣∣∣2× (

dmi

cmi
− 1)

∣∣∣∣× trendi × 100 (A34)

trendi =


1, if (Hi + Li + Ci)) > (Hi−1 + Li−1 + Ci−1)

−1, else
(A35)

cmi =


cmi−1 + dmi, if trendi = trendi−1

dmi−1 + dmi, else
(A36)

dmi = Hi − Li (A37)

where dm represents the daily measurement and cm is the cumulative measurement.

The vf represents the volume force. The H, L, and C stand for the high, low, and closing

price.

19) Market Facilitation Index

The market facilitation index (MFI) calculates the price movement per volume to de-

termine the effectiveness of price movement. The formula is presented in Equation

A38.

MFI =
Hi − Li

volumei
(A38)

where H and L represent the high and low prices.

20) Mass Index

Mass index (MI) is a technical indicator used to predict trend reversals. The formula is

presented in Equation A39.

MI =
25∑
i=1

EMA((H − L), 9)

EMA(EMA((H − L), 9), 9)
(A39)

where EMA((H-L),9) represents an exponential moving average (EMA) which is calcu-

lated by (high price-low price) with a period of 9. The formula for EMA is presented in

135



Equation 2.9.

21) Negative Volume Index

The negative volume index (NVI) is a technical indication line that shows how the price

movement is affected by down volume days. The formula is presented in Equation A40.

NV Ii =


NV Ii−1 +

Ci−Ci−1

Ci−1
, if volumei < volumei−1

NV Ii−1, else
(A40)

where C represents the closing price.

22) Percentage Volume Oscillator

The percentage volume oscillator (PVO) is a technical indicator that provides traders the

insight into the momentum of volume changes. The formula is presented in Equation

A41.

PV O = 100× fastEMA(volume)− slowEMA(volume)

fastEMA(volume)
(A41)

where fastEMA and slowEMA represent an exponential moving average (EMA) with a

longer period and a shorter period, respectively.

22) Polarized Fractal Efficiency

Polarized fractal efficiency (PFE) is used to measure the price efficiency of an invest-

ment. Traders can use PFE to check the price trend of the stock. The formulae are

presented in Equation A42 and Equation A43.

PFE = EMA(Ki, n) (A42)

Ki = 100×
√

(Pi − Pi−m)2 +m2∑m−2
j=0

√
(Pi−j − Pi−j−1)2 + 1

(A43)
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where m represents the period of the PFE and n is the smoothing period. Pi stands for

the closing price on day i.

23) Random Walk Index

The random walk index (RWI) compares the price movement to random movement to

determine whether the stock is in a significant trend. There are two lines of RWIhigh

and RWIlow, which are presented in Equation A44 and Equation A45.

RWIhigh =
Hi−n+1 − Li

ATRi ×
√
n

(A44)

RWIlow =
Hi − Li−n+1

ATRi ×
√
n

(A45)

where ATR represents the average true range in Equation 2.7. H and L are the high

price and low price, and n represents the look-back period of the RWI.

24) Relative Momentum Index

The relative momentum index (RMI) measures the speed and magnitude of the stock

price movement. The formulae are presented from Equation A46 to Equation A50.

RMI = 100× upavg

upavg + dnavg
(A46)

UPavg =
(UPavg × (n− 1) + UP )

n
(A47)

DOWNavg =
(DOWNavg × (n− 1) +DOWN)

n
(A48)

UP =


Ci − Ci−m, if Ci > Ci−m

0, else
(A49)

DOWN =


Ci−m − Ci, if Ci < Ci−m

0, else
(A50)

where C is the closing price, and M and n represent the periods of the RWI.
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25) Stochastic Momentum Index

The stochastic momentum index (SMI) provides information for identifying overbought

or oversold conditions for traders. The formulae are presented in Equations A51 to A53.

SMI = 100× EMA(EMA(cm, n), n)
EMA(EMA(hl,n),n)

2

(A51)

cmi = Ci −
HHi + LLi

2
(A52)

hli = HHi − LLi (A53)

where HH and LL stand for the highest high price and lowest low price over a specific

period, and n represents the period of the SMI.

26) Triple Exponential Average

The triple exponential average (TRIX) is a momentum indicator that measures the per-

centage change in a moving average that has been smoothed exponentially three times.

The formulae are presented in Equations A54 and A55.

TRIX = 100× Mi −Mi−1

Mi
(A54)

M = EMA(EMA(EMA(P, n), n), n) (A55)

where EMA is the exponential moving average delineated in Equation 2.9.

27) Vertical Horizontal Filter

The vertical horizontal filter (VHF) is a technical analysis tool that helps traders and

investors identify the trend of price movements. The formula is presented in Equation

A56.

V HF = 100× HH − LL∑n
i=1 |Ci − Ci−1|

(A56)
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where HH and LL are the highest high price and lowest low price over a specific period,

and n is the period of the VHF.

28) Volume-Adjusted Moving Average

The volume-adjusted moving average (VAMA) takes price and volume as being of equi-

valent weight when computing the moving average. The formula is presented in Equa-

tion A57.

V AMA =

∑(
i=0 n)(Ci × volumei)∑(

i=0 n)(volumei)
(A57)

where C represent the closing price and n is the period of VAMA.

29) Moving Average Convergence/Divergence (MACD)

The moving average convergence/divergence (MACD) is a popular momentum indic-

ator that identifies potential buy and sell signals in the stock market. The formula is

presented in Equation A58.

MACD = EMA(C, n)− EMA(C,m) (A58)

where C represents the closing price, and n and m stand for the periods of the EMA,

respectively, with m being a longer period than n.
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