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Abstract—One of the most popular ways to reduce the risk
of an investment portfolio is by holding shares of Real Estate
Investment Trusts (REITs), which own and manage real estate.
An important aspect of this process is to be able to forecast
future REITs prices, as this allows investors to achieve higher
returns at lower risk. This paper examines the performance of
five different machine learning algorithms in the task of REITs
price forecasting: Ordinary Least Squares Linear Regression,
Support Vector Regression, k-Nearest Neighbours Regression,
Extreme Gradient Boosting, and Long/Short-Term Memory Neu-
ral Networks. In addition to past REITs prices, we also use
Technical Analysis indicators to assist the algorithms in the task
of price prediction. While such indicators are very popular in
stocks forecasting, they have never been used to forecast REITs.
Our experiments show that (i) all ML algorithms produce low
error and standard deviation, and are able to outperform the
well-known statistical benchmark of AutoRegressive Integrated
Moving Average (ARIMA), and (ii) the introduction of Technical
Analysis (TA) indicators into the feature set leads to an error
reduction of up to 50%.

Index Terms—mixed-asset portfolio, minimum variance, port-
folio optimization, risk-adjusted return

I. INTRODUCTION

The main reason why investors in financial markets select
their investment weights in a portfolio is to maximize their
return and/or to reduce the risk associated to their portfolio
[1]. One of the most popular ways to optimize a portfolio,
i.e., minimize the risk and/or maximize the return associated
to that portfolio, is by investing in real estate [2, 3, 4]. An
alternative to direct real estate investments (i.e. purchasing
real estate assets in exchange for a given price) is investing
in real estate indirectly, i.e. by purchasing shares in listed
or non-listed companies that own and manage real estate.
Some of these companies are known as REITs (real estate
investment trusts) and are listed on major exchanges. Thanks
to the existence of REITs, individual investors do not need to
directly own or manage properties. Purchasing REITs shares
can cost as little as $500,1 which is much lower than the
entry point of purchasing a property. This allows investors to
access the benefits of owning real estate (e.g. steady income,
diversification, etc.) without needing to spend a large amount
of money.

1https://www.investopedia.com/articles/investing/072314/investing-real-
estate-versus-reits.asp
Last access: September 2022.

Much work in the asset allocation literature has focused
on the problem of optimizing mixed-asset portfolios including
real estate [5, 6, 7, 8]. However, typically the focus lies on
optimising asset weights, using prices from a training set.
The main limitation of this approach is that prices in the
test set might differ significantly from those in the training
set, thus leading to poor portfolio performance [9]. This
motivates us to include price predictions in the portfolio
optimization problem rather than using historical data. This
work thus attempts to predict the prices of REITs through
five Machine Learning (ML) algorithms: Linear Regression,
Support Vector Regression, k-Nearest Neighbours Regression,
Extreme Gradient Boosting Regression, and a Long Short-
Term Memory Recurrent Neural Network. We compare the
predictive power of such algorithms against a well-known
statistical benchmark, the AutoRegressive Integrated Moving
Average (ARIMA) class of models.

Being able to predict REITs prices with low error is
crucial because it might affect the future performance of a
mixed-asset portfolio including REITs. In addition to past
REITs prices, we also use technical analysis (TA) indica-
tors — i.e., Moving Average (MA), Moving Average Con-
vergence/Divergence (MACD), Bollinger Bands, Exponential
Moving Average (EMA), and Momentum — to assist the al-
gorithms in the task of price prediction. While such indicators
are commonly used to predict stock prices [10, 11, 12], they
have never been used to predict REIT prices. In this work,
we compare the performance of ML algorithms that use past
REITs prices as the main features in the forecasting problem,
to the performance of ML algorithms that use both past REITs
prices and TA indicators.

In addition to REITs, we also conduct experiments for
other asset classes, namely stocks and bonds. As previously
mentioned, while price prediction for stocks and bonds has
previously been explored in the literature, it tends to be with
one or two algorithms only. We thus believe that our investi-
gation will offer a better understanding of the strengths and
weaknesses that different ML algorithms can bring into this
domain, and how they compare against financial benchmarks.
In total, we experiment with 27 datasets, 9 from each class
(REITs, stocks, bonds). Collectively, the datasets cover three
different markets, namely the US, the UK, and Australia.

In summary, this paper has the following main contribu-



tions: (i) apply five popular ML algorithms to the problem
of predicting REITs prices from historical data, and compare
their performance against each other, as well as a conventional
gold-standard (ARIMA); (ii) improve the predictive power of
the ML algorithms by incorporating TA indicators as features.

The rest of this paper is organized as follows: Section II
presents a brief background on REITs, the Modern Portfolio
Theory, and briefly discusses related works; Section III out-
lines the methodology of this paper; Section IV presents our
experimental setup; Section V provides a detailed discussion
of the experimental results we obtained by applying machine
learning and ARIMA to our data; finally, Section VI concludes
the paper.

II. BACKGROUND AND RELATED WORKS

A. Real Estate Investment Trusts

REITs are companies that own, operate, or finance income-
producing real estate. Examples of REITs include Realty In-
come Corporation (O), Digital Realty Trust, Inc (DLR), Simon
Property Group, Inc (SPG), and so on. REITs provide the
opportunity for everyday investors (not just banks and hedge
funds) to benefit from real estate investment [13] by accessing
dividend-based income and gaining from competitive returns
without having the need to spend a large amount of money
(as it happens with direct real estate investments).

Investing in REITs allows anyone to build investment
portfolios as for the other financial markets, i.e., through
the purchase of an individual company stock or through a
mutual fund or exchange traded fund (ETF). An investor
could get help from a broker, investment advisor or financial
planner to set their financial goals and identify appropriate
REIT investments. According to a 2020 Chatham Partners
study conducted in the US2, about 80% of financial advisors
recommend REITs to their clients. It is also possible to invest
in public non-listed REITs and private REITs.

Holding shares of REITs in a mixed-asset portfolio (i.e., a
portfolio already made of other asset classes, such as stocks
and bonds) allows an investor to reduce the overall risk
level and/or increase the overall return level, thus improving
the risk-adjusted performance of that portfolio. This is made
possible by the low levels of correlation between REIT shares
and other asset classes.

B. Modern Portfolio Theory

Modern portfolio theory (MPT) is a mathematical frame-
work that is largely used to solve asset allocation problems.
The main assumption of MPT is that investors are risk averse,
in the sense that one would tend to favour portfolios with lower
risk among comparable portfolios that provide the same ex-
pected return. Consequently, one will choose a riskier portfolio
only if compensated by a higher expected return. Different
investors have different preferences over such tradeoffs, based
on their individual risk aversion levels.

2https://www.reit.com/investing/why-invest-reits

Fig. 1. Portfolio efficient frontier. The x-axis refers to the portfolio standard
deviation, and the y-axis refers to the expected portfolio return. The two
metrics improve as the correlation coefficient increases.

According to MPT, a portfolio is considered efficient when
its expected return is maximized for a given level of risk, or
its expected risk is minimized for a given level of return. The
expected return of the portfolio is expressed as a weighted
average of the historical returns of the assets included in
the portfolio, where the weighting factors are the proportions
allocated to the different asset classes. The expected risk of the
portfolio is expressed as the variance of the historical returns
of the asset classes, and is a function of the correlations ρij , for
all asset pairings (i, j). Given specific combinations of assets
and standard deviations of asset returns, the highest possible
standard deviation of portfolio returns is obtained when all
correlations are equal to 1, which means that all asset pairs are
perfectly correlated to each other. It is possible to reduce the
portfolio’s expected risk by selecting combinations of assets
that are not perfectly positively correlated (i.e., −1 < ρij < 1).
This is known as diversification. If all asset pairs are perfectly
uncorrelated (ρij = 0 for all i, j), the variance of the portfolio
returns is the sum of the squares of all asset weights times the
asset’s return variance. If all asset pairs are perfectly positively
correlated (ρij = 1 for all i, j), then the standard deviation of
the portfolio returns is the sum of the standard deviations of the
underlying asset returns, weighted by the proportion allocated
to each asset class.

Figure 1 represents three efficient frontiers — i.e., com-
binations of optimal portfolios —, each one corresponding
to a correlation coefficient. As we can observe, the portfolio
standard deviation is lower when the correlation coefficient is
-1, and tends to increase as the correlation goes to 0 and then
1, with a correlation of 1 determining the highest value of
portfolio risk for any given expected return.

C. Related Works

In the current literature about REIT price prediction, there
have been some works that applied Neural Network algo-
rithms to predict stock and REIT prices, showing that these



algorithms outperformed ARIMA in terms of prediction ac-
curacy. In a similar way, [14] applied multivariate, ML-based
regression algorithms (including Neural Networks) to predict
REIT returns. Other authors compared ML algorithms to
ARIMA for the prediction of REIT returns [15, 16, 17]. Such
works focused mainly on artificial neural networks relying
on multiple variables. In summary, while there have been a
few works on REITs price prediction, the majority of them
have focused on neural networks. In a more recent study,
[18] used five Machine Learning algorithms to predict REIT
prices, in addition to stock and bond prices. However, they
adopted a one-step-ahead methodology, which may not be
suitable for portfolio optimization purposes because it would
imply rebuilding a portfolio on a daily basis according to the
changes in price prediction. In addition, none of the above
studies, or any other studies (to the best of our knowledge),
have used technical analysis indicators as features to predict
REITs prices.

The above limitations thus motivate us in this work to (i)
apply five Machine Learning algorithms, (ii) use technical
analysis indicators as features, and (iii) to perform period
ahead predictions, rather than one-step-ahead.

III. METHODOLOGY

Before applying the machine learning algorithms, we first
needed to take several data pre-processing steps, which are
presented in Section III-A. We then present the features that
we included in the price prediction in Section III-B and the loss
function, which is the same across all algorithms, in Section
III-C. Lastly, we briefly present the Python libraries we used
to apply our machine learning algorithms in Section III-D.

A. Data preprocessing

Before being used for price prediction, each time series data
is differenced and scaled. Differencing consists of calculating
a one-step lag for each time point in such a way that Dt =
Pt − Pt−1. For instance, price at time t2 will be transformed
into Dt2 = Pt2−Pt1. The differencing process makes the time
series stationary, eliminating its upward trend and making the
average constant over time. Stationarity is important in time
series analysis as several models (including ARIMA) assume
that data are independent of each other. Since market price
time series often feature time dependency (i.e., each time point
depends on the past ones), it is necessary to remove such a
dependency in order to apply our prediction models.

Once Dt has been obtained, its values are then scaled
to be in the range of 0 and 1, according to the following
transformation, presented in Equations 1:

Nt =
(D −Dmin)

(Dmax −Dmin)
(1)

where Nt is the standardized value of each variable (in this
case the differenced price D), and Dmin and Dmax are the
minimum and maximum value for D respectively, over all data
in each dataset.

TABLE I
EXAMPLE OF TIME SERIES DIFFERENCING AND SCALING.

t Pt Pt−1 Dt Nt Nt−1 Nt−2

t1 3.77 - - - - -
t2 3.69 3.77 -0.08 0.30 - -
t3 3.7 3.69 0.01 0.70 0.30 -
t4 3.6 3.7 -0.1 0.22 0.70 0.30
t5 3.68 3.6 0.08 1 0.22 0.70
t6 3.53 3.68 -0.15 0 1 0.22
t7 3.54 3.53 0.01 0.70 0 1

We present an example of the differencing and scaling
processes in Table I, which presents sample data for the SPG
time series reflecting the time period between 01 January
2021 and 30 January 2021. The first column presents the
different time steps, the second column the price Pt of the
given security, the third column the one-lag value of Pt, the
fourth column the differenced Dt value, and the fifth column
the scaled Nt variable. As we can observe, at time t2, Dt is
equal to the difference between Pt and Pt−1, which is equal
to 3.69 − 3.77 = −0.08. Similarly, the first-order difference
at t3 is equal to 0.01, and so on. The fifth column contains
the Dt values after scaling, i.e., Nt. As we can observe
the independent variable is scaled to the range between 0
and 1. For instance, after normalization at time step t2, the
independent variable goes from −0.08 to 0.30.

B. Features

For our regression problem, we use two kinds of features: (i)
past observations of a given time series Nt; and (ii) technical
analysis (TA) indicators. Regarding the first type of features,
given a time series Nt we are using past observations of Nt,
i.e., Nt−1, Nt−2, Nt−3, ..., Nt−n, as features for our regression
problem. The n value is decided on the basis of the Akaike
Information Criteria (AIC) optimization. In other words, the
number of lags corresponds to the optimal value for the p —
i.e., autoregression — parameter in the ARIMA model. This
process is explained in more detail in Section IV-C2. AIC is
a metric widely used for model selection [19, 20, 21]. Each
dataset has a different value for n, thus a different number of
features.

In addition to past observations, we also use five techni-
cal indicators at each timepoint — Simple Moving Average
(SMA); Exponential Moving Average (EMA); Moving Aver-
age Convergence/Divergence (MACD); Bollinger Bands; and
Momentum — as suggested in [22, 23, 21]. These indicators
help identify the short- and long-term trends of a time series,
and thus can be effectively used for price prediction.

The Simple Moving Average (SMA) gives an estimate of the
level of a time series, and thus is commonly used to forecast
future observations [24]. The SMA is the weighted average
of the past T prices; it can be represented mathematically as
follows.

SMA(t) =

∑t
i=t−(T−1) Ni

T
, (2)



where Nt is the normalized price at time i, and T is the
number of time periods considered. We use the rolling
method3 to calculate the SMA in Python. Note that the period
of interest T used for window-averaging purposes is unrelated
to the number of lags n which determines the number of
historical timepoints to be considered for training purposes.

The Exponential Moving Average (EMA) is similar to the
SMA, in that it also represents a weighted average of past
observations; however, unlike the SMA which considers a
limited range of past observations with all observations given
equal weights during the averaging process, the EMA instead
considers all past observations, but with weights that become
exponentially smaller the more distant a timepoint becomes.
In other words, more recent observations contribute more than
less recent ones during the averaging process. It is typically
expressed via the following difference equation:

EMA(t) = αNt + (1− α)EMA(t− 1) (3)

where α is a parameter expressing the amount of weight
decay applied at each timestep. This is typically calculated as
α = 2/(T + 1), where T denotes the period of interest (i.e.
such that the total contribution to the weighted average from
all observations prior to that timepoint becomes trivial). It can
take any real value between 0 and 1, where values closer to
0 ascribe more importance to past information, and 1 indicate
that less importance is given to past prices. In Python, we use
the ewm method4 to calculate the EMA.

The Moving Average Convergence/Divergence (MACD)
indicator measures the difference between a short-term EMA
and a long-term EMA. This indicator can effectively be used to
identify bullish — i.e., featured by a general increase in market
prices — or bearish moments. Given an F-day and an L-day,
where F-day and L-day refer to the first day and last day of
the considered period respectively, the MACD is calculated as
the difference between the L-day exponential moving average
(i.e. the ‘short-term’ EMA) and the F-day moving average (i.e.
the ‘long-term’ EMA) ([10]), as we can see below.

MACD(t) = EMAL(t)− EMAF (t) (4)

Bollinger Bands (BB) refer to an interval around the SMA
at time t, defined as follows: first, the standard deviation of
all observations within a period of interest T is computed,
where T is the same as that used to obtain the SMA; this is
then multiplied by a modifier D which determines how many
standard deviations away from the mean we want to define
our range as. This is represented mathematically below.

BB(t) = SMA(t)±D

√√√√(
1

T

) t∑
i=t−(T−1)

[
Ni − SMA(t)

]2
(5)

3https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.
rolling.html Last access: January 2023.

4https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.
ewm.html Last access: January 2023.

TABLE II
EXAMPLE OF FEATURE SELECTION (LAGGED OBSERVATIONS).

t Nt Nt−1 Nt−2 Nt−3 Nt−4 Nt−5

t2 0.26 - - - - -
t3 0.59 0.26 - - - -
t4 0.19 0.59 0.26 - - -
t5 0.85 0.19 0.59 0.26 - -
t6 0.00 0.85 0.19 0.59 0.26 -
t7 0.59 0.00 0.85 0.19 0.59 0.26

TABLE III
EXAMPLE OF FEATURE SELECTION (TA INDICATORS).

t SMA EMA MACD Upper
band

Lower
band Momentum

t2 - 0.26 0 - - -0.04
t3 - 0.51 -0.03 - - 0.29
t4 0.35 0.28 0.02 - - -0.11
t5 0.54 0.67 -0.07 - - 0.55
t6 0.35 0.22 0.06 0.52 0.18 -0.30
t7 0.48 0.47 -0.02 0.65 0.31 0.29

This indicator helps identify whether the current price
level of a security has deviated considerably (i.e. more than
D standard deviations) compared to its recent average, and
predict when it might rise or fall back to that level.

Finally, the Momentum [25] is determined by the difference
between each price and the initial price for a specific time
period, as represented below.

Momentum = Nt −Nt−T (6)

The Momentum measures the strength of a price trend. For
this reason, it can be effectively used to predict the future
direction of a time series.

Table II shows an example of lagged observations (with
number of lags n = 5) and Table III shows an example of
TA indicators for the preprocessed data presented in Table
I. For this example, we calculate the 3-day SMA, the EMA
with α = 0.5, the MACD as the difference between the 6-day
EMA and the 3-day EMA, the upper and lower band using
the 3-day SMA and the standard deviation of the 3-day SMA
multiplied by 0.5, and the Momentum as the rate of change
of the Nt series. For our regression problem, we use these
features together (i.e. n+ 6 features in total).

C. Loss function

The machine learning models used in this paper are evalu-
ated by using out-of-sample predictions, rather than one-day-
ahead predictions. The former is when today’s Nt value (t1)
is known and is used to forecast the value of tomorrow (t2).
However, tomorrow’s value is unknown and cannot be used
to forecast the value two days ahead. Hence, this method uses
the value forecast at time-step 1 to forecast the value at time-
step 2, and so on. In the case of one-day-ahead forecasting,
the price today (time-step 0) is known, and is used to forecast
tomorrow’s price (time-step 1). Then tomorrow’s real price
is used to forecast the price at time-step 2, and so on. This
second method is expected to be more accurate, because we



are using the actual values as features, instead of predictions.
However, for portfolio optimization purposes using out-of-
sample predictions would be more realistic as using one-day-
ahead predictions would require rebalancing a portfolio on a
daily basis for a time period of around 150 days which can
lead to significant management costs.

For our problem, we use the root mean square error
(RMSE) as the loss function, which is presented in Equation
7:

RMSE =

√∑|j|
i=1(Pi − P̂i)2

|j|
, (7)

where Pt refers to the actual value of the price, P̂t is its
predicted value, and |j| denotes the number of observations
for each dataset j. Please note that as it was explained in
Section III-A, the differenced and scaled values (i.e. Dt and
Nt respectively) are reverted back to their original price values
(i.e. Pt), so that the loss function can be calculated.

D. Machine learning algorithms

To apply our machine learning algorithms, we used the
following python libraries: sklearn5, keras6, and xbgoost7. The
functions used to fit the algorithm to the training data include
sklearn.linear_model.LinearRegression,
sklearn.svm.SVR, xgboost, keras.Sequential,
and sklearn.neighbors.KNeighborsRegressor.
The trainable parameters relating to these functions were
determined using a grid search method, as described in
Section IV. Once the algorithms were fit to the training data,
they were then applied to the test set by using the predict
attribute of the relevant model.

IV. EXPERIMENTAL SETUP

Our experiments aim to (i) provide evidence that including
TA indicators as features in ML pipelines in addition to price
lags can significantly reduce the prediction error rate, and
(ii) demonstrate that the above approach can produce price
predictions with lower error than ARIMA.

A. Data

For our experiments, we used daily prices downloaded from
Yahoo!Finance for stocks and REITs, and Investing.com for
bonds, referring to the period between January 2017 and
January 2021, for financial instruments belonging to three
asset classes (i.e., stocks, bonds, and real estate), and to
three countries (i.e., US, UK, and Australia). For each of the
three markets, we used prices for five stocks, five bonds, and
five REITs. Thus, we ran our experiments on a total of 27
datasets. All prices were expressed as USD, so as to account
for currency risk.

5https://scikit-learn.org/stable/index.html/ Last access: January 2023
6https://keras.io/getting started/ Last access: January 2023
7https://xgboost.readthedocs.io/en/stable/ Last access: January 2023

B. Experimental parameters

The data was split into three sets: training (January 2019 -
June 2020), validation (July 2020 - December 2020), and test
(January 2021 - July 2021). The validation set was used to
decide on the experimental parameters through a grid search
tuning phase.

We performed grid search tuning for each data set to select
the optimal parameters for the TA indicators described in
Section III-B. The best value for α in the EMA calculation
was selected from [0.01, 0.05, 0.1] [26]. The other parameter
values were decided on the basis of previous works [27, 28].
The selected values are shown in Table IV.

TABLE IV
TA PARAMETERS.

Parameter Indicator Values
α EMA 0.01, 0.05, 0.1
F-day MACD 20
L-day MACD 50
D Bollinger bands 2

For the price prediction problem (ML algorithms), we
performed tuning for each individual data set, thus each
data set has its own tailored experimental parameters. The
optimal parameters for the SVR, KNN, LSTM, and XGBoost
model are selected using the Grid Search method in Python.
Moreover, we did not perform parameter tuning for LR due
to the absence of parameters to be tuned.

C. Benchmarks

1) Autoregression with ML: In Section III-B, we explained
the different features used for our regression problem. To
understand the potential improvement in the predictive accu-
racy from using TA indicators in addition to lagged values
to predict asset prices, we compare the performance of the
five ML algorithms that use lagged prices and TA indicators
(proposed approach) against the five ML algorithms that only
use lagged prices (i.e. without the TA indicators), as is a com-
mon practice in the REITs literature. The dependent variable
is Nt, while the independent variables are past observations,
i.e., Nt−1, Nt−2, ..., Nt−T without the TA indicators.

2) ARIMA: The Autoregressive Integrated Moving Average
(ARIMA) class of models is used to analyze a time series
structure. It predicts the value of a variable (e.g., current
market price) using the historical values of the same variable
and its error distribution. It is used as a benchmark, as it is
commonly used in finance with time series prediction.

Given a time series Nt, an ARIMA model of order (p, d, q)
contains three components, the autoregression model of order
p, differencing of order d, and the moving average model of
order q. Equation 8 shows the mathematical form of ARIMA
[29].

Nt = c+

p∑
i=1

ϕiNt−i + ϵt +

q∑
i=0

θiϵt−1 (8)



where ϕ denotes the autoregression coefficient, θ refers to the
moving average coefficient, and ϵ refers to the error rate of
the autoregression model at each time point.

In order to fit the ARIMA model for each of the training
datasets, we select the p, d, and q order based on the Akaike
Information Criterion (or AIC) criterion, as previously men-
tioned in Section III-A. In other words, the best ARIMA model
is found through a search of the minimum AIC value [30].
This indicator measures the quality of a statistical model with
respect to a given set of data, by taking the log-likelihood of
the maximum likelihood estimate of the model and the number
of model parameters into account. It is commonly used to
compare different ARIMA models [31, 32].

It is worth noting that being a univariate time series analysis
tool, ARIMA does not include TA indicators to predict prices.
This is why we will not present the implications of including
TA for ARIMA.

V. RESULTS

In this section, we analyze the predictive power of five
ML algorithms that use TA indicators as additional features,
and compare it with the predictive power of ML algorithms
and ARIMA that only use lagged values as features (Section
V-A). In addition, we analyze the importance of each feature
using Shapley values (Section V-B). In the final part of
this section, we examine the computational times for the
algorithms used (Section V-C) and offer an overall discussion
on the experimental results (Section V-D).

A. RMSE

In this section, we evaluate the prediction accuracy of
ML algorithms that use TA indicators against autoregression
algorithms. For each algorithm, we reported the mean and
standard deviation of the RMSE distributions.

Table V shows the RMSE summary statistics for REITs.
In general, we observe a 50% reduction in error when using
ML with TA indicators. For instance, we can observe that the
average RMSE obtained from the SVR algorithm is around
16.04 when we do not use TA and around 8.05 when we
use TA. In terms of volatility, we notice an improvement
in the RMSE distributions obtained from ML that use TA
compared to the benchmarks. For instance, we can observe
that the RMSE standard deviation is around 2.43 for the KNN
algorithm when we use TA and 4.87 when we do not use
TA. Moreover, we observe a large improvement from ML
algorithms to ARIMA: the average RMSE is 66.80 and the
standard deviation is 114.73.

Similarly to what observed for REITs, when predicting
stocks the average RMSE value for ML algorithms that use
TA tends to be around half that obtained from ML algorithms
that do not use TA. For instance, we observe that the average
RMSE for the KNN algorithm is 9.22 when we use TA and
18.58 when we do not use TA. The volatility values are also
favourable for the ML algorithms including TA. For instance,
the RMSE standard deviation for LR is 2.63 when including
TA and 5.69 when not including TA. Furthermore, the values

observed for the ML algorithms show an improvement in their
predictive power with respect to ARIMA in the case of stocks.
The average RMSE obtained from ARIMA is around 86.49,
while its standard deviation is 73.20.

Finally, we also analyze the predictive power of ML algo-
rithms and ARIMA for bonds. As we can observe, there is a
large improvement from the ML algorithms that do not use TA
to ML algorithms that use TA. For example, the average RMSE
value for the KNN algorithm is 5.36 when using TA and 10.42
when not using TA. In addition, the RMSE distributions appear
to be less volatile when using TA. For instance, the RMSE
standard deviation for LSTM is 3.17 when using TA and 5.83
when not using TA. The results for ARIMA show a higher
average error rate with respect to all ML algorithms (18.72)
and a higher volatility (26.97).

In order to determine the statistical difference between
the RMSE distributions obtained from the ML algorithms
using TA indicators as additional features and the RMSE
distributions obtained from algorithms using lagged values
only, we performed a Kolmogorov-Smirnov (KS) test at the
5% significance level. The null hypothesis is that the com-
pared RMSE distributions come from the same continuous
distribution. Since we are making three comparisons (one for
each asset class), we adjust the alpha value according to a
Bonferroni’s correction, i.e., 0.05/3 = 0.0167. The KS test
p-value for each one of the three tests for REITs, stocks, and
bonds is 7.08E-16, 2.08E-13, 3.41E-14, respectively. As we
can observe, all of the above p-values are lower than the 5%
significance level (adjusted α value: 0.0167), which strongly
suggests that the introduction of TA indicators results in a
clear reduction in the RMSE observed.

In conclusion, we observed that the use of TA can lead
to a significant improvement in the predictive power of ML
algorithms as demonstrated by KS test results. In particular,
there was a reduction in the average RMSE and its volatility
for ML algorithms that use TA compared to those that do
not use TA and ARIMA in the magnitude of 50%. Moreover,
we noticed the lowest RMSE values for bonds, followed by
REITs and stocks. This can be explained by the lower risk
that characterizes bond prices (see Section IV-A).

B. Shapley values

In the previous section, we have seen that introducing TA
indicators as additional features for our regression problem
can significantly reduce the error rate, and thus improve the
portfolio performance. In this part, we will analyze the relative
importance of the various features by using Shapley values,
which is a commonly used tool for model explainability
[33, 34]. Table VI reports the simple average of the Shapley
values calculated on the training set for each feature, shown
for each asset class. In the case of both REITs and stocks,
Momentum is the most relevant feature, followed by the 5-
day SMA. In the case of REITs, the Momentum’s average
Shapley value, 3.99E-04, is almost 100% higher than the 5-
day SMA’s Shapley value, 2.01E-04. In the case of bonds,
the momentum’s Shapley value, 5.15E-04, is around 200%



TABLE V
RMSE SUMMARY STATISTICS FOR THE THREE ASSET CLASSES.

REITs Stocks Bonds
Without TA With TA Without TA With TA Without TA With TA

Algorithm Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
LR 16.07 4.87 8.41 2.22 18.45 5.69 10.38 2.63 10.39 6.40 7.70 6.26
SVR 16.04 4.87 8.05 2.44 18.45 5.67 9.24 2.86 10.42 6.39 5.36 3.14
KNN 16.35 4.91 8.03 2.43 18.58 5.65 9.22 2.86 10.75 6.17 5.19 3.19
XGB 16.06 4.88 8.04 2.44 18.45 5.69 9.50 3.04 10.40 6.40 5.19 3.20
LSTM 16.16 4.94 8.22 2.34 18.48 5.67 9.42 2.88 12.21 5.83 5.40 3.17
ARIMA 66.80 114.73 - - 86.49 73.20 - - 18.72 26.97 - -

higher than the 5-day SMA, 1.64E-04. In the case of bonds,
the most important feature is the 5-day SMA, followed by
the momentum. In particular, the Shapley value for the 5-day
SMA, 6.06E-04, is almost 40% higher than the Shapley value
for the momentum, 4.38E-04. In general, the momentum and
5-day moving average seem to have higher relevance with
respect to the other features. This can be related to their
ability to explain the future trend of a security in a better
way than the prices of the previous days. The lagged prices
(Nt−1...Nt−T ) seem to have the lowest relevance among the
different variables. This might explain the large improvement
achieved by ML with TA in terms of RMSE (see Section V-A).
In the current literature, lagged observations are commonly
used for financial forecasting [35, 36].

TABLE VI
SHAPLEY AVERAGE FOR EACH FEATURE AND ASSET CLASS

REITs Stocks Bonds
Price N-1 8.50E-06 2.31E-05 1.11E-05
Price N-2 4.06E-06 4.68E-06 -7.36E-06
Price N-3 6.01E-06 -1.49E-06 -2.19E-06
Price N-4 4.66E-07 3.30E-07 2.62E-06
Price N-5 6.08E-07 4.45E-07 6.64E-07
ma5 2.01E-04 1.64E-04 6.06E-04
ma20 9.62E-06 1.08E-04 2.54E-05
25ema 4.96E-05 5.51E-05 -4.37E-06
10ema 7.02E-06 8.78E-06 2.30E-05
MACD 1.35E-04 3.91E-05 8.05E-05
20sd 5.42E-05 5.76E-05 7.95E-05
upper band -2.49E-06 6.75E-06 -2.77E-05
lower band 2.74E-06 3.90E-05 3.21E-05
ema 1.59E-04 -5.84E-06 1.30E-04
momentum 3.99E-04 5.15E-04 4.38E-04

C. Computational times

The computational times for the majority of algorithms are
similar. On average, ARIMA took 0.168 minutes to run, while
LR, SVR and KNN took between 0.2 and 0.3 minutes. LSTM
was the most computationally expensive at 1.818 minutes. But
this difference in runtime is not of concern, as usually such
algorithms are ran offline, and only their models are run in
real time. Besides, such algorithms’ computational times can
be reduced by parallelization processes [37].

D. Discussion

Our experiments aimed at demonstrating that adding TA
indicators as features in the regression algorithms can increase
the predictive power of our ML algorithms. We compared the

RMSE results for ML algorithms using TA against the results
obtained from ML algorithms using lagged prices only; we
also compared the ML algorithms with ARIMA. We observed
an improvement in the ability to predict out-of-sample asset
prices when adding TA indicators, which is close to a 50%
reduction in error. The lowest RMSE values were observed
for the bond asset class given its lower volatility compared to
the other asset classes. Moreover, we noticed that KNN and
XGB were the algorithms with the highest predictive power
among the others in the set.

Finally, we analysed the Shapley values for the different
features used in our regression problem. The most relevant
features were the Momentum, and 5-day Simple Moving
Average for all the asset classes considered. On the other hand,
we noticed that the lagged prices (used in the benchmark
algorithms as unique features) had the lowest relevance in
predicting the final prices.

VI. CONCLUSION

In this study, we focused on the problem of predicting
out-of-sample prices of REITs, stocks and bonds by using
five ML algorithms and Technical Analysis indicators. Our
experimental analysis indicates that adding TA indicators
in predicting prices increases the predictive power of ML
algorithms in this setting. This might be explained by the lower
feature importance observed for the lagged prices compared
to the other features. On the other side, the most important
features appear to be the Momentum and the 5-day Simple
Moving Average.

Further research can be done on adding other features
(e.g., fundamental analysis) to increase the accuracy of the
predictive models, and thus improve the risk-adjusted portfolio
performance of a multi-asset portfolio. Another opportunity for
future research can be to use more algorithms to predict real
estate prices.
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[34] D. Fryer, I. Strümke, and H. Nguyen, “Shapley values for feature
selection: the good, the bad, and the axioms,” IEEE Access, vol. 9,
pp. 144 352–144 360, 2021.

[35] S. Mehtab and J. Sen, “Stock price prediction using cnn and lstm-based
deep learning models,” in 2020 International Conference on Decision
Aid Sciences and Application (DASA). IEEE, 2020, pp. 447–453.

[36] J. Sen and S. Mehtab, “Accurate stock price forecasting using robust
and optimized deep learning models,” in 2021 International Conference
on Intelligent Technologies (CONIT). IEEE, 2021, pp. 1–9.

[37] J. Brookhouse, F. E. Otero, and M. Kampouridis, “Working with
OpenCL to speed up a genetic programming financial forecasting algo-
rithm: Initial results,” in Proceedings of the Companion Publication of
the 2014 Annual Conference on Genetic and Evolutionary Computation,
2014, pp. 1117–1124.


