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ABSTRACT
This paper proposes a novel strongly typed Genetic Programming
(STGP) algorithm that combines Technical (TA) and Sentiment anal-
ysis (SA) indicators to produce trading strategies. While TA and
SA have been successful when used individually, their combination
has not been considered extensively. Our proposed STGP algorithm
has a novel fitness function, which rewards not only a tree’s trading
performance, but also the trading performance of its TA and SA
subtrees. To achieve this, the fitness function is equal to the sum of
three components: the fitness function for the complete tree, the
fitness function of the TA subtree, and the fitness function of the
SA subtree. In doing so, we ensure that the evolved trees contain
profitable trading strategies that take full advantage of both techni-
cal and sentiment analysis. We run experiments on 35 international
stocks and compare the STGP’s performance to four other GP algo-
rithms, as well as multilayer perceptron, support vector machines,
and buy and hold. Results show that the proposed GP algorithm
statistically and significantly outperforms all benchmarks and it im-
proves the financial performance of the trading strategies produced
by other GP algorithms by up to a factor of two for the median rate
of return.
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1 INTRODUCTION
Algorithmic trading is the execution of orders using pre-programmed
trading strategies to generate profit. These systems have been used
in trading for many years with their popularity increasing con-
stantly, as the number of services and companies to trade increase.
The topic of algorithmic trading is popular amongst researchers,
too, who use Machine Learning (ML) implementations to maximise
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profits. ML algorithms examine historical information of the stock
market and identify patterns, “learning” how certain indicators are
associated with certain trends. Then, when they recognise such a
pattern, the algorithms generate signals indicating an upcoming
change in trend, which can be used to generate profit.

Technical analysis is a financial technique that uses price trends
and patterns to identify trading opportunities. Sentiment analysis
corresponds to recognising events relevant to stocks, identifying
their importance towards influencing their price and using that for
predicting stock prices. Researchers have mainly utilised Technical
Analysis (TA) indicators, such as volatility and moving average, for
algorithmic trading, but sentiment analysis (SA) indicators, such
as sentiment polarity, have also been successfully considered in
the more recent years. The benefits observed by the two individual
analyses have now brought about the promise of achieving an
improved performance by their combination. Indeed, [15] and [5],
very recently provided initial evidence supporting this promise, by
creating financially advantageous tradings strategies that utilise
both analysis types.

In this paper we combine TA and SA indicators in the context
of genetic programming (GP) algorithms. Our proposed algorithm,
STGP-SATA-sum, uses a strongly typed GP structure, where TA
and SA indicators are handled in separate parts of the model (sub-
trees/branches of the tree). As a result, each GP tree has a dedicated
branch that deals only with TA indicators and another branch that
deals only with SA indicators. This has the advantage of letting the
algorithm focus on the search space of each individual indicator
type and encourages better exploration and exploitation. As seen in
other studies [4, 5], combining the indicators into a GP algorithm
both enhances the financial advantages and assists the exploration
of the indicators.

The fitness function of the proposed STGP-SATA-sum takes into
account not only the performance of a given individual (tree), as
it usually happens in evolutionary algorithms, but also the per-
formance of the TA and SA subtrees. As a result, the GP evolves
individuals that ensure that both the technical and sentiment anal-
ysis indicators contribute to the overall performance of a GP indi-
vidual. This is particularly important, because it guarantees good
performance for each component of an individual (TA and SA sub-
trees), and also good performance for the overall individual, which
contains these TA and SA subtrees.

The purpose of the research is to showcase that combining TA
and SA indicators in the terminal set of the strongly typed GP can
be used to create financially advantageous trading strategies. Five
years’ data on 35 international companies’ stocks were used to
evaluate the performance of the proposed GP algorithm and four
other GP-variants with respect to three financial metrics (Sharpe
ratio, rate of return, risk). Furthermore, the proposed GP algorithm
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is compared against a financial benchmark, buy and hold, and two
algorithmic benchmarks, multilayer perceptron (MLP) and support
vector machine (SVM). Buy-and-Hold (BnH), is a common financial
strategy, where the investor buys stocks and holds them for a long
period of time, regardless of uncertainty and volatility.

The paper is organised as follows. We begin by introducing rel-
Ative research work in Section 2. The methodology of the research
can be found in Section 3 and the experimental setup in Section 4.
The results and the analysis of the study are presented and discussed
in Section 5. We conclude the paper in Section 6.

2 LITERATURE REVIEW
Technical analysis (TA) indicators and machine learning have long
been combined. Artificial neural networks are widely applied in fi-
nance for forecasting and algorithmic trading. For example, Mostafa
[14] used technical analysis indicators with linear models and Nel-
son et al. [16] used a long short-term memory (LSTM) model to
forecast future stock trends. For genetic programming, one of the
first papers to utilise technical analysis (TA) indicators for financial
forecasting was by Li and Tsang [11], where the algorithm was able
to outperform commonly used, non-adaptive, individual technical
rules. In the last decade, more studies have achieved similar results
[8, 9]. Berutich et al. [2] and Brabazon et al. [3] showed that genetic
programming (GP) algorithms can evolve trading strategies by gen-
erating solutions that endure extreme market conditions, as well
as, create new solutions and optimize the solution parameters.

Kohara et al. [10] used neural networks for Sentiment Analysis
(SA) and studied how to increase the accuracy of prediction of mul-
tivariate models using prior knowledge from newspaper headlines.
Xie et al. [20] generalized from sentences to scenarios and Ding et
al. [7] produced an event-driven stock model by feeding news into
a deep convolutional neural network (CNN). Christodoulaki et al.
[6] studied the individual properties and financial advantages of TA
and SA under a GP structure individually for algorithmic trading.

Peng and Jiang [18] used deep neural networks (DNN) to predict
stock price movements, combining prices and online financial news,
increasing the accuracy of the model. Vargas et al. [19] used text
mining on news from Reuters regarding the S&P500 index, along
with technical indicators, in a recurrent neural network (RNN) and
CNN hybrid model. Nan et al. [15] created a reinforcement learning
approach, utilising price data and news headline sentiments.

Yang et al. [21] considered combining TA and SA indicators and
compared the performance of individual and combined approaches.
Christodoulaki et al. [4] present a simple GP that combines the two
financial indicators. In [5] the authors considered the combination
of TA and SA indicators for algorithmic trading using a strongly
typed GP algorithms to enhance the exploration properties.

All of the above works have shown that both TA and SA indica-
tors can be used for profitable algorithmic trading. However, as we
can observe, there are limited works that have combined TA and
SA indicators. In addition, simply combining indicators under an
algorithm might not take full advantage of the potential of both
indicator types, as the search might focus on one type only. This
thus motivates us to use a strongly-typed GP, which enforces its
individuals (trees) to always contain dedicated TA and SA nodes.
In addition, to avoid individuals with weaker subtrees (e.g. most

trading actions could be coming from the TA subtree, while the SA
subtree having minimal or no actual contribution to trading), we
propose using a fitness function that also rewards the performance
of the TA and SA subtres. We present more details about this in the
next section.

3 METHODOLOGY
The methodology of our research has been divided in four parts.
Section 3.1 presents the two types of analysis and relevant indicators
(indicators) that we are going to consider. Section 3.2 covers the GP
methodology, including model representation and GP operators.
Section 3.3 discusses the trading algorithm utilised by the GP, while
Section 3.4 presents the fitness function and metrics that will be
considered.

3.1 Financial analysis processes
This section covers the processes of technical analysis and senti-
ment analysis in two separate subsections.

3.1.1 Technical analysis. Technical analysis (TA) is a popular tool
in financial forecasting and algorithmic trading, with researchers
using financial metrics to calculate and create new technical analy-
sis indicators, in order to recognize trends in the stock market and
generate higher profits.

Our study uses six widely-adopted technical analysis indicators,
namely the Moving Average, the Momentum, the Rate of Change,
the Williams %R, the Midprice and the Volatility, defined in Equa-
tions (1) - (6) below. These are calculated based on historical data
on (adjusted) close prices, highest and lowest daily prices of se-
lected companies, available on Yahoo! Finance (more details on our
datasets are presented in Section 4.1). Each indicator is considered
with respect to look-up windows of 𝑛 = 5 and 𝑛 = 10 days, giving
rise to 12 TA indicators summarized in Table 1.

Table 1: Technical Analysis indicators. Each indicator is con-
sidered for two different lookup windows (𝑛).

lookup windows 𝑛 = 5 and 𝑛 = 10
Moving Average
Momentum
ROC
Williams %R
Volatility
Midprice

The Moving Average is defined as follows, and is used to smooth
out the data and helps with noise elimination towards identifying
trends. 𝑝 𝑗 denotes the adjusted closing price of the 𝑗-th day in our
dataset for a corresponding stock.

Moving Average(𝑛, 𝑗) =
∑𝑗
𝑖=𝑗−𝑛 𝑝𝑖

𝑛
, for 𝑗 ≥ 𝑛. (1)

The Momentum captures the difference between the most recent
adjusted closing price and the adjusted closing price 𝑛 days ago, as
follows.

Momentum(𝑛, 𝑗) = 𝑝 𝑗 − 𝑝 𝑗−𝑛, (2)
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while the Rate of Change (ROC) normalizes the momentum.

ROC(𝑛, 𝑗) =
(

𝑝 𝑗

𝑝 𝑗−𝑛
− 1

)
· 100. (3)

The volatility is a statistical measure of the dispersion of returns
over a given period of time. We calculate the following relevant
indicator.

Volatility(𝑛, 𝑗) =

√√√
Var

({
𝑝 𝑗−𝑖
𝑝 𝑗−𝑛

− 1
}
𝑖∈{0,...,𝑛−1}

)
, (4)

where Var defines the sample variance over a dataset.
The Williams %R indicator, defined in Equation (5), reflects the

level of most recent closing price, 𝑐𝑙 𝑗 (at day 𝑗 ), to the highest high
price, ℎℎ𝑛,𝑗 , of all values in the lookup window ending at day 𝑗 . 𝑙𝑙𝑛,𝑗
denotes the lowest low price over all days in the lookup window
ending at day 𝑗 .

Williams %R(𝑛, 𝑗) = −100 ·
ℎℎ𝑛,𝑗 − 𝑐𝑙 𝑗

ℎℎ𝑛,𝑗 − 𝑙𝑙𝑛,𝑗
(5)

𝑀𝑖𝑑𝑝𝑟𝑖𝑐𝑒 , defined in Equation 6, returns the midpoint value of
the highest high price, ℎℎ𝑛,𝑗 , and the lowest low price, 𝑙𝑙𝑛,𝑗 , over
all days in the lookup window ending at day 𝑗 .

Midprice(𝑛, 𝑗) =
ℎℎ𝑛,𝑗 − 𝑙𝑙𝑛,𝑗

2
(6)

All TA indicators were normalised between [−1, 1].

3.1.2 Sentiment analysis. As financial markets get influenced by
events and stocks’ prices increase/decrease along with people’s
decisions on online information, there is a surge of studies using
sentiment analysis indicators in the areas of financial forecasting
and algorithmic trading. Sentiment analysis (SA) is the process
of extracting the sentiment out of articles and online comments
and utilising into increasing the accuracy of stock estimation and
trading strategies’ profits.

Two widely adopted sentiment analysis indicators are the senti-
ment polarity and subjectivity of given texts. The former, captures
the inclination of sentiment, and the relative text is classified as pos-
itive, negative or neutral. The latter captures the extent to which the
respective text expresses a personal opinion rather than a fact. In
our analysis we use indicators based on the above indicators, while
distinguishing between the method of calculating them (definitions
of respective methods appear below). In particular, we consider
12 SA indicators summarized in Table 2. All SA indicators were
normalised between [−1, 1].

Table 2: Sentiment Analysis Indicators

textBlob SentiWordNet AFINN
TEXTpol, TEXTsub TEXTsenti TEXTafinn
TITLEpol, TITLEsub TITLEsenti TITLEafinn
SUMMpol, SUMMsub SUMMsenti SUMMafinn

In sentiment analysis classification research, it is popular to
use specialized SA programs, namely TextBlob [13], SentiWordNet
[1] and AFINN sentiment [17] for calculating the polarity and/or
subjectivity of given texts. TextBlob is a Python library, offering a

simple API assisting in calculating the polarity and subjectivity of
the text. SentiWordNet 3.0 is an enhanced lexical resource, based
on lexical taxonomy,WordNet, of the English language, explicitly
devised to support sentiment classification and opinion mining. It
contains a list of words classified as positive, negative, or neutral and
an overall percentage of the sentiment of a given text is calculated
as the weighted average of the relevant words. AFINN sentiment is
a popular lexicon for sentiment analysis that contains more than
3300 words with a polarity score to each one of them, developed
by Finn Årup Nielsen. In our research, the in-built function for the
lexicon is being utilised, which is available in Python.

Our sentiment analysis indicators (Table 2) consider the polarity
and subjectivy levels extracted by TextBlob, as well as the sentiment
polarity extracted by SentiWordNet andAFINN. The relevant articles,
their titles and their summaries are considered separately, thus
giving rise to 12 SA indicators.

Our analysis included downloading articles relevant to selected
companies and associating their sentiment with the correspond-
ing date and price changes. We developed a scrapper that uses the
Google Search Console API in Python to download the first twenty
pages of daily Google Search results, using the name of each com-
pany as a keyword. The articles were downloaded for the same
period as for the TA indicators.

We narrowed our attention to articles of at least 500 characters
long, that included both the name of the corresponding company
and its stockmarket ticker. This helped ensure that we only consider
articles relevant to the companies that were downloaded correctly.

We matched the dates of the articles’ appearance with the rele-
vant stock price data. For articles appearing on weekends, when
the stock market is closed, the sentiment was included to that of
Friday’s, in order to capture their influence on the stock price of
the following day (Monday). In cases where more than one articles
were appearing for the same company on the same date, we found
the average sentiment value of the articles. For the days where no
articles were published, a sentiment of 0 was assigned to indicate
neutrality and/or no action, to ensure continuity of our datapoints.

3.2 Genetic programming and the
STGP-SATA-sum algorithm

We propose the STGP-SATA-sum algorithm; a novel strongly-typed
Genetic Programming algorithm whose fitness function considers
both the overall tree performance, as well as the performance of the
subtrees of Sentiment Analysis (SA), and Technical Analysis (TA).
We argue that both the strongly typed structure of our algorithm
and the proposed fitness function assist in the exploration process
of the vast search space.

Note that the models are found in the training process and then
they are implemented in the testing process/set to find the results
of the trees in unseen data.

3.2.1 Model representation. Our model representation requires
solutions to be presented in a tree structure consisting of a root
node, function nodes and terminal nodes. Part 1 of Figure 1 shows
a sample tree that the STGP-SATA-sum algorithm can create. The
strongly typed structure of our algorithm enforces that the root will
have two children, where each one allows for a different indicator
type. The root is always an AND function that unites the two
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branches; the first branch of the AND function is enforced to be
SA-related and the second branch is forced to be TA-related.

The function nodes are based on the logical functions AND,
OR, Greater than (GT) and Less than (LT), with different variants
allowing for different indicators. In particular, our algorithm uses
SA_AND, SA_OR, SA_GT, SA_LT function nodes in the SA branch
and it uses TA_AND, TA_OR, TA_GT, TA_LT function nodes in
the TA branch. The function set for all GP variants is summarised
in Table 3.

Table 3: Function set

Function set
Function set (STGP-
SATA-sum)

AND,

SA_AND, TA_AND,
SA_OR, TA_OR,
SA_GT, TA_GT,
SA_LT, TA_LT

With respect to terminal sets, the SA branch allows only for SA
terminals and the TA branch allows only for TA terminals. The
SA terminal set includes indicators summarized in Table 2 as well
as an Ephemeral Random Constant (ERC) that acts as a threshold
value to the indicators and takes a random value between −1 and 1.
Similarly, the TA terminal set includes indicators summarized in
Table 1, as well as the ERC.

3.2.2 GP operators. We use subtree crossover, which occurs with
probability 𝑝 , and point mutation, which occurs with probability
1−𝑝 . When performing subtree crossover in a strongly-typed setting
we exchange both the SA and the TA branches, but not between
themselves. The nodes need to be of the same type (e.g. a terminal
node with another terminal node) and of the same data type (SA
subtree with SA subtree). To ensure the legality of the tree exchange,
first we crossover the SA subtrees of the two selected parents and
when this process is completed, we crossover the TA subtrees of
the two trees.

When performing point mutation in a strongly-typed setting
there also are some constraints that need to be met. For example,
function node SA_OR can only be changed to SA_AND, function
node TA_GT can be replaced only with TA_LT (similarly for other
function nodes), an ERC can be only replaced with another ERC
and a terminal variable can only be replaced with another variable
from the same terminal set. The algorithm thus ensures that valid
data types replaced the mutated nodes.

3.3 Trading algorithm
The STGP-SATA-sum trees above are used to generate trading
signals. In particular, the binary outcome of the root AND function
is passed on to the STGP-SATA-sum algorithm and is used towards
making a recommendation to buy or hold a stock, as follows.

Every GP model that is being evolved is embedded into another
tree, which has an If-Then-Else (ITE) statement as its root, see
Figure 1. We note that only Part 1 of Figure 1 evolves through GP
operations. The second and third branches of the latter tree are fixed

and correspond to buy (1) and hold (0) recommendations, respec-
tively; so there is no need for them to be part of the evolutionary
process.

Figure 1: Sample tree of STGP-SATA-sum. The first child of
the AND function is forced to be SA-related and the second
child to be TA-related. This tree checks if the TEXTpol in-
dicator is greater than 0.7 (ERC) and if ROC is less than 0.3
(ERC). If both of them are true, the recommendation will be
to buy (1), otherwise it will be to hold (0).

The trading algorithm takes as input the 0/1 signals, as well as
two more parameters, 𝑑 and 𝑟 , as follows: when the signal is 1, the
algorithm buys one stock per trade, which it will sell when the price
increases by more than the rate of reference 𝑟 , or after 𝑑 days have
passed, whichever happens sooner. The algorithm won’t buy a new
stock if it still owns a previously bought one. Parameters 𝑑 and 𝑟
are optimized during the validation phase and are the same for all
GP algorithms considered but different across different companies
(see Section 4.3).

3.4 Fitness function and Metrics
Our analysis considers the metrics of return, risk and Sharpe ratio,
which are defined as follows.

The return, 𝑅, of a trade captures the profit made as a percentage
of the amount invested. The calculation of the profit takes into ac-
count transaction costs 0.025% of the selling price (𝑐𝑡 ). In particular,
the return is calculated as shown in Equation (7), where𝑉𝑓 denotes
the final value, or the price the stock was sold, and 𝑉𝑖 denotes the
initial value, or the price the stock was bought.

𝑅 =
(1 − 𝑐𝑡 )𝑉𝑓 −𝑉𝑖

𝑉𝑖
. (7)

The rate of return, 𝑅𝑜𝑅, denotes the sample mean of the returns
of all trades in a corresponding period of time in question.

The risk is captured as the standard deviation of the returns, that
is

√︁
𝑣𝑎𝑟 [𝑅].

The Sharpe ratio, 𝑆𝑟 , is defined as the ratio of the expected value
of the excess return compared to the risk free return, 𝑅𝑓 , over the
risk. Formally,

𝑆𝑟 =
E[𝑅 − 𝑅𝑓 ]√︁

𝑣𝑎𝑟 [𝑅]
, (8)

where 𝑅𝑓 is the risk free return.
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The fitness function, 𝑓𝑠𝑢𝑚 , of STGP-SATA-sum is defined as the
summation of the Sharpe ratio, 𝑆𝐶𝑟 , of the complete tree, which
combines SA and TA indicators; the Sharpe ratio, 𝑆𝑆𝐴𝑟 , of the subtree
that considers only SA indicators; and the Sharpe ratio, 𝑆𝑇𝐴𝑟 , of the
substree that considers only TA indicators, with weights𝑤𝑐 ,𝑤𝑠𝑎 ,
and𝑤𝑡𝑎 . Formally,

𝑓𝑠𝑢𝑚 = 𝑤𝑐 · 𝑆𝐶𝑟 +𝑤𝑠𝑎 · 𝑆𝑆𝐴𝑟 +𝑤𝑡𝑎 · 𝑆𝑇𝐴𝑟 . (9)

For example, in Figure 1, 𝑆𝐶𝑟 corresponds to the subtree with
root node AND (i.e. Part 1), 𝑆𝑆𝐴𝑟 corresponds to the subtree with
root node SA_GT (blue-coloured nodes), and 𝑆𝑇𝐴𝑟 corresponds to
the subtree with root node TA_LT (yellow-coloured nodes).

The advantage of using this fitness function is that it allows us
to evolve trees that maximise all three Sharpe ratios; as a result, the
GP can guide the search towards trading strategies that have strong
performance across all three components of the fitness function.
This is particularly important, because if, for example, the fitness
function was only the Sharpe ratio of the whole tree (as it usually
happens in such cases in the literature), the GP would be able
to identify well-performing trees, but would not necessarily take
advantage of its strongly typed nature that ensures that there are
always both TA and SA indicators present.1

Thus, in this paper, the proposed GP algorithm (STGP-SATA-
sum) is a strongly typed GP whose fitness function is the maximi-
sation of the Sharpe ratio produced by the weighted sum of the
TA subtree, the SA subtree and the complete tree that contains the
above two subtrees. The strongly typed structure of the GP allows
better exploration and exploitation of both TA and SA indicators,
and the fitness function enhances the contribution of each of these
indicators in the trading performance of the algorithm.

4 EXPERIMENTAL SETUP
4.1 Data
Our analysis is based on data on 35 companies, and datasets include
historical stock prices and relevant news articles. The companies
were selected based on their popularity, in order to ensure that a
sufficient amount of news articles is available. The analysis spans a
5-year period, between 1st January 2015 and 31st January 2020. The
period excludes the pandemic of COVID-19, because that would
make the train/validation sets too different from the test set, and
the parameter tuning would not be reliable.

The daily closing price data were downloaded from Yahoo! Fi-
nance. Regarding sentiment analysis, news articles, their titles and
summaries, were downloaded by a web scrapper that was devel-
oped in the context of this project. We could generate 24 relevant
indicators based on this data; see Section 3 for details. Finally, the
companies’ datasets were partitioned into three sets in sequence:
60% used for training, 20% for validation, and 20% for testing.

1In fact, early experiments have shown exactly this: when the fitness function was
only the Sharpe ratio of the whole tree, very frequently the best tree would have a
large and well-performing subtree on the SA side, but a small and bad-performing
subtree on the TA side. In addition, the performance of the overall tree was no better
than the performance of a non-strongly typed GP that allowed the presence of both
TA and SA indicators, thus making the use of the strongly typed feature, redundant.
Our proposed fitness function overcomes this limitation.

4.2 Benchmarks
The proposed STGP-SATA-sum is benchmarked against four other
GP algorithms:

• GP-TA is a (non-strongly typed) GP algorithm that only has
technical analysis indicators on its terminal set; the fitness
function is the maximisation of the Sharpe ratio of a given
tree.

• GP-SA is a (non-strongly typed) GP algorithm that only has
sentiment analysis indicators on its terminal set; the fitness
function is the maximisation of the Sharpe ratio of a given
tree.

• GP-SATA is a (non-strongly typed) GP algorithm that com-
bines indicators of technical and sentiment analysis; the
fitness function is the maximisation of the Sharpe ratio of a
given tree.

• STGP-SATA is a strongly typed GP algorithm that combines
indicators of technical and sentiment analysis; the fitness
function is the maximisation of the Sharpe ratio of a given
tree.

In addition, the following two algorithmic benchmarks were
considered:

• Multilayer perceptron (MLP) is a fully connected class of
feedforward artificial neural networks.

• Support vector machine (SVM) is a supervised learning
model.

The two benchmarks have been used widely in the relevant liter-
ature and, in this research, the built-in models of the scikit-learn
library in Python were utilised. We use these two algorithms to
tackle a binary classification problem in the form of “Is the stock
price going to increase by r% within the next n days?”. Class 1
denotes a buy action, and Class 0 denotes a hold action. The sell
action takes again place as a part of the trading strategy that was
described earlier in Section 3.3.

Finally, STGP-SATA-sum is evaluated against the following fi-
nancial benchmark:

• Buy-and-Hold𝑑,𝑟 (BnH𝑑,𝑟 ): Buy at the beginning of every
trading period. Sell when the price increases by more than
the rate of reference 𝑟 , or after𝑑 days have passed, whichever
happens sooner.

We use a novel alternative version of BnH as we are interested
to compare all financial metrics and not just the rate of return.
Furthermore, we compare the financial benchmark during the same
period as the test set of STGP-SATA-sum for a fair comparison.

4.3 Parameter tuning
The parameter tuning took place in two steps.

First, we selected appropriate values for the GP parameters of
population size, crossover probability (p), number of generations,
tournament size, andmaximumdepth of the trees, while keeping the
trading parameters 𝑑 and 𝑟 constant.2 A combination of parameters
was identified that performed equivalently well, and without any
statistical differences, for all GP variants (see Section 4.2); using the
same parameters for all GP models also enables a fair comparison.
2The mutation probability is 1 − 𝑝 , thus it was not necessary to include it in the
parameter tuning process.
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These GP parameters are summarized in Table 4 and are the same
in all runs, for all GP algorithms and across all companies. This
step was completed by a grid search using the validation data-set.
We also considered different values of the weights of the fitness
function components, i.e. 𝑤𝑐 , 𝑤𝑠𝑎 , and 𝑤𝑡𝑎 . We found that equal
weights (i.e., a weight of 0.33 for each component) offers the best
trading performance in the validation set.

Table 4: GP Parameters for GP-TA, GP-SA, GP-SATA. STGP-
SATA.

GP Parameters
Population size 1000
Crossover probability 0.95
Mutation probability 0.05
Generations 50
Tournament size 4
Maximum tree depth 6

The second step involves optimizing over the trading strategy
parameters 𝑑 and 𝑟 . These parameters are company-specific to
enable for better trading performance, while their tuning utilised
the validation set. They stay constant since the differences between
the validation and the test set are minimal.

The parameter tuning for MLP and SVM is performed separately
using binary classification, where one class corresponds to a price
increase for the next day, and the other corresponds to the price
decreasing or staying the same. Later, the model with the best pre-
dictive ability on the validation set is chosen. This is the predicted
class for the test set and it is later used as signals, fed into the trad-
ing strategy. The trading strategy parameters are set to be the same
𝑑 (days) and 𝑟 (percentage increase) values as in the GP-variants.
The tuning process for these two machine learning algorithms for
trading purposes is based on [12].

5 RESULTS
This section presents results of our experiments on the performance
of the STGP-SATA-sum algorithm against all other GP benchmarks,
along with a brief discussion. For each algorithm, 50 independent
runs were performed on the training set for each one of the 35
companies. Each run results in a tree/model which corresponds to
a trading strategy that is then evaluated in the test set. This takes
place after the tuning of the GP parameters that took place using
the validation set.

Our analysis only considers runs where the corresponding al-
gorithm performs at least two trades. This is because including
runs with zero or one trades would skew the statistical analysis, as
risk (and rate of return and Sharpe ratio, in the case of zero trades)
would be 0. In addition, risk being 0 means that the Sharpe ratio
cannot be calculated, as its denominator is equal to 0.

To increase confidence in our findings, a two-sample Kolmogorov-
Smirnov (KS) test was performed on all comparisons of the best
performing algorithm against the remaining GP algorithms, for
all the runs of each algorithm for each company, resulting in at
least two trades. The null hypothesis is that the respective two

distributions being compared each time, come from the same con-
tinuous distribution. The KS test was chosen due to its sensitivity
to differences in the shape of the empirical cumulative distribution
of two samples. To account for the multiple comparisons (multiple
benchmarks), the Holm-Bonferroni correction was performed. In
particular, the minimum acceptable p-value for a statistical signif-
icance at a 5% significance level is equal to 𝛼 (𝑟𝑎𝑛𝑘) = 0.05

4−𝑟𝑎𝑛𝑘+1 ,
which is different for the different ranks of the p-values calculated;
𝑟𝑎𝑛𝑘 ∈ {1, 2, 3, 4}. The 4 in the denominator corresponds to the
number of different comparisons, i.e. number of GP algorithms
STGP-SATA-sum is compared against, in each financial metric in-
dividually. Rank corresponds to the rank of the p-values, with 1
corresponding to the smallest p-value and 4 to the largest. In other
words, the first ranked p-value should be less than 0.0125, the sec-
ond less than 0.0166, the third less than 0.025 and the forth less than
0.05 to show that the two distributions are statistically different.

5.1 Summary statistics on financial metrics
5.1.1 GP algorithms - Sharpe ratio. Table 5 presents the mean, me-
dian, standard deviation (StDev), maximum (Max) and minimum
(Min) Sharpe ratio values for each algorithm over the 50 indepen-
dent GP runs on all companies. STGP-SATA-sum has the highest
mean, median, maximum, as well as the lowest minimum Sharpe
ratio values, while having the highest standard deviation value.

Table 5: Statistical analysis on Sharpe ratio values. Best values
denoted in boldface.

Algorithm Mean Median StDev Max Min
GP-SATA 2.98 1.36 10.7 44.8 -38.3
GP-SA 2.92 1.49 4.49 17.8 -1.09
GP-TA 2.72 1.46 6.3 17.6 -20.9
STGP-SATA 3.21 1.8 4.71 18 -9.73
STGP-SATA-sum 7.44 2 13.55 72.5 -0.41

Table 6 presents the KS test p-values for the comparisons against
the best ranking algorithm (i.e. STGP-SATA-sum). When p-value is
below its corresponding significance level (indicating a statistically
significant difference between the two distributions), we denote this
by putting the relevant p-value in bold face. As we can observe, the
average Sharpe ratio values of STGP-SATA-sum statistically out-
perform those of the other algorithms in the different significance
levers based on Holm-Bonferroni correction. The only exception is
GP-SA, where the p-value is marginally above the 5% level, thus
making their difference statistically significant at the 10% level.

Table 6: KS test p-values on mean Sharpe ratio. Statistical sig-
nificance changes based on the Holm-Bonferroni correction.

Algorithm STGP-SATA-sum
p-values

Rank Significance
level

GP-SATA 6.42E-08 2 0.016
GP-SA 0.051 4 0.05
GP-TA 3.61E-17 1 0.0125
STGP-SATA 0.0001 3 0.025
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5.1.2 GP algorithms - Rate of Return. Table 7 presents our results
on the rate of return (RoR) per algorithm. STGP-SATA-sum has,
again, the highest mean, median, maximum, as well as the lowest
minimum values, while GP-TA has the highest standard deviation.
The advantage of combining SA and TA analyses’ indicators is
particularly evident in the median RoR column, where STGP-SATA-
sum performs almost twice as well as the other algorithms.

Table 7: Statistical analysis on rate of return values. Best
values denoted in boldface.

Algorithm Mean Median StDev Max Min
GP-SATA 0.012 0.007 0.02 0.094 -0.02
GP-SA 0.009 0.008 0.022 0.064 -0.04
GP-TA 0.010 0.009 0.03 0.09 -0.08
STGP-SATA 0.014 0.008 0.019 0.09 -0.006
STGP-SATA-sum 0.017 0.016 0.018 0.09 -0.004

The KS test p-values in Table 8, show that themean RoR results of
STGP-SATA-sum are statistically significant and they statistically
outperform the mean values of the other algorithms. The only
exception is again in the comparison with GP-SA, where their
difference is statistically significant at the 10% level.

Table 8: KS test p-values on mean rate of return. Statistical
significance changes based on the Holm-Bonferroni correc-
tion.

Algorithm STGP-SATA-sum
p-values

Rank Significance
level

GP-SATA 1.89E-06 2 0.016
GP-SA 0.051 4 0.05
GP-TA 9.87471E-16 1 0.0125
STGP-SATA 0.005 3 0.025

5.1.3 GP algorithms - Risk. Table 9 summarizes the results on the
risk of each of the algorithms. STGP-SATA-sum has the lowest
mean, median, standard deviation and maximum risk values, while
each algorithm exhibits minimum risk equal to 0.

Table 9: Statistical analysis on risk values. Best values de-
noted in boldface.

Algorithm Mean Median StDev Max Min
GP-SATA 0.029 0.022 0.023 0.09 0
GP-SA 0.028 0.021 0.021 0.07 0
GP-TA 0.026 0.021 0.021 0.09 0
STGP-SATA 0.025 0.025 0.018 0.063 0
STGP-SATA-sum 0.017 0.015 0.014 0.058 0

Again, the STGP-SATA-sum algorithm is the best performing
algorithmwith respect to risk. Table 10 presents the p-values for the
KS tests and the significance level thresholds based on the Holm-
Bonferroni correction. STGP-SATA-sum manages to statistically
outperform all other four algorithms in terms of risk.

Table 10: KS test p-values on mean risk. Statistical signifi-
cance changes based on the Holm-Bonferroni correction.

Algorithm STGP-SATA-sum
p-values

Rank Significance
level

GP-SATA 0.0002 2 0.016
GP-SA 0.01 4 0.05
GP-TA 1.42E-13 1 0.0125
STGP-SATA 0.003 3 0.025

5.2 STGP-SATA-sum - Weights of Fitness
Function

In this section, we present indicative scenarios of different weight
combinations of the three components of the fitness function, to
better understand how the weights affect the trading performance.
In particular, we considered the case of equal weights and three
cases where the algorithm that combines the SA and TA indicators
is set as the main component with 50% weight: in one, the two
individual components are considered with equal weights, while in
the other two one of them is prioritised. These results in Tables 11 -
13 demonstrate that equal weights have better performance across
the three metrics of Sharpe ratio, rate of return, and risk.

Table 11: Sharpe ratio of weights

Weights (𝑤𝑐 ,𝑤𝑠𝑎,𝑤𝑡𝑎) Mean Median StDev
0.33, 0.33, 0.33 7.44 2 13.55
0.5, 0.25, 0.25 4.85 0.73 13.1
0.5, 0.15, 0.35 4.48 0.90 9.8
0.5, 0.35, 0.15 3.77 0.56 12.2

Table 12: Rate of returns of weights

Weights (𝑤𝑐 ,𝑤𝑠𝑎,𝑤𝑡𝑎) Mean Median StDev
0.33, 0.33, 0.33 0.017 0.016 0.018
0.5, 0.25, 0.25 0.008 0.006 0.031
0.5, 0.15, 0.35 0.007 0.005 0.024
0.5, 0.35, 0.15 0.011 0.010 0.025

Table 13: Risk of weights

Weights (𝑤𝑐 ,𝑤𝑠𝑎,𝑤𝑡𝑎) Mean Median StDev
0.33, 0.33, 0.33 0.017 0.015 0.014
0.5, 0.25, 0.25 0.029 0.021 0.024
0.5, 0.15, 0.35 0.030 0.021 0.023
0.5, 0.35, 0.15 0.029 0.029 0.020

More specifically, STGP-SATA-sum using the equal weights of
0.33 has a higher average Sharpe ratio and median; while its stan-
dard deviation is high due to outliers. Furthermore, it statistically
outperforms the other weight variations with p-values of 0.000344,
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0.00702 and 0.00046 as they are introduced in Table 11. The 𝛼 levels
are again based on the Bonferroni-Holm correction.

With respect to rate of return, the proposed algorithm has double
the average and median of the other weight combinations, while it
has the lowest standard deviation, too. STGP-SATA-sum with the
equal weights statistically outperforms the algorithms shown in
Table 12 0.00107, 0.00476 and 0.00074.

For risk, it again, showcases the least risk value in mean, median
and standard deviation. This time, it does not statistically outper-
form the weight variations in Table 13, as the p-values are 0.059,
0.0218 and 0.039.

5.3 STGP-SATA-sum VS algorithmic and
financial benchmarks

The average values of the three metrics for MLP, SVM and the
financial benchmark BnH𝑑,𝑟 on the 35 companies appear in Table
14, while the median values can be found in Table 15.

Table 14: MLP, SVM and BnH𝑑,𝑟 average values

STGP-SATA-sum MLP SVM BnH𝑑,𝑟

Sharpe ratio 7.44 0.31 0.32 0.12
RoR 0.017 0.01 0.01 0.0075
Risk 0.017 0.043 0.043 0.073

Table 15: MLP, SVM and BnH𝑑,𝑟 median values

STGP-SATA-sum MLP SVM BnH𝑑,𝑟

Sharpe ratio 2 0.19 0.20 0.10
RoR 0.016 0.007 0.007 0.004
Risk 0.015 0.04 0.04 0.04

As we can observe, STGP-SATA-sum has noticeably higher aver-
age and median values than MLP, SVM, and BnH𝑑,𝑟 . The mean rate
of return (RoR) values are similar among all algorithms, but the me-
dian RoR for STGP-SATA-sum is at least double when compared to
the benchmarks. Lastly, our proposed algorithm introduces risk re-
ductions in both average and median values in factor of at least two.
The above results are also confirmed by a Kolmogorov-Smirnov test,
which returns a p-value of 8.86𝐸 − 11 (Sharpe ratio), 0.0020 (RoR),
and 1.11𝐸 − 05 (Risk) between STGP-SATA-sum and MLP. Similarly,
the p-values between STGP-SATA-sum and SVM were 8.86𝐸 − 11
(Sharpe ratio), 0.010 (RoR) and 3.65𝐸 − 05 (Risk). Thus in both cases
there was statistical significance between the differences between
the distributions at the 5% significance level. Lastly, the K-S test
p-values when comparing the distributions of STGP-SATA-sum
and BnH𝑑,𝑟 are 5.96𝐸 − 14 for Sharpe ratio, 4.32𝐸 − 06 for rate of
return and 1.35𝐸 − 08 for risk, which again confirm that there is
statistically significant difference between the two distributions.
Note that the Holm-Bonferroni correction was again accounted for
the above statistical differences.

5.4 Discussion
We can summarise our findings as follows.

Combining technical and sentiment analysis indicators leads to
profitable trading strategies, while at the same time maintaining low
risk levels. In fact, all variants that combined technical analysis and
sentiment analysis (i.e. GP-SATA, STGP-SATA, and STGP-SATA-
sum) gave better mean results for Sharpe ratio and rate of return,
when compared to the individual TA and SA strategies, i.e. GP-TA
and GP-SA. In terms of risk, STGP-SATA and STGP-SATA-sum had
the lowest values.

The strongly-typed GP framework ensures that both technical anal-
ysis and sentiment analysis indicators are represented in solutions. A
weakness of the non-strongly-typed GP-SATA is that it can return
individuals with no indicators of SA or TA type. As a result, it’s
not able to fully take advantage of the fact that its feature set al-
lows both types of indicators. This has negative effects in its mean
performance, as it always performs worse to the STGP variants.

The proposed fitness function ensures that the GP evolves indi-
viduals with strong performing SA and TA subtrees, significantly
improving the trading performance. This is particularly evident in
rate of return (Table 7), where we can observe that STGP-SATA-
sum’s median value of 0.016 is approximately the sum of GP-SA’s
median value (0.008) and GP-TA’s median value (0.009); indicating
that the fitness function has managed to take full advantage of the
strengths of the technical and sentiment analysis indicators and
essentially ‘combine’ the performance of thes two algorithms.

6 CONCLUSION
To conclude, we presented a novel strongly typed GP that combines
technical and sentiment analysis indicators under a fitness function
that takes into account the Sharpe ratios of the individual subtrees.
Our algorithm was compared to four other GP algorithms, as well
as other financial and machine learning benchmarks, across 35
datasets. The findings showed that the proposed GP statistically
and significantly outperforms all other algorithms.

Our results demonstrate the significance of combining indica-
tors from technical and sentiment analysis, towards enhancing the
models’ knowledge and achieving financially advantageous trading
strategies. It is also evident that simply combining the indicators is
not enough and it is important to effectively search the spaces of both
types of indicators with a strongly typed architecture. Finally, we
observed how an appropriately defined fitness function can lead to
a clearly improved performance.

Future work will focus on adding a third type of feature set in
the strongly-typed GP setting, namely fundamental analysis. This
type of analysis forms a different ‘school of thought’ to technical
analysis, and views the performance of a company by looking into
its financial statements. It also considers the macroeconomic factors
such as interest rates, unemployment rates, and GDP (gross domes-
tic product). It is not common to produce trading strategies that
include both fundamental and technical analysis (let alone all three
types of analysis), and we believe that doing so under the above
GP framework can lead to an even better financial performance.
Furthermore, we will include multi-objective optimisation in our
research, as a form of comparison and extension of our current
novel algorithms.
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