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Abstract

In this work, we present a new and efficient algorithm to perform a short-
term market trend forecast, based on the Artificial Organic Networks (AON)
metaheuristic machine learning framework. Regarding this goal, we present the
concept of Artificial Halocarbon Compounds (AHC) or AHC-algorithm as a bio-
inspired supervised machine learning algorithm based on the AON framework.
Through our research, we contrast the forecast acquired with the proposed AHC
model, to previously reported outcomes using the Artificial Hydrocarbon Net-
works (AHN) in similar tasks. The AHN algorithm is the first formally defined
topology based on the AON, making the AHN algorithm a vital benchmark to
contemplate. After comparing the AHC-algorithm to the original AHN-algorithm,
we found out that due to the high computational complexity of the latter, the
new topology is more convenient when modeling more complex systems; being
this characteristic the main contribution of the AHC-algorithm, allowing it to be
a more adaptable, dynamic, and reconfigurable topology. Likewise, we compared
the results of the AHC-algorithm against the outcomes derived from an ARIMA
model; we also made a cross-reference contrast against results concerning the
prediction of other stock market indices using former state-of-the-art machine
learning methods. The proficiency of the AHC-algorithm is assessed by doing a
forecast of the IPC Mexico index obtaining good results, achieving a computed
R-square of 0.9919, and an 8 × 10−4 mean relative error for the forecast.
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1 Introduction

The Index Tracking Problem (ITP) or stock market prediction as more commonly
known, is a complex process affected by many factors [1, 2]. As remarked in [3],
stock market forecasts, despite being a recurrent subject of many investigation groups,
remain an essential financial research topic within other aspects due to their economic
impact. As an update of the example provided in the previously referred article, the
New York Stock Exchange had a $40.5 trillion market capitalization (market value of
all shares traded from public companies listed in its market) as of December 2022 and
had a $52.2 trillion market capitalization as of December 2021. The ITP is a trading
strategy based on the buy-and-hold of assets [4, 5], that uses an index tracker to
replicate the performance of a stock market index or any other security found in the
capital markets, that considers the risk factor of investing, anticipating the appealed
potential profits that perhaps can be obtained from these markets. Its behavior is
reproduced through different techniques, including different state-of-the-art artificial
intelligence methods [3], capable of developing models that provide reliable forecasts.

This paper returns to the objective previously defined in [6], aiming to apply
the Artificial Organic Networks (AON) metaheuristic machine learning framework, to
develop a new efficient algorithm, enable to perform a short-term market trend fore-
cast. Regarding this goal, we present the concept of Artificial Halocarbon Compounds
(AHC) or AHC-algorithm as a bio-inspired supervised machine learning algorithm,
and as a new topology based on the AON framework. Through our research, we con-
trast the forecast acquired with the proposed AHC model, to previously reported
outcomes using the Artificial Hydrocarbon Networks (AHN) in similar tasks. The AHN
algorithm is the first formally defined topology based on the AON, making the AHN
algorithm a vital benchmark to contemplate. After comparing the AHC-algorithm to
the original AHN-algorithm, we found out that due to the high computational com-
plexity of the latter, the new topology is more convenient when modeling more complex
systems; being this characteristic the main contribution of the AHC-algorithm, allow-
ing it to be a more adaptable, dynamic, and reconfigurable topology. Likewise, we
compared the results of the AHC-algorithm against the outcomes derived from an
ARIMA model; we also made a cross-reference contrast against results concerning the
prediction of other stock market indices using former state-of-the-art machine learning
methods.

The rest of the article is structured as follows. In Section 2, we offer a literature
review related to the forecast of stock market indices using machine learning methods.
Furthermore, we introduce some main notions of the AON framework. Afterward, in
Section 3, we provide elements about the used dataset and its preprocessing. Likewise,
we describe the methodology followed to perform the experiments. Then, Section 4
explains how the AHC-algorithm is designed, as well as its main characteristics, imple-
mentation, and computational complexity. Through the discussion, we review some of
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the disadvantages that the original Artificial Hydrocarbon Networks (AHN) topology
has; these disadvantages are considered regarding the definition of the new AHC-
algorithm. Section 5 presents the results obtained from the experiments, including a
cross-reference evaluation. Ultimately, Section 6 affords the conclusions of this work,
complementing with possible future lines for research.

2 Background

In this section, we offer a theoretical framework. In this respect, Section 2.1
presents a literature review. Later, Section 2.2 illustrates some main notions of
the AON framework. Next, Section 2.3 delivers some fundamental concepts of the
AHN-algorithm.

2.1 Literature Review

Numerous articles analyze the employment of machine learning techniques as pre-
dicting tools for stock market indices, contemplating the characteristics around their
complex behavior, such as their noisy, unpredictable dynamics, making this a diffi-
cult task. In this respect, Ye [7] offered the forecast of the Google (GOOG) and Tesla
(TSLA) stock prices using methods such as Support Vector Regression (SVR), Gated
recurrent units (GRUs), Long Short-Term Memory (LSTM), and Extreme Gradient
Boosting (XGBoost). Sunki et al. [8] delivered the forecast of the Netflix (NFLX)
stock price applying ARIMA, LSTM, and FBProphet methods. In contrast, Shi et
al. [9] predicted the Standard and Poor’s 500 (S&P 500) implementing XGBoost.
Correspondingly, Aliyev et al. [10], employed the ARIMA-GARCH and the LSTM
methods to produce the forecast of the Russian Stock Exchange (RTS). In their work,
Singh [11] presented the forecast of the Indian Stock Market Index (NIFTY 50) uti-
lizing different models, including amongst them Artificial Neural Networks (ANNs),
Adaptive Boost (AdaBoost), and k-Nearest Neighbors (KNN). Similarly, Harahap et
al. [12] predict the Nikkei 225 (N225) using SVR, Back Propagation Neural Networks
(BPNNs), and Deep Neural Networks (DNNs). Finally, González-Núñez et al. [13] used
Genetic Algorithms (GA) to predict different indices like the S&P 500, the N225, the
Dow Jones Industrial Average (DJIA), the Financial Times Stock Exchange (FTSE),
and the Cotation Assistée en Continu index (CAC), amongst others.

2.2 AON Framework

As stated above, the main goal of this research is to define a new algorithm follow-
ing the notions and main characteristics of AON as a machine learning class [14, 15];
considering that the AON technique allows modeling systems as a gray box, yet con-
ceding to partially understand the behavior of the system. As depicted in Table 1, the
organization of the framework comprehends the following aspects:

– It defines the set of components and interactions required to build a structure.
– Heuristic rules that state its organization, inspired by basic chemical rules and

observations.
– The artificial organic network is expressed mathematically.
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– It is used through an implementation.

Table 1 Artificial Organic Networks Framework.

AON Framework1

Level Description
Implementation Training and inference

Mathematical model Structure and functionality
Heuristics Rules of organization: three-level energy scheme
Interactions Relationships: covalent bonds, chemical balance interaction
Components Units: atoms, molecules, compounds, mixtures

1Source [15].

Hence, an AON is a set of graphs built based on heuristic rules, as per the frame-
work’s guidelines; these organization rules are inspired by chemistry to form organic
compounds and define their interactions. Each graph represents a molecule with atoms
as vertices and chemical bonds as edges. These molecules interact via the chemi-
cal balance to form a mixture of compounds; therefore, an AON is a combination
of compounds formed by different components. Thus, following the designation of
the framework, four components have been defined: atomic units, molecular units,
compounds, and mixtures; further, two interactions are characterized among the
components: covalent bonds and chemical balance interaction.

The molecules can be seen as packages of information; the bonds between the struc-
tures of the model describe its complexity. The seven defined characteristics of the
AON are: structural and behavioral properties, encapsulation, inheritance, organiza-
tion, mixing properties, stability, and robustness. Accordingly, AON has a structure
and behavior that states its two main characteristics: modeling non-linear systems
and partial interpretation of unknown information. In consistency with the framework
organization, AON as a learning method needs a two-step implantation: a training
process to build its structure and estimate all the parameter values inspired by organic
chemistry rules, and an inference process that consists of using the obtained structure
to find an output considering a specific input value.

The AON framework has been classified as enclosing three types of algorithms: a)
chemically inspired algorithms with defined heuristic rules, based on functional groups
and molecular structures of chemical organic compounds, b) artificial basis algorithms
that define specific functional groups and molecular structures independently of chem-
ical organic compounds, and c) hybrid algorithms that define structures based on a
mixture of chemically inspired and artificial basis algorithms.

2.3 Topological Structure and Prevalence of AHN

Circumscribing the components and interactions disposed on the framework’s main
characteristics as established by Ponce et al. [15], the AON requires the usage of a
functional group; these functional groups are the type of molecules that determine
a topological configuration of the AON for its implementation. Consequently, AON
was implemented through one existing topology: Artificial Hydrocarbon Networks
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(AHN); thus, the AHN model is AON’s first and only formal topology defined up to
now. The AHN algorithm is defined as a chemically bio-inspired on the way chemical
hydrocarbon compounds are formed; it was proposed to perform an optimization of
a cost-energy function, based on two mechanisms to form organic compounds and
produce an efficient number of molecules to build the structures:

i It uses least-squares regression (LSR) to define the structure of each molecule.
ii It uses gradient descent (GD) to optimize the position and number of molecules in

the feature space.

AHN has shown improvements in predictive power and interpretability compared
to other well-known machine learning models, such as neural networks and random
forests. However, as explained in [16] big data are mainly characterized by the amount
of information that can be processed, the speed of data generation, and the variety of
data involved; existing machine learning algorithms need to be adapted to profit the
advantages of big data and process more information efficiently. Thus, AHN has the
disadvantage of being very time-consuming and is unable to deal with big data, since
the model uses GD that, due to its complexity, hinders the scalability of the AHN
model.

To find more examples of applications of the AHN-algorithm, we recommend the
work presented in [13]. For the interested readers seeking more in-depth information
on the AHN model implementation and the AON framework, we suggest to explore
the lecture by Ponce et al. reported in [15].

3 Methodology

Contrasting experiments have been carried out to confirm that the AHC-Algorithm,
as a proposed supervised machine learning algorithm, can effectively perform a short-
term market price trend forecast, as initially defined in [6]. In this sense, Section 3.1
provides details of the dataset we used and its preprocessing. After that, Section 3.2
illustrates the steps followed along the methodology of the experiments.

3.1 Data

The experiments on this work were performed using existing data from Mexico. The
variables included in the dataset are:

– The daily reported closing price of the IPC Mexico stock market index.
– The daily reported MXN-USD foreign exchange rate (FX).
– The quarterly reported gross domestic product (GDP).
– The monthly reported consumer price index (CPI).
– The monthly risk-free rate (RFR).
– The monthly unemployment rate (UR).
– The monthly reported current account to GDP rate (BOP).
– The monthly reported investment rate (GFCF).

All data collected covers a period from the 1st of June 2006 to the 31st of May
2023. The IPC and the FX data were retrieved from Yahoo Finance, and the rest of
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the variables obtained from the OECD. Table 2 shows some descriptive statistics for
data of the closing price of the IPC used in this research.

Table 2 Descriptive statistics of the IPC index.

Descriptive Statistics

Mean SD Min 25% 50% 75% Max
39,899.97 8,813.83 16,653.15 33,262.48 41,960.44 46,190.08 56,609.53

The data were preprocessed as follows: a) the macroeconomic variables (MEVs) are
treated as “continuous signals” instead of discrete information, so for each input, an
independent approximation is made using least-squares polynomial regression (LSP),
b) the data are scaled, for this purpose, the dataset is standardized by removing the
mean, c) the dimensionality of the data is reduced using principal component analysis
(PCA), it is done considering three principal components (PC).

At this point, it is essential to remark that, even though eight features can be
pondered as a small amount, the employment of PCA is pivotal in the implementation
of AHC, since as explained later, the computational complexity of the AHN-algorithm
depends on the number of features. Additionally, as a measure to prevent overfitting,
besides preprocessing, the data were split into subsets, the initial section for training,
and the remaining portion for testing. Finally, the model is assessed by using an out-
of-sample forecast, where the performance of the financial model is tested on data not
used for building the model; this implementation was applied instead of a one-day-
ahead forecast due to the progress achieved in our research by the moment the present
results were recovered. For the interested reader, the dataset used on our research is
available at [17].

3.2 Forecast of the Index

The methodology observed to achieve the forecast of the index, using the AHC-
algorithm, consists of the following steps (see Figure 1):

1 Data are preprocessed as explained above in Section 3.1; afterward, the dataset is
passed into the AHC-algorithm.

2 The training parameters are established by doing a grid search, as described in
Section 5.1.

3 The AHC model is fitted using the training set.
4 The model performs a forecast using the testing set.
5 The results of the forecast and the performance of the AHC-algorithm are compared
in Section 5.3 against the reported results using the AHN-algorithm in a similar
financial task; likewise, Section 5.5 also includes a comparison against some of the
results found across the literature review.
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Fig. 1 Methodology to produce the forecast of stock market applying the AHC-algorithm.

All the experiments have been implemented in Python, employing in some cases the
SciPy [18], Scikit-learn [19], and statsmodels [20] libraries. For the interested reader,
the code used in this research is accessible at [21] and the dataset at [17].

4 Artificial Halocarbon Compounds

We explain here how the AHC-algorithm is designed, as well as some of its primary
notions. In this respect, Section 4.1 exposes the main drivers that inspired the design.
Section 4.2 presents the new attributes defined for the AHC-algorithm as a method
inspired by organic chemistry. Section 4.3 describes how the AHC-algorithm forms
compounds based on a different functional group. Section 4.4 portrays how the algo-
rithm is implemented. Finally, Section 4.5 analyzes the computational complexity of
the AHC-algorithm.

4.1 A New Conception: Diversifying the AON Topologies

Since the forecast of a stock market index as a time series phenomenon [22, 23] is a
dynamic, non-linear process, that at the same time has largely non-linear dependen-
cies with other factors such as the MEVs, it can become very complex and difficult.
As Chacon [24] explains, among the challenges found when doing a prediction model
for a time series, exists the necessity of detecting non-linear dependencies across time,
excluding the noise and behavior of the time series. Correspondingly, Hou [25] and
Sheta [4] state that precise stock return forecasting as a financial problem remains
a particularly demanding task due to its complex, dynamic, non-linear, and chaotic
nature. In contrast, Ordoñez [26] exemplifies the importance and complexity of analyz-
ing the forecast of stock returns with the existence of financial investment companies,
with specialized business areas with teams of employees focused on studying these
kinds of projections contemplating their complexities. Consequently, continuing with
the work started in [6], the problem was narrowed down following two main constraints:

1 The forecast is done using the historical prices of the concerning index rate and at
least five additional MEVs.

2 The MEVs are selected based on their correlated coefficient (CC) to the analyzed
index.

In the most straightforward notion, as explained in the literature [15], the AHN
process, as a supervised learning algorithm, where an AON structure is built through
the algorithm, is identified as f ; along the process, a structure of an organic compound
is produced by segmenting the dataset received to create a model of the system. Each
section is analyzed by a molecule that fits second- or third-degree polynomial terms
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using LSR, the position and number of molecules are optimized using GD; a set of
molecules produces a compound.

By virtue that AHN is the only existing arrangement for the AON machine learning
class, the postulation of the new algorithm adept at performing the stated objectives,
centers its attention on the conception of a topology distinct from the AHN, attending
some of its disadvantages. For example, the AHN-algorithm is very time-consuming,
hence it uses GD to optimize the position of the molecules in the feature space. Indeed,
this strategy of providing a better capability to deal with big data, while reducing
algorithmic time consumption, must be designed pondering the requirement to avoid
losing either predictive power and/or interpretability. We consider that these prop-
erties are two of the main characteristics that the original AHN topology initially
possessed. Consequently, the approach for establishing a different topology is driven
by the subsequent main goals:

1 To find an alternative to GD to define the position and/or number of molecules,
so the algorithmic time consumption while creating an AON arrangement can be
reduced.

2 To circumscribe a new topology that must be able to handle time series, so it can
be capable of producing a financial forecast.

3 The new organic structure will be produced based on a functional group different
from the hydrocarbons; consequently, the standard LSR method will be discarded.
Additionally, new types of curves to be fitted will be explored.

4.2 Artificial Halocarbon Compounds: A Hybrid
Bio-inspirational Algorithm

Artificial Halocarbon Compounds (AHC) or the AHC-algorithm, is a proposed super-
vised machine learning algorithm based on the AON framework inspired by chemical
halocarbon compounds. As a new AON arrangement, one of its principal considera-
tions is focused on relinquishing the GD mechanism to optimize the position and/or
number of molecules, hence the time consumption can be reduced while creating an
AON structure. The laydown of GD has been analyzed before [6, 27]. Furthermore, the
idea of artificial aromatic compounds as a recursive network was roughly explored by
Ponce et al. [15]; regardless, these attempts did not finally peak in an AON arrange-
ment formalizing a new topology. Therefore, the strategy of using K-means introduced
in [6] is recalled toward generating a new type of organic structure based on the AON
framework.

4.2.1 Components and Interactions

In the proposed scheme, since the GD method is substituted by K-means as part of
the mechanism to form organic compounds, and the hydrocarbons functional group is
replaced as a topology for the new structure arrangements, intrinsically some of the
main changes of the algorithm take place through the components and interactions
level of the AON framework. Accordingly, the new topology is based on the third type
of algorithm from the AON framework: hybrid algorithms that define structures based
on a mixture of chemically inspired and artificial basis algorithms.
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In this hybrid approach, the feature space is segmented (clustered) using K-means
per the number of molecules required, in this way its position is defined. Therefore,
each time an iteration occurs, the data are segmented as many times as the same num-
ber of molecules to be created; afterward, the structure of each molecule is computed
for the corresponding segment. Although this appeal is performed based on a hybrid
model, it still complies with the seven characteristics defined for an AON: structural
and behavioral properties, encapsulation, inheritance, organization, mixing properties,
stability, and robustness.

As stated before, the structure of each molecule is not defined directly by using
a standard LSR method; instead, as a significant feature that will characterize the
new AON arrangement, a dynamic topology is offered. Hence, the new topology is
qualified for choosing a wider variety of options to build the organic structures for a
compound, according to the cost-energy function, and therefore maintaining an over-
all low error of the models being produced. These dynamic options consider whether
to substitute the type of curve to be fitted for a respective segment, such as sine or
cosine, among others, instead of just fitting a second- or third-degree polynomic term,
or even choosing amid different fitting methods, such as multiple non-linear regressive
(MNLR) model [6], autoregressive (AR) within others, in this sense replacing the
method employed to characterize each molecule. All these replacements are analyzed
while the computation of the algorithm is done, just as if an inspirational chemical
reaction was taking place, and at the end of the reaction, the arrangement with the
best final substitution from the structures compared is provided.

Halocarbons functional groups

The halocarbons functional group [28], or halocarbons molecules, are hydrocarbons
where a halogenation reaction has taken place; specifically, organic compound struc-
tures in which one or more carbon atoms are covalently bonded to one or more halide
atoms that have substituted/replaced hydrogen atoms. Halides or halogens are the
six elements of Group 17 or VIIA of the periodic table; these elements are: fluorine
(F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts); the
most common substitution is made by chlorine halocarbons, known as organochlorine
compounds. The halocarbons have four valence electrons. In consequence, with the
introduction of the halocarbons functional group, the set of atomic units originally
defined by Ponce et al. [15] expands from two to eight different atomic units for the
AHC-algorithm; therefore, F is called fluorine atom, Cl is called chlorine, Br is called
bromine, I is called iodine, At is called astatine, and Ts is called tennessine, being
these the new six atomic units added to the existent H and C.

The halocarbons are classified into three types: haloalkanes, haloalkenes, and aryl
halides. Haloalkanes are saturated compound structures formed by halogenated hydro-
carbons, where all the carbon atoms are linked by single bonds and at least one
hydrogen atom has been replaced by a halide; in opposition, haloalkenes are unsatu-
rated compounds, which means that they contain one or more double bonds between
carbon atoms, making them more likely to undergo addition reactions with other
compounds. Aryl halides, also known as haloaromatics or haloarenes, are organic
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compounds that contain a halogen atom bonded to one or more aromatic rings. An
aromatic ring or arene is formed by carbon atoms linked in a cyclic arrangement, like
the benzene ring, which is the most common example, and is formed by six carbon
atoms organized in a hexagonal shape.

4.3 Forming of Compounds

The AHC-algorithm bio-inspiration is particularly based on the aryl halides subset
alluding to their distinctive properties over the other halogenated organic compounds;
the presence of the arene in aryl halides makes them more stable. Thus, due to their
unique physical and chemical characteristics are widely used as building blocks in the
synthesis of various organic compounds, such as pharmaceuticals, agrochemicals, and
polymers.

Concerning the molecule’s structure, since the halocarbons are formed by the
substitution of hydrogen atoms in hydrocarbons, thus, the initially defined set of CH-
primitive molecules with carbon as the central atom, and their corresponding covalent
bonds between elements, constitute the initial bases for a cyclic recursive CH molecule
in the new AHC-algorithm. In addition, since the benzene ring is not only the most
common but a fundamental structure in aromatic compounds, it will constitute an
essential part of the new structure. As mentioned before, the benzene arrangement
consists of six-membered carbon atoms in a hexagonal ring with alternating single and
double bonds (see Figure 2). Each carbon atom in the benzene ring is also bonded to
one hydrogen atom. The benzene ring is highly stable due to its particularly aromatic
bonding characteristics.

Fig. 2 Diagram of the benzene ring.

Another crucial attribute considered is the capacity of arenes to bond or join
together (fused) in two or more aromatic rings. These kinds of more extensive arrange-
ments are known as polycyclic aromatic compounds; some examples of these polycyclic
aromatic compounds include, amongst others:

– Naphthalene: It consists of two benzene rings fused; it is a typical aromatic
compound found in coal tar.

– Anthracene: It consists of three fused benzene rings; it is also found in coal tar and
is used as a starting material for the synthesis of dyes, as colored substances that
bond chemically are widely used to fabric textiles and other substrates.

– Phenanthrene: It consists of three fused benzene rings; it is found in fossil fuels.
– Pyrene: It consists of four fused benzene rings; it is commonly found in coal tar.
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Since the mathematical formulation of the target function f, identified in an ear-
lier stage of this work, was defined through the MNLR model [6], it is essential to
remark that the stated math expression possesses ten coefficients. Hence, at least ten
hydrogens will be needed in the proposed scheme to represent all the terms of the mul-
tivariate polynomial expression accounted to handle the dynamic system. As it can be
observed in the skeletal formulas represented in Figure 3, different polycyclic aromatic
compounds have the presence of ten hydrogens atoms; however, due to their easier
representation in the skeletal formula, the new polycyclic aromatic network topology
will mainly remain based on the anthracene disposition.

Fig. 3 Skeletal formula representation of some polycyclic aromatic compounds.

Afterward, the inspirational halogenation where atoms of H are replaced by halides
is characterized in the AHC-algorithm by chemically reacting the anthracene-based
molecule with all the halogens, but at the end substituting the H atoms just by the
halide which offers the lowest-cost energy function. Thus, as a dynamic topology, AHC-
algorithm compares (computes) the result of reacting with all the different halogens
and choosing the one with the lowest error; Figure 4 shows an example of an AHC
molecule where all H atoms are replaced by Cl atoms. Through the halogenation
mechanism, instantiated in Table 3, the replacement of the original LSR mechanism
implemented in the AHN-algorithm that defined the structure of each molecule, takes
place.
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Fig. 4 Example of the AHC molecule where all H atoms are replaced by Cl atoms.

Table 3 AHC Halogenations, with different substitutions of the original LSR mechanism that
define the structure of a molecule in the AHN-algorithm.

AHC Halogenations

Substitution Reaction Description
H → F Fluorination Substitution with a second-degree MNLR expression.
H → Cl Chlorination Substitution with a two-lag AR model.
H → Br Bromination Substitution with a cube-root MNLR expression.
H → I Iodination Substitution with a hyperbolic sine MNLR expression.
H → At Astatination Substitution with a hyperbolic cosine MNLR expression.
H → Ts Tennessination Substitution with an element-wise 2x MNLR expression.

The motives to choose these types of polynomial expressions are based on empirical
reasons after running different experiments scrutinized in [6] and in the next section;
nevertheless, depending on the specific type of system, criteria, or application aimed
to be modeled, it is encouraged to explore with these and/or other different kinds of
polynomial expressions or methods used in the substitution mechanisms for the AHC
halogenations. In addition, based again on the same empirical reason, the attribute of
creating mixtures considered in the AHN-algorithm, was discontinued for the AHC-
algorithm since this feature was no further required.

Finally, the enthalpy property [15] applied in the AHN-algorithm for optimizing
compounds was also ceased. This property was implemented as a method for build-
ing an optimal compound using the minimum number of CH-primitive molecules,
resembling that enthalpy in thermodynamics measures the heat energy (transferred
or exchanged), along the chemical reactions. Regardless, it is still desired to find the
lowest-cost energy function, again, this is achieved by the inspirational halogenation
described earlier; moreover, this method allows the introduction of the entropy prop-
erty, since along the process a set of possible combinations to form a compound are
computed.

In thermodynamics [29], entropy is a property that describes the distribution of
energy by measuring the disorder in chemical reactions. It can be understood as the
molecular disorder in a system or the degree of randomness of its particles; as the
randomness or disorder goes higher, the entropy increases as well. In essence, entropy
describes the energy within a system by quantifying the number of possible energy
distributions, specific arrangements (microstates), or configurations of particles and
energy that are available within a system, contemplating that in a system, energy can
be distributed among particles in different ways. It is essential to notice that entropy
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describes the distribution of energy, not the total energy of the system. Consequently,
the concept of entropy property or entropy-rule is formally introduced to the AHC-
algorithm, and is measured while the dynamic topology compares the level of energy
of the different reactions from the available halogens; the aim is to keep the lowest
entropy of the model system, based on the output error.

4.4 Phases of the AHC-algorithm and implementation

The artificial halocarbon compounds is implemented using the AHC-algorithm illus-
trated in Algorithm 1, which is the main routine. Algorithm 1 iteratively calls the
FORM-COMPOUND() routine, in charge of forming structures of organic compounds
based on halogenations of anthracene, this routine is illustrated in Algorithm 2.

Figure 5 illustrates the phases of the AHC-algorithm. After the initialization steps,
in its core, the AHC-algorithm creates the structure of an artificial halocarbon com-
pound based on the number of polycyclic aromatic molecules needed. This phase
corresponds to line 5 in Algorithm 1.

Next, the AHC-algorithm defines the structure of each polycyclic molecule in the
compound depending on the best halide selected during the halogenation reaction,
this step corresponds to line 6 in Algorithm 1. As stated earlier, the attribute of
creating a set of compounds to combine them in a mixture, initially defined in the
AHN-algorithm, was discarded as a feature since it was not found further required
based on empirical experience.
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Fig. 5 Flow diagram depicting the phases of the AHC-algorithm.
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Algorithm 1 AHC-ALGORITHM (Σ, nmax, ϵ, λ): Implementation of the artificial
halocarbon compounds using AHC-algorithm.

Input: the system Σ = (x, y), the maximum number of molecules nmax, the tolerance
value ϵ > 0, and the regularization factor λ.
Output: the structure of the compound C, and the type of halogenation τ for each
molecule in C. The coefficients A are included within the structure C.

1: Initialize the number of molecules, n← 2.
2: Initialize the error function, ε←∞.
3: while (n ≤ nmax) and (ε > ϵ) do
4: Initialize a minimal compound C.
5: Split Σ into n subsets Σi with their centers Qi, using K-means.
6: Obtain a new structure of C, find the halogenations τ , and update the error

function ε with FORM-COMPOUND(
∑n

i=2, Q,C, λ).
7: end while
8: return C, and τ

Algorithm 2 FORM-COMPOUND (
∑n

i=2, Q,C, λ): Routine to form structures
of organic compounds based on halogenations.

Input: the n splits of the system
∑n

i=2, the centers of the splits Q, the initial com-
pound C, and the regularization factor λ.
Output: the final structure of the compound C, the type of halogenation τ for each
molecule in C, and the updated error function ε.

1: Initialize τ with all the types of halogenation.
2: for each partition

∑
i do

3: for each type of halogenation τj do
4: Find the energy level of the subset Σi with each halogen τj , considering λ.
5: end for
6: Update the final behavior of the molecule in Σi, by selecting the best

halogenation τj , following the ENTROPY-RULE.
7: end for
8: Update the error function ε using the true fractional relative error defined in [6].
9: return C, τ , and ε

4.5 Computational Complexity

Considering Algorithm 1, the worst-case assumption of the computational time
complexity for the AHC-algorithm is O(5nmax∗103+nmax∗153), measured as follows:

Locating at the while loop inside Algorithm 2, the time complexity for the first
assignment can be assumed ∼ O(1), since the initialization of a minimal compound
consists of defining a DataFrame that holds the structure of a default CH2-primitive
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molecule. The second step splits Σ into i partitions Σi for i = 1, . . . , nmax. To create
the partitions, we used K-means (from the Scikit-learn library); the computational
complexity for this method is O(kqTD), where T is the number of iterations, q is the
number of data points, k is the number of clusters, and D is the dimensionality of the
data. Next, the third step considers the computation of a new compound structure
based on the halogenation reactions for each molecule, as explained in Section 4.3; the
target function f of each reaction is characterized through the MNLR model. For each
halogenation, the MNLR model is solved using an inverse matrix; the time complexity
for solving an inverse matrix is O(n3). Since six halogenations are computed, then six
inverse matrix operations are performed; moreover, as explained in Section 5.1 five
halogenations consider an MNLR expression defined with ten coefficients, and one
with 15. Thus, the worst-case complexity for the third step is O(5nmax ∗ 103 +nmax ∗
153). In consequence, the overall time complexity of one iteration in the while-loop is
O(5nmax ∗103+nmax ∗153), because O(5nmax ∗103+nmax ∗153) > O(kqTD) > O(1)
if q ≥ nmax ≥ 2.

5 Results & Analysis

In this section, we present the results obtained from the conducted experiments. In
this respect, Section 5.1 describes how the hyperparameters are tuned by doing a grid
search in the training phase. Next, Section 5.2 illustrates the forecast results using the
testing set. Subsequently, Section 5.3 compares the prediction obtained with the AHC-
algorithm and its performance against the reported results using the AHN-algorithm
in a similar financial task. Later, Section 5.4 compares our results obtained with
the AHC-algorithm against the outcomes derived from an ARIMA model. Finally,
Section 5.5 includes a benchmark of the forecast achieved against some of the results
found across the literature review.

5.1 Training phase

Following the AON framework, the AHC is trained with an initial set of different
parameters, so later a hyperparameter tuning could be conducted. Considering that
the AHC-algorithm requires four inputs (the system and three parameters) as defined
in the previous section, Table 4 shows the set of parameters used for a combination
of setups that are trained along this phase.

Table 4 Set of initial parameters.

AHC Parameters

ϵ 6× 10−4 9× 10−4

nmax 2 4 8 12
λ 0 1× 10−10 0.95 1

16



From Table 4, it can be observed that the set of parameters allowed for a total
combination of 32 setups. However, the experiments were repeated using seven differ-
ent subset sizes for the training and testing, resulting in a total combination of 224
models trained. Table 5 shows the seven split sizes used during the experiments.

Table 5 Split sizes applied for the training and testing
sets.

Subset sizes Train/Test (%)

98/2 95/5 92/8 90/10 85/15 80/20 75/25

For each case, all the input data (system and set of parameters) are provided to
the AHC-algorithm for the training process. Earlier, in Section 4.3 we described the
inspirational halogenation mechanism that occurs along the algorithm’s execution.
According to Table 3, we described the type of polynomial expressions employed
for the substitutions. These polynomial expressions are based on the MNLR model
first presented in [6] and outlined here in the subsequent definition, considering ten
coefficients for three independent variables (since three PCs are used):

Definition 1 (MNLR model, with three independent variables). Let â0, â1, ..., â9 be
the coefficients of the mathematical expression to model f , where xt1, xt2 and xt3 are
the inputs, λ is the scalar value of the regularization term, ŷ is the value obtained from
the model and et is the true error between both; then, the true value yt is said to be:

yt = â0 + â1xt1 + â2xt2 + â3xt3 + â4λx
2
t1+

â5λx
2
t2 + â6λx

2
t3 + â7λxt1xt2 + â8λxt1xt3 + â9λxt2xt3 + et

(1)

Recapitulating the AHC Halogenations, the Fluorination reaction was imple-
mented by applying the MNLR model as stated in Eq. 1. In the case of Bromination,
Iodination, Astatination, and Tennessination reactions the, lambda term was not
considered, and the quadratic terms were respectively replaced by other kinds of math-
ematical functions; an Iodination example with hyperbolic sine substitution is now
illustrated in Eq. 2:

yt = â0 + â1xt1 + â2xt2 + â3xt3 + â4 sinh(xt1)+
â5 sinh(xt2) + â6 sinh(xt3) + â7xt1xt2 + â8xt1xt3 + â9xt2xt3 + et

(2)

In the case of the Chlorination, the reaction was implemented with a two-lag AR
model. Nevertheless, the AR expression used is based on the original MNLR model;
in this regard, instead of using three PCs, the new equation includes two-lags of the
observed (true) value and two PCs as variables, redefining the consideration of Eq. 1
from ten to 15 coefficients as observed in Eq. 3:

yt = â0 + â1yt−1 + â2yt−2 + â3xt1 + â4xt2 + â5λy
2
t−1+

â6λy
2
t−2 + â7λx

2
t1 + â8λx

2
t2 + â9λyt−1yt−2 + â10λyt−1xt1+

â11λyt−1xt2 + â12λyt−2xt1 + â13λyt−2xt2 + â14λxt1xt2 + et

(3)
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Again, it was stated before in Section 4.3 that the AHC topology will particularly
remain based on the anthracene disposition because it has ten hydrogens and as a
polycyclic aromatic compound it has a simpler representation in the skeletal formula.
However, for this particular case where Eq. 3 has 15 coefficients, the AHC topology
takes form based on the skeletal formula of the Hexacene (see Figure 6). From the skele-
tal formula, it can be observed that the Hexacene has 16 hydrogens; the discrepancy
is eliminated by assuming a 16th coefficient with a constant value of cero.

Fig. 6 Skeletal formula representation of the Hexacene.

5.2 Forecasting phase

As stated above, earlier in the training phase a set of parameters and split sizes are
defined, allowing for 224 different models trained. We then conducted hyperparameter
tuning on the models to produce a forecast with the best parameters identified from
all results. On this basis, in the forecasting phase (inference phase as defined in the
AON framework), all 224 models are employed to produce an out-of-sample forecast
using the testing set. Figure 7 illustrates a heatmap from these results; afterward, the
results are ranked using the mean of the error from the testing set of each model. Next,
we applied a Friedman test to the ranked top five models to determine any significant
difference among them. The results from the Friedman test provided a statistic equal
to 5.9999, and a p-value of 0.4231, showing no statistical difference among the results.
Hence, for the sake of simplicity, we chose the first parameters from the top. The best
parameters we found are ϵ = 9 × 10−4, nmax = 12, and λ = 1 × 10−10. However, to
conduct the final forecast with these parameters in this phase, we chose a data split
size of 75% for training and the remaining 25% for testing. The reason to choose this
split size is that the results from this forecast are compared in Section 5.3 to the results
presented in [27], where data from the examples included therein are split into 70%
for training and 30% for testing (the 5% difference is not considered relevant).
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Fig. 7 Results heatmap.

The resulting organic structure computed from these parameters consists of a com-
pound formed by two chlorinated polycyclic aryl halides (two hexacenes) molecules;
the respective computed coefficients for each molecule are shown in Table 6, being
awarded that a 16th coefficient with value zero is considered to complete each hexac-
ene, as previously mentioned. The outcome of the forecast made with the computed
AHC model provided very encouraging results:

1 Figure 8 illustrates the graph with a blue curve corresponding to the original IPC
Mexico values yt from the testing set, and a red curve depicting the estimated
values ŷ, merely no difference can be appreciated between them.

2 Figure 10 presents the graph of Residuals; a good homogeneous distribution can
be observed along the Predictor axis. It can be noticed that at the left-hand side of
the values of the Predictor, there are some residual values outside the homogeneous
distribution strip (outliers), mostly when the Predictor is < 8.4. Nonetheless, as can
be appreciated in Figure 8, the values of the Index are close to 8.3 at the beginning
of 2020; in this sense, it is significant to remark that this period corresponds to the
beginning of the COVID-19 pandemic when the economy of the world was severely
affected, so it is natural to expect in this period more variance that can introduce
more errors in the forecast. For a more detailed view of the period, we provide
Figure 9, which is a zoom-in of Figure 8, for the period 2020-12 to 2021-09. The
observed behavior in Figure 9 of the forecast of the IPC computed with the AHC
model can be compared to an AR method since, as explained above, from Table 6
we have noticed that the compound formed has two chlorinated molecules, and this
reaction was implemented with a two-lag Auto Regression (AR) model as explained
in Section 5.1.

3 To evaluate the model, Table 7 shows within other computed statistical measures for
the forecast, a very high R-square and Adjusted R-square with values of 0.9919 and
0.9918 respectively. Additionally, Table 7 provides the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC), noticing that both have very
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low values (big negative numbers). These metrics yield reliance on how well the
model fits and explains the original system.

4 Table 8 displays a few measures of the error from the forecast produced.
5 Table 9 shows some descriptive statistic of the relative error with an 8×10−4 mean
and a 6× 10−4 median, the behavior of the error is depicted in Figure 11.

Table 6 Structure of the computed AHC model: two
molecules, and 16 coefficients.

Computed AHC model

Molecule 1 2
τ Cl Cl
â0 2.727210× 10−2 9.269068× 10−2

â1 1.092679 1.004407
â2 −9.594364× 10−2 −1.519266× 10−2

â3 1.104696× 10−4 4.278086× 10−4

â4 −3.755683× 10−4 −5.639691× 10−4

â5 1.608554× 10−09 1.029201× 10−09

â6 −3.398093× 10−10 −6.563887× 10−10

â7 6.812609× 10−10 9.461997× 10−10

â8 −1.551042× 10−09 −3.771424× 10−10

â9 6.335330× 10−10 1.835423× 10−10

â10 −1.204230× 10−11 −6.824526× 10−11

â11 2.267883× 10−10 1.791191× 10−11

â12 −2.745103× 10−10 3.667814× 10−10

â13 5.987430× 10−08 2.903713× 10−08

â14 7.366559× 10−10 −1.010653× 10−09

â15 0 0

Fig. 8 Graph of the forecast of the IPC computed with the AHC model using a test set size of 25%.
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Fig. 9 Zoom of the forecast of the IPC computed with the AHC model.

Fig. 10 Residuals of the AHC model.

Table 7 Statistical measures of the sum of squares, the R-square, the Adjusted R-square,
the AIC, and the BIC of the AHC model.

Model Performance

RSS SSR TSS R-square Adj. R-square AIC BIC
0.0903 11.0074 11.0976 0.9919 0.9918 -10,431.5535 -10,411.5095
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Table 8 Error measures of the AHC model.

Forecast Error

MSE RMSE MAPE
(Relative Error)

2.03× 10−05 4.5122× 10−03 0.0008

Table 9 Descriptive statistics of the relative error.

Relative Error (MAPE)

Mean Median SD MAD Max Min Range
0.0008 0.0006 0.0007 0.0005 0.0062 1.2754× 10−07 0.0062

Fig. 11 Behavior of the relative error of the AHC model.

5.3 Benchmark AHC vs. AHN performance

Ayala et al. in [27] give an example of the employment of the AHN-algorithm to
produce the forecast of the exchange rate BRIC currencies to USD; particularly, the
Brazil Real to USD (BRL/USD) is illustrated. In this regard, the results presented
by the previous authors are used as a benchmark, since the FX prediction can be
considered a very similar problem to the one addressed in this research. The data
used in [27] correspond to the historical data of monthly frequencies from July 1997
to December 2015 for a total of 221 samples. The values were normalized, split in sizes
of 70% for training and 30% for the testing sets, and then all the input data were
provided to the AHN-algorithm for the respective training process, where an organic
structure is computed to produce the model f , that corresponds to the value ∆yt
between yt and yt−1.
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Consequently, by comparing the results from both cases, it can be stated that, for
this instance, the model f of the system obtained from the AHC-algorithm is more
complex and robust in contrast to the model f computed by the AHN-algorithm,
based on the following elements:

1 It is well known that in the everyday operation of stock markets, the behavior
of a market index has far more volatility (in a riskier financial market), than the
behavior of exchange rate markets; thus, a stock market index is more difficult to
predict.

2 The model built by the AHC-algorithm contemplated two-lags of the historic data
of the stock market index, and at least two PCs of the seven additional MEVs that
are considered; in contrast, for the prediction of the FX, the AHN-algorithm only
used two-lags of the historic value.

3 The data used for the AHC model are based on a daily frequency reported value of
the index and the other seven MEVs from June 2006 to May 2023, which constitutes
a dataset of 4,435 samples for eight variables, making a total of 35,480 values;
in contrast, the AHN model is fed with the historical data of the BRL/USD on
monthly frequencies from July 1997 to December 2015, which constitutes a dataset
with a total of 221 values (221 samples for one variable).

4 As a crucial fact, the AHC-algorithm has been designed to allow for a more adapt-
able, dynamic, and reconfigurable topology, when computing model f , making it
more convenient for more complex systems. These properties can be appreciated
in the following example: to compute a model -taking into account a less volatile
variable-, the AHN-algorithm performed at least ten iterations to build a compound
of ten molecules to produce a forecast of the BRL/USD exchange rate; in contrast,
the AHC-algorithm used two iterations to create a compound of two molecules to
produce a forecast of the IPC index. This is a 5:1 ratio in the number of iterations.

5 Furthermore, we compared the computational complexity of both algorithms.
In this regard, the reported time complexity of the AHN-algorithm [15] is
O(cmaxnmaxq ln 1/ϵ) with q ≥ nmax ≥ cmax ≥ 2, and a small value ϵ > 0, where q
is the number of samples, cmax is the number of compounds, and ϵ is the tolerance
value. Nonetheless, this computational complexity is measured based on the time
complexity of O(C2N) for least squares estimates, where C is the dimensionality
of the data, and N is the number of training samples. However, as reported in [27],
the AHN-algorithm finds the parameters of each molecule using a Vandermonde
matrix (polynomial interpolation), which generally requires a time complexity pro-
portional to O(n3). In consequence, considering the number of features and the
number of molecules, the time complexity of the AHN-algorithm for building the
structure of the compound is O(2(3k)3 + (nmax − 2)(2k)3), where k is the number
features. The time complexity of the AHC-algorithm is O(5nmax∗103+nmax∗153),
as reported in Section 4.5. Table 10 shows the evaluation of the time complexity
for the AHN-algorithm in terms of total number of steps; in contrast, Table 11
shows the evaluation of the time complexity for the AHC-algorithm. Based on
these results, we can claim that the AHC algorithm is more convenient to model
more complex systems. In the AHC-algorithm case, PCA is applied during the data
preparation step; hence, the MNLR model is computed considering a fixed number
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of coefficients. As a result, the time complexity does not depend on k, keeping its
value constant regardless of the number of features used to build the model.

6 The AHC-algorithm yields better results (again, using fewer iterations to predict
a more volatile variable). The graph of the forecast provided by the AHC model
behaves much better, the error is smaller (0.0102 vs. 0.0008) and the model has a
very high R-square (0.99), no R-square value is provided for the AHN model.

.
Table 10 AHN-algorithm computational complexity

O(2(3k)3 + (nmax − 2)(2k)3) in terms of the total
number of steps, k corresponds to the number of
features.

AHN-algorithm computational cost

nmax vs k 1 2 3 4
2 54 3,760 813,186 416,353,664
3 62 4,272 923,778 472,976,768
4 70 4,784 1,034,370 529,599,872
5 78 5,296 1,144,962 586,222,976
6 86 5,808 1,255,554 642,846,080
7 94 6,320 1,366,146 699,469,184
8 102 6,832 1,476,738 756,092,288
9 110 7,344 1,587,330 812,715,392
10 118 7,856 1,697,922 869,338,496

.
Table 11 AHC-algorithm computational

complexity O(5nmax ∗ 103 + nmax ∗ 153) in terms
of the total number of steps, k corresponds to the
number of features.

AHC-algorithm computational cost

nmax vs k 1 2 3 4
2 16,750 16,750 16,750 16,750
3 25,125 25,125 25,125 25,125
4 33,500 33,500 33,500 33,500
5 41,875 41,875 41,875 41,875
6 50,250 50,250 50,250 50,250
7 58,625 58,625 58,625 58,625
8 67,000 67,000 67,000 67,000
9 75,375 75,375 75,375 75,375
10 83,750 83,750 83,750 83,750
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5.4 Model Comparison vs. ARIMA performance

Besides comparing the AHC-algorithm performance against the AHN-algorithm (the
original topology defined for the AON class) as we did in the previous subsection, here
we compare the outcomes of our proposed model against the results obtained from
a classical statistic method like ARIMA; for this objective, the ARIMA model was
implemented through the statsmodels library. To have a valid framework for contrast-
ing the results, we kept consistency with the experiments illustrated in Section 5.2; in
this respect, we preprocessed the data using the same steps described in Section 3.1
and split the dataset into two subsets based on the DateTime, employing the first 75%
of the observations for training, and remaining 25% for testing.

The definition of the parameters (p, d, q) of the ARIMA model is done as follows:
the value of the component p used for the lag order from the mathematical term of
the AR is set to 2 using heuristics. The value of the parameter d used for the degree of
differencing the data to make it stationary, is computed with the aid of the Augmented
Dickey-Fuller (ADF) test included in the statsmodel library; the data are differentiated
as many times as necessary until it reached an ADF statistic equal to or below -1 (see
Table 12). Finally, the value of the component q used for the size window or order
of the mathematical term of the Moving Average (MA), is also computed with the
aid of the autocorrelation and partial autocorrelation test included in the statsmodels
library.

Table 12 Values of the ADF
Test after data were
differentiated.

ADF Test
ADF Statistic: -26.0689

p-value: 0.0000
Critical Values:

1%: -3.432
5%: -2.862
10%: -2.567

Once the components (p, d, q) are quantified, the ARIMA method is applied using
these parameters; the reliability of the model is assessed via the relative error (MAPE).
Next we evaluate the performance of the model, just as we did for the AHC model:

1 Figure 12 illustrates the graph with a blue curve corresponding to the original IPC
Mexico values yt from the testing set, and a red curve depicting the estimated
values ŷ using ARIMA.

2 To evaluate the model, Table 13 shows within other computed statistical mea-
sures for the forecast, the R-square and Adjusted R-square, both with a value of
0.9979 respectively. Additionally, Table 13 provides the Akaike Information Crite-
rion (AIC) and the Bayesian Information Criterion (BIC), noticing that both have
very low values (big negative numbers). These metrics yield reliance on how well
the model fits and explains the original system.

3 Table 14 displays a few measures of the error from the forecast produced.
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4 Table 15 shows some descriptive statistic of the relative error with an 8 × 10−4

mean and a 5× 10−4 median.

Fig. 12 Graph of the forecast of the IPC computed with the ARIMA model using a test set size of
25%.

Table 13 Statistical measures of the sum of squares, the R-square, the Adjusted R-square,
the AIC, and the BIC of the ARIMA model.

Model Performance

RSS SSR TSS R-square Adj. R-square AIC BIC
0.3015 140.0247 140.3262 0.9979 0.9979 -30,927.6973 -30,952.1354

Table 14 Error measures of the
ARIMA model.

Forecast Error

MSE RMSE MAPE
(Relative Error)

0.0001 0.0095 0.0008

Contrasting the outcomes acquired from the AHC and the ARIMA models can
be attended that both methods had provided similar results. A MAPE comparison is
provided in Table 16 (columns extracted from Tables 9 and 15). Moreover, it can be
noticed that the AIC and BIC coefficients of the ARIMA model are smaller, denoting
that the model could be more adequate or that explains better the original system;
regardless, the AHC-algorithm has the subsequent advantages:
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Table 15 Descriptive statistics of the relative error.

Relative Error (MAPE)

Mean Median SD MAD Max Min Range
0.0008 0.0005 0.0009 0.0006 0.0105 0.0 0.0105

– As a classic statistical model, the ARIMA method can provide high-average perfor-
mance solutions; however, as a classic analytic method its implementation can be
complex with inherent elevated computational costs.

– The development of the forecast graph from the test set delivered by the AHC-
algorithm behaves much better than the graph provided by the ARIMA model since,
as it can observed in Figure 12, the gaps between the raw data and the model are
more noticeable.

Considering these benefits, and the fact that the difference between the error from
each method is negligible, we conclude that the AHC-algorithm can be an alternative
to classic statistical models.

Table 16 Comparison of the statistics of the MAPE.

Statistics Comparison of the Relative Error (MAPE)

Mean Median SD MAD Max Min Range
AHC-algorithm 0.0008 0.0006 0.0007 0.0005 0.0062 1.2754× 10−07 0.0062

ARIMA 0.0008 0.0005 0.0009 0.0006 0.0105 0.0 0.0105

5.5 Cross-Reference Comparison

We present here a cross-reference comparison against the results we obtained using
the AHC-algorithm delivered in Section 5.2. Table 17 reviews some of the outcomes
found within the literature mentioned earlier in Section 2.1 and compares them to our
results.

From our assessment, we identified that some articles like Ye [7] and Sunki et al. [8],
use a specific stock price (security) such as Google or Netflix; in contrast, in works
like Shi et al. [9], Aliyev et al. [10], Singh [11], and Harahap et al. [12], they report
the usage of an index. Anyhow, these works only consider the historical data of the
analyzed variable as the only input to produce the forecast. Respectively, to yield the
forecast of the stock market, we pass to the AHC-algorithm the historical data of the
index with seven macroeconomic variables as part of the parameters; moreover, in [13]
the authors report the employment of the AHC-algorithm for the forecast of further
indices with the same considerations. Likewise, it can be observed from Table 17 that
the R-square of 0.9919 obtained in the forecast of the IPC using the AHC model in this
research, is comparable to other state-of-the-art methods like the ARIMA-GARCH
model with an R-square of 0.977 employed for the forecast of the RTS, or the LSTM
method applied for the prediction of the Google stock with an R-square of 0.9965.
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Table 17 Cross-reference comparison vs. the AHC model’s results.

Results from the testing sets

Index Method Error R-square Period Testing
Set Size

IPC AHC 4.5122× 10−03∗ 0.9919 2006 - 2023 25%
GOOG1 SVR 1.10335∗ 0.9979 2014 - 2023 20%
GOOG1 GRUs 2.4863∗ 0.9811 2014 - 2023 20%
GOOG1 LSTM 0.0074∗ 0.9965 2014 - 2023 20%
GOOG1 XGBoost 2.4301∗ 0.9820 2014 - 2023 20%
TSLA1 SVR 23.9910∗ 0.9953 2020 - 2021 20%
TSLA1 GRUs 41.7746∗ 0.8685 2020 - 2021 20%
TSLA1 LSTM 0.0055∗ 0.9952 2020 - 2021 20%
TSLA1 XGBoost 44.122∗ 0.8533 2020 - 2021 20%
NFLX2 ARIMA 7.8919∗ NA 2019 - 2021 15%
NFLX2 LSTM 10.3376∗ NA 2019 - 2021 15%
NFLX2 FBProphet 9.1186∗ NA 2003 - 2021 NA

S&P 5003 XGBoost 5.5235× 1008∗ 0.316 2017 - 2023 15%
RTS4 ARIMA-GARCH 35.93∗ 0.977 2000 - 2022 10%
RTS4 LSTM 14.91∗ 0.996 2000 - 2022 10%

NIFTY 505 ANN 36.865∗ 0.999 1996 - 2021 20%
NIFTY 505 SGD 42.456∗ 0.999 1996 - 2021 20%
NIFTY 505 SVM 68.327∗ 0.998 1996 - 2021 20%
NIFTY 505 AdaBoost 2277.710∗ -0.930 1996 - 2021 20%
NIFTY 505 RF 2290.890∗ -0.952 1996 - 2021 20%
NIFTY 505 KNN 2314.720∗ -0.993 1996 - 2021 20%

N2256 SVR NA 0.81 2016 - 2019 10%
N2256 DNN NA 0.79 2016 - 2019 10%
N2256 BPNN NA 0.82 2016 - 2019 10%
N2256 SVR NA 0.58 2016 - 2019 20%
N2256 DNN NA 0.58 2016 - 2019 20%
N2256 BPNN NA 0.56 2016 - 2019 20%

S&P 5007 GA 0.1347† 0.5027 2006 - 2023 15%
DJIA7 GA 0.0263† 0.5228 2006 - 2023 15%
FTSE7 GA 0.0531† 0.4959 2006 - 2023 15%
N2257 GA 0.0064† 0.6111 2006 - 2023 15%
CAC7 GA 0.0462† 0.5149 2006 - 2023 15%

S&P 5007 AHC 0.0049† 0.729 2006 - 2023 15%
DJIA7 AHC 0.0007† 0.9777 2006 - 2023 15%
FTSE7 AHC 0.0063† 0.7074 2006 - 2023 15%
N2257 AHC 0.0064† 0.6111 2006 - 2023 15%
CAC7 AHC 0.0038† 0.8317 2006 - 2023 15%

1Results reported in [7]. 2Results reported in [8]. 3Results reported in [9]. 4Results reported in [10].
5Results reported in [11]. 6Results reported in [12]. 7Results reported in [13]. ∗Reported as RMSE.
†Reported as Relative Error. (NA) Value not provided.

6 Conclusions & Future Work

In this work, the main aspects of the AON framework are studied toward the definition
of a new algorithm based on this machine learning class; this analysis led to the
review of the five levels of the AON framework: implementation, mathematical model,
heuristics, interactions, and components. Furthermore, we point out the necessity of
AON for using a functional group to determine its topological configuration along
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the implementation. Also, we recalled how AON has been implemented -before this
work- using AHN as the unique formal topology defined so far. Along the review, we
mentioned the two mechanisms that AHN employs to optimize a cost-energy function
while forming the structures of organic compounds, as part of the process to model
a given system. These mechanisms are: the utilization of LSR to define the structure
of each molecule, and the employment of GD to optimize the position and number of
molecules in the feature space.

The AHN algorithm has a very high computational cost due to the use of GD and
is not capable of dealing well with big data. In this work, we aimed at defining a new
topology to overcome these disadvantages. We proposed an alternate functional group
different from hydrocarbons to define a new topology. To meet our goal, the concept
of Artificial Halocarbon Compounds or AHC-algorithm is introduced as a supervised
machine learning algorithm based on the AON framework.

Within the considerations behind its design, the AHC-algorithm complies with the
following properties:

– It is based on the third type of AON framework: a hybrid algorithm that defines a
structure based on a mixture of chemically inspired and artificial basis algorithms.

– The conception of the new arrangement was focused on changes in the layer of
components and interactions from the AON framework.

– For the new algorithm, GD was arrogated and substituted by the K-means method,
as part of the mechanism to form organic compounds.

– The halocarbons functional group was selected to define a new topology, specifically
from halogenations of anthracene, from the haloaromatic type.

– As a dynamic topology, the algorithm can conduct reactions using the variety of
atoms from the halogens to build an organic structure.

– The halogenation process is ruled by the entropy-property, to assure the computa-
tion of the lowest cost-energy function.

– The new topology is capable of producing time series forecasting.

The AHC-algorithm was tested by modeling and producing a forecast of the IPC
Mexico stock market index, using 17 years of data, and with a set of parameters
that allowed a combination of 224 models. The final forecast model provided very
encouraging results on the testing set, R-square equal to 0.9919, and a mean relative
error of 8×10−4. When comparing the AHC-algorithm to the original AHN-algorithm,
we claim that due to the high computational complexity of the latter, the new topology
is more convenient when modeling more complex systems; being this characteristic
the main contribution of the AHC-algorithm, allowing it to be a more adaptable,
dynamic, and reconfigurable topology, when computing model f. In future work, we
plan to test the algorithm using other stock market indices and compare it with other
state-of-the-art methods employed for financial analysis.
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[6] González-Núñez, E., Trejo, L.A.: Artificial organic networks approach applied to
the index tracking problem. In: MICAI 2021. LNCS (LNAI). Springer, Cham
(2021)

30

https://doi.org/10.1109/CIFEr52523.2022.9776186
https://doi.org/10.1109/CIFEr52523.2022.9776186
https://doi.org/10.1371/journal.pone.0223593


[7] Ye, S.: Applying ensemble learning to multiple stock pricepredictions: A compar-
ative study (2024) https://doi.org/10.54254/2755-2721/50/20241501

[8] Sunki, A., SatyaKumar, C., . Surya Narayana, G., Koppera, V., Hakeem, M.:
Time series forecasting of stock market usingarima, lstm and fb prophet (2024)
https://doi.org/10.1051/matecconf/202439201163

[9] Shi, B., Tan, C., Yu, Y.: Predicting the s&p 500 stock market with machine
learningmodels (2024) https://doi.org/10.54254/2755-2721/48/20241621

[10] Aliyev, F., et al.: Applying deep learning in forecasting stock index: Evidence
from rts index. (2023) https://doi.org/10.1109/AICT55583.2022.10013496

[11] Singh, G.: Machine learning models in stock market prediction (2022) https://
doi.org/10.35940/ijitee.C9733.0111322

[12] Harahap, L.A., et al.: Nikkei stock market price index prediction using machine
learning. (2020) https://doi.org/10.1088/1742-6596/1566/1/012043
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