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Abstract—The main purpose of portfolio optimization is to
reduce the risk, and/or maximize the return of a group of
investments. Most of the works that have been done on port-
folio optimization are based on the Modern Portfolio Theory
introduced by Markowitz in 1959. Some of them have employed
price predictions to compute optimal asset weights. It has been
demonstrated that using price predictions, instead of historical
data, might improve portfolio performance under a risk-adjusted
perspective. However, contributions in the field mainly focused
on stocks, while little attention has been given on multi-asset
portfolios including real estate. In this paper, we fill this gap by
running a genetic algorithm on 456 portfolios to demonstrate the
added value of including price predictions in our asset allocation
problem. To investigate this, we compare the theoretical case
of having a perfect foresight, where the predicted price pt is
exactly the same as the expected price pt; under this case, the
portfolio optimization task takes place in the test set (since
we have assumed a perfect price prediction). We compare the
results under perfect foresight with results derived from portfolio
optimization that only took place in the training set, and the
weights were then directly applied to the test set. Our goal is to
demonstrate the theoretical advantages of using price predictions
on mixed-asset portfolios that include real estate. Our results
show that there can be significant improvements (up to 45%)
in sharpe ratio, rate of return, and risk, when using price
predictions instead of a historical prices based portfolio.

Index Terms—genetic algorithm, mixed-asset portfolio, perfect
foresight, portfolio optimization, risk-adjusted return

I. INTRODUCTION

Portfolio optimization involves selecting optimal weights for
a given set of assets (i.e., that maximize return and/or minimize
risk). One asset class that has been gaining popularity in
mixed-asset portfolios is real estate and in particular Real
Estate Investment Truests (REITs). A REIT is a company
which owns and manages real estate assets. Buying shares in
REITs provides investors with the same benefits of investing
in real estate (i.e., steady income, diversification, etc.), and
at the same time, it requires a relatively low initial expense
without the need to engage in real estate management.

Many works in the literature perform portfolio optimization
by calculating the optimal weights in a training set and then
applying those weights to an unseen test set [1, 2, 3]. A
potential disadvantage of this approach is that prices in the test
set might be significantly different than prices in the training
set. As a result, weights computed using the training set might

not fit the test set very well and thus lead to worse portfolio
performance (i.e., increased risk and/or reduced return).

To alleviate the above issue, an alternative approach is to try
and predict prices in the test set, and then perform the portfolio
optimization task (i.e. calculating the optimal weights) directly
in the test set [4, 5, 6, 7, 8]. The advantage of this approach is
that we focus only on the data period we’re interested in (i.e.,
the test set); as a result, accurate predictions would closely
reflect the prices in the test set, and thus lead to a more efficient
portfolio selection. However, the quality of the results is very
much dependent on the effectiveness of the price predictions.

While the above methodology has been used before in
mixed-asset portfolios, it has never been used before in portfo-
lios that include REITs. To the best of our knowledge, portfolio
optimization with REITs has only taken place by calculating
the optimal sets of weights in the training set [9, 10].

The novelty of this work lies in the consideration of multi-
asset portfolios including (both domestic and international)
REITs in optimization problems involving perfect foresight.
Our goal is to investigate the potential added benefits of using
price predictions in the test set for portfolios that include
REITs, rather than historical data. To do this, we assume
the theoretical case of having perfect foresight in the test set,
i.e. our price predictions are 100% correct. We then perform
the optimization task directly in the test set and compare the
performance of financial metrics, such as Sharpe ratio; rate of
return; and risk, to the results obtained by having estimated
the optimal weights in the training set and then applying them
to the test set. We will use a genetic algorithm to optimize
the portfolio weights, as this a well-known state-of-the-art
algorithm for this type of problems [11, 12].

Moreover, as the literature usually focuses on portfolios
with REITs from a single country, they tend to miss potential
opportunities that might arise from including REITs of dif-
ferent countries. This work considers mixed-asset portfolios
composed of stocks, bonds, and REITs belonging to three
different countries, and will demonstrate that such approach
might offer potential diversification benefits. In addition, the
current literature is referred to time periods ranging from
the 1990s to the Global Financial Crisis (GFC) period. None
of them analyzes the 2020-2021 period, which is of interest
because of the Covid-19 pandemic, or other political events
such as Brexit (in the case of the UK market).



The rest of this paper is organized as follows. Section
II presents a brief background on modern portfolio theory
and a literature review on REITs and portfolio optimization,
and Section III discusses the methodology of this paper. Our
experimental setup is presented in Section IV. Section V
provides a detailed discussion of the experimental results we
obtained by both using historical data and perfect foresight.
Finally, Section VI concludes the paper.

II. BACKGROUND AND LITERATURE REVIEW

Modern portfolio theory (MPT) is a mathematical frame-
work that is largely used to solve asset allocation problems.
The main assumption of MPT is that investors are risk averse
in the sense that the less risky portfolio among those that
portfolios that provide the same expected return. Consequently,
one will choose a riskier portfolio only if compensated by
a higher expected return. Different investors have different
preferences over such tradeoffs based on their individual risk
aversion levels.

According to MPT, a portfolio is considered efficient when
its expected return is maximized for a given level of risk, or
its expected risk is minimized for a given level of return. The
expected return of the portfolio is expressed as a weighted
average of the historical returns of the assets included in
the portfolio, where the weighting factors are the proportions
allocated to the different asset classes. The expected risk of the
portfolio is expressed as the variance of the historical returns
of the asset classes, and is a function of the correlations ρij , for
all pairs of asset (i, j). Given specific combinations of assets
and standard deviations of asset returns, the highest possible
standard deviation of portfolio returns is obtained when all
correlations are equal to 1, which means that all asset pairs are
perfectly correlated to each other. It is possible to reduce the
portfolio’s expected risk by selecting combinations of assets
that are not perfectly positively correlated (i.e., −1 < ρij < 1).
This is known as diversification. If all asset pairs are perfectly
uncorrelated (ρij = 0 for all i, j), the variance of the portfolio
returns is the sum of the squares of all asset weights times the
asset’s return variance. If all asset pairs are perfectly positively
correlated (ρij = 1 for all i, j), then the standard deviation of
the portfolio returns is the sum of the standard deviations of the
underlying asset returns, weighted by the proportion allocated
to each asset class.

Including REITs in mixed-asset portfolios has been shown
to have many advantages. Buying shares in REITs provides
investors with the same benefits of investing in real estate (i.e.,
steady income, diversification, etc.), and at the same time, it
requires a relatively low initial expense without the need to en-
gage in real estate management. Several authors demonstrated
the risk-adjusted performance and portfolio diversification
benefits of REITs in mixed-asset portfolios [13, 14, 15, 16,
17, 18]. In particular, [13] used monthly total returns for
stocks, bonds, and Japan REITs (J-REITs) to demonstrate that
the risk-adjusted performance of J-REITs outperformed all of
the other asset classes due to lower risk and higher average
return. In the same way, [14] provided evidence that Malaysia

REITs offer some diversification benefits when included in
a mixed-asset portfolio due to their low correlation to the
other asset classes. By using South Africa financial data,
[15] demonstrated that while stocks are the best performing
asset, REITs serve as return-enhancer when included in a
mixed-asset portfolio, and tend to contribute to the portfolio
risk reduction. With reference to the French financial market,
[13] found out that the risk adjusted performance of REITs
outperformed all of the other asset classes due to the lower
risk and higher average return. This appeared to offer some
diversification benefits to the mixed-asset portfolio. [17] ex-
amined the development of REITs in Thailand over the 2003-
2010 period, and found out that pre-GFC and during the GFC,
Thai REITs offered little diversification benefits to mixed-asset
portfolios, while during the post-GFC period, Thai-REITs
gained a significant role in the mixed-asset portfolios. [18]
showed that Singapore REITs contributed to the risk reduction
of mixed-asset portfolio during the 2003-2013 period.

All of the above-mentioned works focused on historical
data: portfolio optimization problems were solved using histor-
ical average returns, instead of return predictions. Moreover,
they focused on single countries, thus missing potential op-
portunities that might arise from including REITs of different
countries. Moreover, the current literature is referred to time
periods ranging from the 1990s to the post-GFC period. None
of them analyzes the 2020-2021 period, which as mentioned
earlier is of interest because of the Covid-19 pandemic and
other political events such as the Brexit (in the case of the
UK market).

This work thus considers mixed-asset portfolios composed
of stocks, bonds, and REITs belonging to three different
countries, and will demonstrate that such approach might
offer potential diversification benefits. In the next section, we
present our methodology of using perfect foresights and a
genetic algorithm for the portfolio optimization task.

III. METHODOLOGY

A. Portfolio optimization under perfect foresight

As previously explained, our goal is to demonstrate that
portfolio optimization in the test set under the assumption
of perfect foresight will lead to better performance (in terms
of financial metrics) when compared to optimization that has
taken place on the training set.

The methodology used in this work follows two steps:
• The first step consists of optimizing asset weights using

returns calculated on the test set.
• The second step consists of calculating the expected

return, expected risk, and Sharpe ratio for all asset
combinations.

As to the first step, we run a genetic algorithm (which we
discuss in Section III-B) on all possible asset combinations.
For example, if we have in total 3 assets (Asset A, B, and
C), then we run the genetic algorithm for a total of 3 times
(to optimize the weights if the portfolio consists only of
Assets A and B; or if the portfolio consists only of Assets



B and C; of if the portfolio consists of Assets A, B, and C).
The advantage of this approach (rather than performing the
portfolio optimization task a single time on all available assets
altogether) is that is allows us to investigate a much higher
number of portfolio combinations and thus be able to better
generalize our findings under perfect foresight. As mentioned
above, the genetic algorithm is applied directly on the test set,
as we have made the assumption of having a perfect foresight
of the future prices.

In the second step, we use the optimal weights obtained
from the first phase to compute the expected return, expected
risk, and Sharpe ratio of the GA runs. The hypothesis behind
our experiments is that this portfolio optimization strategy
would result in better portfolio performance than in the case
of optimal weights calculated on historical average returns.

B. Portfolio optimization via a Genetic Algorithm

Evolutionary algorithms have been widely used for finan-
cial applications (e.g. [19, 20, 21, 22]), including portfolio
optimization [23, 24]. To tackle the portfolio optimization
problem we consider in this paper, we use a particular type
of evolutionary algorithm known as genetic algorithm (GA)
[25, 26, 27]. Below we briefly discuss the GA we have used.

GA chromosomes (or, individuals) consist of N genes indi-
cating the weights allocated to the N assets in the portfolio.
The weight are real numbers in the interval [0, 1], and their
sum is equal to 1. For example, a GA individual that has the
genotype [0.5 0.2 0.3] indicates that there are three assets, and
the weight for those asset are 0.5, 0.2, and 0.3, respectively.
Initially, all genes are assigned the same weight (in particular,
Wi = 1/N for each asset i), which are then evolved according
to a set of operators.

We use elitism, one-point crossover and one-point mutation.
Since we use market proxies in our experiments, the number
of assets is small, and thus one-point crossover and mutation
are sufficient (see Section IV for more details). After the
application of crossover and mutation, we apply normalization
to each GA individual, to ensure that the sum of weights
remains equal to 1.

State-of-the-art methods for solving portfolio optimization
problems have used many different metrics as fitness functions.
In this paper, we use the Sharpe ratio, defined as the ratio of
the difference between the average return and the risk-free
rate, over the standard deviation of the returns, that is,

S =
r − rf
σr

, (1)

where r is the average return of the investment, rf is the risk-
free rate, and σr is the standard deviation of the returns.

IV. EXPERIMENTAL SETUP

Our experiments aim to provide evidence that optimizing
asset weights under a hypothetically perfect foresight situation
results in better portfolio performance than in the case of
historical data.

A. Data

We use daily prices over the period between June 2017
and January 2021. The training period is from June 2017 to
December 2019 (inclusive) and the test period is from January
2020 to January 2021 (inclusive). We adopt the perspective
of an institutional investor from the US who wants to gain
exposure to international markets (UK and Australia). The
asset classes we consider are stocks, bonds, and listed real
estate.

As other authors did previously [28, 1], we use index prices
as data for our experiments. Stocks are proxied by the S&P
500 index for the US marked, by the FTSE 100 index for the
UK market, and by the S&P/ASX 200 index for the Australian
market. For the bond asset class, we use the indices issued by
Dow Jones for all the three markets considered. Finally, we
use the FTSE/EPRA NAREIT indices to proxy the real estate
markets. We thus have 9 asset classes, namely 3 stocks, 3
bonds, and 3 REITs.

Table I presents the Sharpe ratio for each asset class for the
period between 2017 and 2019. The Sharpe ratio is calculated
as the ratio between each asset’s average return and its risk.
From the values shown in Table I, we can observe that the
real estate asset class generally presents a lower level of
performance (that is, lower Sharpe ratio) compared to the other
asset classes for the considered period.

Table II presents the Sharpe ratio for each asset class for
the period between 2020 and 2021 (which corresponds to the
Covid-19 pandemic period). From the values shown in Table
II, we can observe that the risk-adjusted performance of the
real estate asset class improves with respect to the previous
period, and appears to be even better than that of the other asset
classes. Such improvement in REIT performance is expected
to result in better portfolio optimization performance when the
testing set (rather than the training set) is used.

The reason we have chosen to include REITs in this
mixed-asset portfolio is because of the diversification they
bring in. From the correlation matrix shown in Table III,
we can observe that the real estate asset class generally has
relatively lower correlation with the other asset classes, thus
justifying its diversification potential. More specifically, a low
or zero correlation between two asset classes might reduce a
portfolio’s overall level of risk. For example, regarding the
correlation between real estate and stocks, the US REIT index
has a correlation of 0.267 with the FTSE 100, and of 0.217
with the S&P/ASX 200 index. Its correlation with the S&P
500 index (belonging to the same country) presents a higher
value of 0.541 which is considered a low correlation value.
Moreover, the UK REIT has a correlation of 0.34 with the
S&P 500 index, of 0.728 with the FTSE 100 index, and of
0.329 with the S&P/ASX 200 index. As to the correlation
between real estate and bonds, we observe that US REITs have
a correlation of 0.547 with the US bonds, of 0.249 with the
UK bonds, and of 0.17 with the Australian bonds. Moreover,
the UK REITs have a correlation of 0.347 with the US bonds,
of 0.726 with the UK bonds, and of 0.299 with the Australian



TABLE I: Sharpe ratio for each asset class from 2017 to 2019 (training set)

S&P 500 FTSE 100 S&P/ASX 200 US bond UK bond AU bond US REIT UK REIT AU REIT
5.16% 0.22% 0.58% 5.06% 0.29% 0.69% 0.43% -0.77% 1.02%

TABLE II: Sharpe ratio for each asset class from 2020 to 2021 (test set)

S&P 500 FTSE 100 S&P/ASX 200 US bond UK bond AU bond US REIT UK REIT AU REIT
3.73% 1.27% 2.33% 3.53% 1.32% 2.49% 4.49% 4.26% 3.10%

TABLE III: Correlation coefficients between asset classes.

S&P 500 FTSE 100 S&P/ASX 200 US bond UK bond AU bond US REIT UK REIT AU REIT

S&P 500 1 0.515 0.326 0.999 0.48 0.259 0.541 0.34 0.249
FTSE 100 0.515 1 0.464 0.521 0.946 0.449 0.267 0.728 0.334
S&P/ASX 200 0.326 0.464 1 0.329 0.443 0.939 0.217 0.329 0.73
US bond 0.999 0.521 0.329 1 0.488 0.263 0.547 0.347 0.251
UK bond 0.480 0.946 0.443 0.488 1 0.489 0.249 0.726 0.31
AU bond 0.259 0.449 0.939 0.263 0.489 1 0.17 0.299 0.668
US REIT 0.541 0.267 0.212 0.547 0.249 0.17 1 0.272 0.234
UK REIT 0.34 0.728 0.329 0.347 0.726 0.299 0.27213 1 0.283
AU REIT 0.249 0.334 0.73 0.25 0.31 0.668 0.234 0.283 1

bonds.
As we can observe, there appears to be a low correlation be-

tween asset classes belonging to different markets. This could
open opportunities to an international diversification. In other
words, an investor might find diversification opportunities in
gaining exposure to foreign markets.

B. Experimental parameters

To decide the parameter values, we undertook a param-
eter tuning process using the I/F-Race package [29]. I/F-
Race implements the iterated racing procedure, which is an
extension of the Iterated F-Race process and builds upon the
race package by [30]. Its main purpose is to automatically con-
figure optimization algorithms by finding the most appropriate
settings, given a set of instances of a problem.

In our case, I/F-Race was applied to data for the period
from June 2017 to December 2018. The following twelve
months (January-December 2019) were used only with the
already tuned parameters, after I/F-Race was completed. In
other words, the first period was used as a training dataset
for parameter tuning, while the second period was used as a
validation dataset for parameter testing. The period January-
January 2021 was the test set, and remained unseen during the
parameter tuning process. At the end of the tuning process,
we picked the best parameters returned by I/F-Race, which
constitute the experimental parameters used by our algorithms,
and are presented in Table IV.

C. Benchmark: Historical data approach

In order to demonstrate the potential improvement from
the perfect foresight situation, we compare their results with
results obtained from experiments under the historical method.
In other words, we used the 2017-2019 period as the training

TABLE IV: I-Race Parameter Tuning Results.

Parameter Value

Tournament size 3
Population size 300
Crossover rate 1.0
Mutation rate 0.01
Number of generations 10

set, where we ran the portfolio optimization task. After the
weights were obtained in the training set, we then applied
them to the test set (2020-2021 period), and then compared
the financial performance (Sharpe ratio, rate of return, risk)
against the perfect foresight results. We again used a genetic
algorithm for the portfolio optimization task. The GA used the
same parameters that were presented above in Table IV.

V. RESULTS

A. Summary statistics

In this Section, we present results from our experiments
conducted under a perfect foresight situation and historical
data case, and discuss our conclusions (in Section V-C).
Results are presented as averages over 20 individual GA runs.
It should also be noted that all results are daily results. So
when, for example, we present a seemingly “low” return of
around 0.03%, its annual equivalent would be around 11.6%.

As previously explained, under the perfect foresight situa-
tion, we assume that the predicted price at ti is exactly the
same as the actual price at ti. In other words, this hypothetical
prediction model leads to a zero error rate. We compare the
portfolio performance results obtained from such model with
those obtained from the historical data approach. As mentioned
in Section III, have we run the genetic algorithm multiple



TABLE V: Average GA expected return for the portfolios.

Metrics Historical data approach Perfect foresight approach Relative difference KS test results (p-values)

Overall 4.03e-04 4.60e-04 14.21% 9.08e-75
Two assets 3.63e-04 4.30e-04 18.36% 0.0059

Three assets 3.90e-04 4.50e-04 15.32% 7.59e-13
Four assets 4.08e-04 4.63e-04 13.38% 5.03e-28
Five assets 4.17e-04 4.73e-04 13.30% 1.66e-37

TABLE VI: Average GA expected risk for the portfolios.

Metrics Historical data approach Perfect foresight approach Relative difference KS test results (p-values)

Overall 9.98e-03 8.01e-03 -19.75% 1.21e-104
Two assets 9.85e-03 9.14e-03 -7.15% 1.31e-04

Three assets 9.97e-03 8.40e-03 -15.76% 1.46e-18
Four assets 1.00e-02 7.89e-03 -21.14% 3.14e-41
Five assets 1.00e-02 7.54e-03 -24.55% 9.53e-52

TABLE VII: Average GA expected Sharpe ratio for the portfolios.

Metrics Historical data approach Perfect foresight approach Relative difference KS test results (p-values)

Overall 4.02% 5.82% 44.86% 6.26e-138
Two assets 3.65% 4.75% 30.09% 3.76e-09

Three assets 3.89% 5.43% 39.56% 3.73e-29
Four assets 4.07% 5.92% 13.38% 1.32e-52
Five assets 4.17% 6.30% 13.30% 4.10e-56

times, on all possible asset combinations. Given we have 9
asset classes (3 stocks, 3 bonds, 3 REITs), this created 456
different asset combinations to which the GA was applied.
The advantage of this approach (rather than performing the
portfolio optimization task a single time on all available assets
altogether) is that is allows us to investigate a much higher
number of portfolio combinations and thus be able to better
generalize our findings under perfect foresight. As a result of
this approach, different portfolios were created; some included
all 9 assets, while there were others that only created 2 assets,
3 assets, 4 assets, or 5 assets. We did not consider 6, 7, or
8-asset portfolios, as these did not include the REITs class.

Table V shows the results obtained in terms of expected
returns. We can notice an increase in all the results, both
at overall level and for single combinations. In particular, at
overall level (i.e., considering all the portfolios together), we
observe an increase of around 14.21% from the historical data
approach to the perfect foresight method. We also observe
an improvement of around 18.36% in the case of two asset
combinations, of around 15.32% in the case of three asset
combinations, of around 13.38% in the case of four asset
combinations, and of around 13.30% in the case of five asset
combinations. Under a financial perspective, an investor sees
the portfolio profitability increasing under a perfect foresight
situation.

We also performed five Kolmogorov-Smirnov (KS) tests at
the 5% significance level, one per distribution pair that we
wanted to compare: returns from perfect foresight method and
returns from historical data approach at global level, and for

sub-portfolios. The null hypothesis for each test was that the
two distributions come from the same probability distribution.
Given that we were making multiple comparisons, we adjusted
the tests’ p-value according to the Bonferroni correction to
0.05/5 = 0.01. The p-value for the first test was 9.08e-75;
the p-value for the second test was 0.0059; the p-value for
the third test was 7.59e-13; the p-value for the fourth test was
5.03e-28; and the p-value for the fifth test was 1.66e-37. As we
can observe, all five values are well below the adjusted p-value
of 0.01, thus making the differences statistically significant at
the 5% level.

Table VI shows results for the average expected risks. In
this case, under a perfect foresight situation, we observe a
decrease in the average risk levels both for the whole sets of
assets and for their subsets. In particular, average expected
risks show a decrease of around 19.75% from the historical
data approach to the perfect foresight method at overall level,
of around 7.15% in the case of two asset combinations, of
around 15.76% in the case of three asset combinations, of
around 21.14% in the case of four asset combinations, and of
24.55% in the case of five asset combinations. These results
can be interpreted as an improvement in portfolio performance
under a perfect foresight situation.

In order to compare the risk distribution pairs (risks from
perfect foresight method and risks from historical data ap-
proach at global level, and for sub-portfolios), we performed
five Kolmogorov-Smirnov (KS) tests at the 5% significance
level. As we have seen before, the null hypothesis for each test
was that the two distributions come from the same probability



distribution. The-adjusted p-value is again equal to 0.01, as
we have again applied the Bonferroni correction. The p-value
for the first test was 1.21e-104; the p-value for the second
test was 1.31e-04; the p-value for the third test was 1.46e-18;
the p-value for the fourth test was 3.14e-41; and the p-value
for the fifth test was 9.53e-52. As we can observe, again all
five values are well below the adjusted p-value of 0.01, thus
making the differences statistically significant at the 5% level.

Table VII shows results obtained for the average expected
Sharpe ratios. As we can observe, the perfect foresight method
leads to an improvement in the risk-adjusted portfolio perfor-
mance with respect to the historical data approach in all cases.
In particular, we can observe an increase of around 44.86%
at overall level, of around 30.09% in the case of two asset
combinations, of around 39.56% in the case of three asset
combinations, of around 45.52% in the case of four asset
combinations, and of around 51.22% in the case of five asset
combinations.

We performed five Kolmogorov-Smirnov (KS) tests at the
5% significance level, one per distribution pair that we wanted
to compare: Sharpe ratios from perfect foresight method and
Sharpe ratios from historical data approach at global level, and
for sub-portfolios. The null hypothesis is again that the two
distributions come from the same probability distribution. The
adjusted p-value is equal to 0.01, according to the Bonferroni
correction. The p-value for the first test was 6.26e-138; the p-
value for the second test was 3.76e-09; the p-value for the third
test was 3.73e-29; the p-value for the fourth test was 1.32e-
52; and the p-value for the fifth test was 4.10e-56. As we can
observe, all five values are well below the adjusted p-value of
0.01, thus making the differences statistically significant at the
5% level.

Figure 1a represents the expected return distributions ob-
tained from the historical data approach and the perfect
foresight method. As we can observe, the return distribution
obtained from the historical data approach presents a higher
peak. On the other hand, the distribution of the perfect
foresight has its mass concentrated on the right of the figure,
indicating higher returns. Values for the Kurtosis of return
distributions from the historical data approach and the perfect
foresight method are 6.3368 and 5.9943 respectively, while
those for the Skewness are -1.9697 and -1.3295 respectively. In
financial terms, this means that an investor could expect similar
returns to the average under the perfect foresight situation.

Figure 1b shows the expected risk distributions obtained
from the historical data approach and the perfect foresight
method. As we can observe, the risk distribution obtained from
the historical data approach presents a higher peak, and is
more skewed to the right than the risk distribution obtained
from the perfect foresight method. In particular, values for
the Kurtosis of return distributions from the historical data
approach and the perfect foresight method are 3.3836 and
5.2604 respectively, while those for the Skewness are -0.2192
and 1.3701 respectively. In financial terms, this means that an
investor could expect closer risk levels to the average under
the perfect foresight hypothesis, which translates into lower

volatility.

B. Computational times

A single run of the GA did not take longer than 30 seconds,
under the parameter values presented in Table IV. As the
portfolio optimization task is an offline approach, this duration
is relatively fast and does not constitute a problem. Besides,
speedups can be obtained by parallelizing the evolutionary
process, as it has previously been shown in the literature (e.g.
[31]).

C. Discussion

The main aim of our experiments was to demonstrate the po-
tential improvement in mixed-asset portfolio performance that
can be obtained from hypothetically perfect price predictions.
As we have observed, the average portfolio returns appear to
increase under a perfect foresight situation, and given the KS
test results, such increases appear to be statistically significant.
At the same time, the average portfolio risks appear to decrease
when the perfect foresight case is applied, and based on the
KS test results, such differences can be considered statistically
significant. Such results lead to an improvement in the risk-
adjusted portfolio performance.

Moreover, we compared the risk and return distributions un-
der the historical data situation and the perfect foresight case.
We observed a concentration of returns on the right side for the
perfect foresight approach, which indicates higher returns on
average. At the same time, we observed a concentration of risk
values on the left side for the perfect foresight approach, which
indicates lower risks on average. In addition, both the return
and risk distributions appear to have a greater concentration
around the mean under the perfect foresight situation, which
translates into lower volatility. Under a financial perspective,
such results are promising for an investor who wishes to
increase the return, and at the same time to reduce the risk
associated to an investment.

VI. CONCLUSION

We focused on the problem of optimizing portfolios made
of stocks, bonds, and REITs for three different countries
by using a genetic algorithm. The aim of this work was to
demonstrate the potential improvement that can be obtained
from predicting asset prices in the testing set with respect to
prices of the training set. Our experimental analysis indicates
that involving hypothetically perfect price predictions in the
portfolio allocation process increases the overall return level
and decreases the risk level, thus enhancing the risk-adjusted
return. Portfolios obtained under a perfect foresight situation
showcase a better average Sharpe ratio than those obtained
from historical data.

Our results show that using price predictions can lead to bet-
ter risk-adjusted performance than when using historical data.
This is mainly explained by the fact that prices in the training
set might be significantly different than those in the testing
set (as we demonstrated through the KS tests), thus leading
to under-performing portfolios. The results that we obtained



(a) Expected return distributions

(b) Expected risk distributions

motivate us to engage in price prediction tasks in order to
solve mixed-asset portfolio optimization problems involving
REITs. Future work will thus focus on finding appropriate
machine learning algorithms to predict future prices of stocks,
bonds, and REITs, which are as close as possible to the real
values that appear in the test set. Succeeding in this task will
allow us to observe similarly good performance in returns and
risk, as we have observed under the theoretical case of perfect
foresight.
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