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Abstract: This research aims at applying the Artificial Organic Network (AON), a nature-inspired, 1

supervised, metaheuristic machine learning framework, to develop a new algorithm based on this 2

machine learning class. The focus of the new algorithm is to model and predict stock markets based 3

on the Index Tracking Problem (ITP). In this work, we present a new algorithm, based on the AON 4

framework, that we call Artificial Halocarbon Compounds, or AHC-algorithm for short. In this 5

study, we compare the AHC-algorithm against Genetic Algorithms (GA), by forecasting eight stock 6

market indices. Additionally, we performed a cross-reference comparison against results regarding 7

the forecast of other stock market indices based on state-of-the-art machine learning methods. The 8

efficacy of the AHC model is evaluated by modeling each index, producing highly promising results. 9

For instance, in the case of the IPC Mexico index, the R-square is 0.9806, with a mean relative error 10

of 7× 10−4. Several new features characterize our new model, mainly adaptability, dynamism, and 11

topology reconfiguration. This model can be applied to systems requiring simulation analysis using 12

time series data, providing a versatile solution to complex problems like financial forecasting. 13

Keywords: Artificial Intelligence; Machine learning; Bio-inspired; Genetic Algorithm; Stock market 14

index; Financial Forecasting 15

1. Introduction 16

The handling of risk and uncertainty across various financial domains has prompted 17

the development of diverse models and methodologies. As exposed by Elliot and Tim- 18

mermann [1], asset allocation requires real-time stock return forecasts, and improved 19

predictions contribute to enhanced investment performance. Consequently, the ability to 20

forecast returns holds crucial implications for testing market efficiency and developing 21

more realistic asset pricing models that better reflect the available data. Furthermore, Elliot 22

and Timmermann [1] state that stock returns inherently contain a sizable unpredictable 23

component so that the best forecasting models can only explain a relatively small part of 24

stock returns. 25

In this respect, we propose a new algorithm, called Artificial Halocarbon Compounds 26

(AHC) or the AHC-algorithm, for short, to tackle the Index Tracking Problem (ITP). The 27

efficacy is evaluated by forecasting eight stock market indices. The outcomes obtained 28

using the AHC model, as an alternative topology rooted in the Artificial Organic Networks 29

(AON), are compared to the results obtained using Genetic Algorithms (GA) as a benchmark. 30

Additionally, we performed a cross-reference comparison against results regarding the 31

forecast of other stock market indices based on state-of-the-art machine learning methods. 32

The efficacy of the AHC model is evaluated by modeling each index, producing highly 33

promising results. For instance, in the case of the IPC Mexico index, the R-square is 0.9806, 34

with a mean relative error of 7× 10−4. From this perspective, the objective is aligned with 35
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the aim previously outlined in [2], centered on crafting a novel, efficient algorithm, based 36

on the AON framework, capable of producing short-term forecasts for market trends. 37

AON stands as a supervised machine learning framework. It comprises a collection 38

of graphs constructed using heuristic rules to assemble organic compounds, enabling the 39

modeling of systems in a gray-box manner. Each graph within this framework represents a 40

molecule, essentially acting as information packages that offer partial insights into under- 41

standing the behavior of the system. The rationale behind considering GA as a benchmark 42

is that, although GA are not traditionally categorized as a distinct subdivision of machine 43

learning and are often associated with stochastic optimization, they found extensive appli- 44

cation in financial forecasting tasks [3,4]. Moreover, as illustrated in Section 2.2.1, Artificial 45

Hydrocarbon Networks, or AHN, the formally defined topology of AON, has been sub- 46

ject to comparison with various other methods. Hence, building upon the previous fact, 47

and that GA has been used in financial forecasting with success, it was selected as the 48

benchmark for comparison. 49

The rest of the article is structured as follows. In Section 2 we present a literature review 50

concerning stock mark indices prediction using machine learning methods. Additionally, 51

main concepts of the AHC-algorithm are illustrated, as well as some details about the 52

machine learning class from which it was inspired, the AON framework, including some 53

previously reported implementations. Likewise, this section also provides some main 54

concepts about GA. Next on Section 3, we give details about the data used, and how data 55

were preprocessed. We also describe the methodology followed to perform the experiments. 56

Afterward, Section 4 explains how the methods were implemented describing the parameter 57

tuning process. Section 5 presents the results of each method, as well as a cross-reference 58

comparison. Finally, Section 6 gives the conclusions of the study, and presents insights 59

about possible future investigation lines. 60

2. Background 61

In this section, a contextual theoretical framework is presented. Specifically, Section 2.1 62

provides a literature review. Further, Section 2.2 explains the Artificial Halocarbon Com- 63

pounds method, as a novel topology based on AON principles. This section also shares a 64

comparison of Artificial Hydrocarbon Networks (the initially defined AON topology), to 65

other existing methods. Later, Section 2.3 provides a brief overview of Genetic Algorithms. 66

2.1. Literature review 67

Several works can be found across the literature explaining the complexity of fore- 68

casting stock market indices, due to its noisy, unpredictable, non-linear dynamics, as main 69

characteristics of their behavior, and considering the application of different machine learn- 70

ing techniques as state-of-the-art predicting tools. In this respect, Ayyıldız [5] offers a 71

literature review of machine learning algorithms applied to the prediction of stock market 72

indices. Respectively, Saboor et al. [6] deliver the forecast of the KSE 100 (Karachi Stock 73

Exchange), the DSE 30 (Dhaka Stock Exchange), and the BSE Sensex (Bombay Stock Ex- 74

change), using methods such as Support Vector Regressor (SVR), Random Forest Regressor 75

(RF), Long-Short-Term Memory (LSTM), amongst others. In contrast, Aliyev et al. [7], offer 76

the prediction of the RTS Index (Russian Stock Exchange), applying an ARIMA-GARCH 77

model, and an LSTM model. Ding et al. [8], do similarly while producing the projection 78

of the SSE (Shangai Stock Exchange), using ARIMA and LSTM models as well. In their 79

work, Haryono et al. [9] present the forecast of the IDX (Indonesia Stock Exchange), by 80

applying different combinations of architectures using Convolutional Neural Networks 81

(CNN), Gated Recurrent Units (GRU), and LSTM, implemented through TensorFlow (TF). 82

Similarly to Haryono, Pokhrel et al. [10], perform the forecast of the NEPSE (Nepal Stock 83

Exchange), employing CNN, GRU, and LSTM architectures. Further, Singh [11] does the 84

forecast of the Nifty 50 (Indian Stock Market Index), using eight machine learning models, 85

including Adaptive Boost (AdaBoost), k-Nearest Neighbors (KNN), and Artificial Neural 86

Networks (ANN), among others. As a final example, Harahap et al. [12] present the usage 87
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of Deep Neural Networks (DNN), Back Propagation Neural Networks (BPNN), and SVR 88

techniques, for the forecast of the N225. A summary and a brief discussion of the results 89

presented in this section are given in Table 14, and discussed in Section 5.3. 90

2.2. Artificial Halocarbon Compounds 91

Artificial Halocarbon Compounds (AHC) or the AHC-algorithm, as a learning method, 92

is a new topology based on the AON framework inspired by chemical halocarbons com- 93

pounds. AON is a supervised metaheuristic bio-inspired machine learning class introduced 94

by Ponce et al. [13,14]. As defined, AON is based on heuristic rules inspired by chemistry to 95

create a set of graphs that represent molecules with atoms as vertices and chemical bonds 96

as edges; the molecules interact through chemical balance to form a mixture of compounds. 97

In this regard, AON builds organic compounds and defines their interactions; the structure 98

of molecules produced can be seen as packages of information that allow us to model 99

nonlinear systems. 100

As stated by Ponce et al. [13,14], the implementation of AON needs the utilization of 101

a functional group. These functional groups, act as the kind of molecules that dictate the 102

topological configuration of the AON during its application. Consequently, AON has been 103

instantiated using a specific existing topology known as Artificial Hydrocarbon Networks 104

(AHN). Therefore, the AHN model stands as the initial and sole formally defined topology 105

for AON thus far. The AHN algorithm is conceptualized as biochemically inspired by 106

the formation of chemical hydrocarbon compounds. It was designed to optimize a cost- 107

energy function, employing two mechanisms for the creation of organic compounds. These 108

mechanisms aim to generate an efficient number of molecules to construct the desired 109

structures; these tools are: 110

i It uses least-squares regression (LSR) to define the structure of each molecule. 111

ii It uses gradient descent (GD) to optimize the position and number of molecules in 112

the feature space. 113

While AHN has demonstrated enhanced predictive power and interpretability when 114

compared to other prominent machine learning models like neural networks and random 115

forests, it does have certain limitations. As explained in [15], big data is primarily character- 116

ized by the volume of information to be processed, the velocity of data generation, and the 117

diversity of data types involved. Existing machine learning algorithms must be adapted to 118

harness the advantages of big data and efficiently handle larger amounts of information. In 119

this context, AHN faces a drawback as it is notably time-consuming and struggles to cope 120

with big data requirements. The model employs Gradient Descent (GD), and due to the 121

inherent complexity of GD, it poses challenges to the scalability of the AHN model. 122

2.2.1. Formerly reported comparison and implementations of AHN 123

Previously, Ponce [13,14] delineated a comprehensive comparison between the AHN- 124

algorithm and various conventional machine learning and optimization methods. This 125

evaluation encompassed considerations of computational complexity, attributes of learning 126

algorithms, and features of the constructed models, alongside the types of problems ad- 127

dressed. In this regard, Table 1 illustrates part of the comparison done by Ponce, showing 128

the computational complexity of learning algorithms and some of their characteristics, 129

such as being supervised or unsupervised, amongst other attributes. Additionally, Table 1 130

provides insights into some of the specific problem types that each algorithm can effectively 131

tackle, including approximation or prediction, classification, and optimization. In this 132

regard, the AHN algorithm is noteworthy for constructing a continuous, nonlinear, and 133

static model within a given system. 134
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Table 1. Some identified attributes for certain learning algorithms compared by Ponce [13,14].
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General
linear regression O(c2n) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

general regression O(c2n) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
running mean

smoother O(n) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

kernel smoother O(nd) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
decision trees O(nc2) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
random forest O(Qcn log n) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

naive Bayes
classifier O(nc) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bayesian networks O(cdj) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
support vector

machine O(n3) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

k-nearest
neighbor O(knd) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

k-means algorithm O(ndk+1 log n) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
fuzzy clustering

means O(indk) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

simulated annealing OP X X NBD X X ✓ ✓
Artificial Neural

Networks
backpropagation TD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

generalized
Hebbian algorithm TD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hopfield’s nets TD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Evolutionary

genetic algorithms NBD X X NBD X X ✓ ✓
gene expression

algorithms NBD X X NBD X X ✓ ✓

Chemically
Inspired

DNA computing NBD X X NBD X X ✓ ✓
artificial hydrocarbon

networks O(Cmn ln 1
ϵ ) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(n) number of samples. (c) number of features. (d) number of inputs. (k) number of clusters. (i) number of iterations. (j) maxi-
mum number of parents in Bayesian networks. (Q) number of trees in random forests. (C) number of compounds in AHN.
(m) number of molecules in AHN. (ϵ) tolerance in AHN. (✓) the attribute is found in the method. (X) the method does not
present that attribute. (OP) the computational complexity of the method changes depending on the specific problem and/or
optimization algorithm. (TD) the computational complexity of the method is topology-dependant. (NBD) the model is not
built directly by the method.

Numerous applications of the AHN algorithm across diverse fields have been docu- 135

mented since its proposition by Ponce [13]. Some of the reported applications include: 136

• Online Sales Prediction: The AHN algorithm found application in forecasting Online 137

Retail Sales, employing a Simple-AHN topology featuring a linear and saturated 138

compound. The implementation involved a comparative analysis with other well- 139

established learning methods, including cubic splines (CS), model-trees (MT), random 140

forest (RF), linear regression (LR), Bayesian regularized neural networks (BN), support 141

vector machines with radial basis function kernel (SVM), among others. Performance 142

evaluation in the experiments was conducted based on the accuracy of the models, 143

measured by the root-mean squared error (RMSE) metric. Notably, the results revealed 144

that AHN outperformed the other models, demonstrating superior performance in 145

this context [16]. 146

• Forecast of exchange rate currencies: the effectiveness of the AHN model was assessed 147

in generating forecasts for the BRIC currencies to USD. Specifically, the illustration 148

focuses on the exchange rate of the Brazilian Real to USD (BRL/USD). Following the 149



Version March 3, 2024 submitted to Big Data Cogn. Comput. 5 of 19

execution of experiments, the model yielded a favorable chart behavior, accompanied 150

by an error rate of 0.0102 [17]. 151

• The AHN-algorithm was employed in an intelligent diagnosis system using a Double- 152

Optimized Artificial Hydrocarbon Network to identify mechanical faults in the In- 153

Wheel Motor (IWM). The implementation aimed to validate enhanced performance 154

across multiple rotating speeds and load conditions for the IWM. Comparative analy- 155

sis was conducted against other methods, including support vector machines (SVM), 156

particle swarm optimization-based SVM (PSO-SVM), among others. The double- 157

optimized AHN method exhibited superior performance, achieving a diagnosis accu- 158

racy surpassing 80% [18]. 159

These instances represent just a few examples of the diverse applications where AHN 160

has demonstrated favorable outcomes. For readers seeking more in-depth information on 161

specific cases mentioned here or desiring a broader understanding of the varied purposes 162

for which AHN has been employed, it is recommended to explore the lectures by Ponce et 163

al. referenced in this work [13–22]. 164

2.2.2. Artificial Halocarbon Compounds Approach 165

Artificial Halocarbon Compounds (AHC) or the AHC-algorithm for short, represents 166

a novel supervised machine learning algorithm rooted in the AON framework, drawing 167

inspiration from chemical halocarbon compounds. As a distinctive AON arrangement, 168

one of its primary emphasis is on forgoing the Gradient Descent (GD) mechanism to 169

optimize the position and/or number of molecules. This strategic choice aims to mitigate 170

time consumption during the creation of an AON structure. In this hybrid approach, 171

the feature space undergoes segmentation, or clustering, utilizing K-Means based on 172

the required number of molecules. This segmentation determines the position of each 173

molecule. Consequently, with each iteration, the data are segmented as many times as the 174

specified number of molecules to be created. Subsequently, the structure of each molecule 175

is computed for the corresponding segment. Rather than employing a conventional Least 176

Squares Regression (LSR) method to directly define the structure of each molecule, a 177

dynamic topology is introduced as a significant feature shaping the new AON arrangement. 178

In this context, the dynamic topology provides flexibility by allowing a broader range 179

of options to construct organic structures for a compound. This selection is based on 180

the cost-energy function, ensuring the overall low error of the produced models. These 181

dynamic options involve decisions such as substituting the type of curve or choosing among 182

different fitting methods, including the multiple non-linear regressive (MNLR) model [2], 183

among others. This involves replacing the method used to characterize each molecule. 184

These replacements are analyzed during the computation of the algorithm, simulating an 185

inspirational chemical reaction. At the end of the reaction, the arrangement with the most 186

favorable final substitution from the compared structures is presented. 187

2.2.3. AHC-algorithm implementation 188

The AHC-algorithm is implemented through the routine presented in Algorithm 1. 189

In addition, Figure 1 shows a flowchart with the phases of the AHC-algorithm. The 190

corresponding input variables that the algorithm receives to produce a model are: a) the 191

data set (denoted as the system), b) the maximum number of molecules allowed for the 192

compound structure, c) the tolerance value for the error, and d) the regularization factor 193

considered along the computations. The maximum number of molecules and the tolerance 194

value are used as criteria for the stopping condition of the algorithm; in this sense, the 195

routine stops once one of the two is met. The outputs of the algorithm are: a) the structure 196

of the compound, and b) the type of halogenation (the inspirational chemical reaction) 197

produced in each molecule. The coefficients of the model are held inside the compound 198

structure. The entropy-rule considered in the algorithm is a characteristic of the AHC 199

model whose objective is to maintain the lowest entropy (level of energy) of the model 200

system, taking into account the output error. 201
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Figure 1. Flowchart illustrating the phases of the AHC-algorithm to produce a compound to model a
system.
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Algorithm 1 AHC-ALGORITHM (Υ, nmax, ϵ, λ): Implementation of the artificial halocar-
bon compounds using AHC-algorithm.
Input: the system Υ = (x, y), the maximum number of molecules nmax, the tolerance value
ϵ > 0, and the regularization factor λ.
Output: the structure of the compound C, and the type of halogenation τ for each molecule
in C. The coefficients Θ are included within the structure C.

1: Initialize the number of molecules, n← 2.
2: Initialize the error function, ε← ∞.
3: while (n ≤ nmax) and (ε > ϵ) do
4: Initialize a minimal compound C.
5: Initialize τ with all the types of halogenation.
6: Split Υ into n subsets Υi with their centers Qi, using K-means.
7: for each partition Υi do
8: for each type of halogenation τj do
9: Find the energy level of the subset Υi with each halogen τj, considering λ.

10: end for
11: Update the final behavior of the molecule in Υi, by selecting the best halogenation

τj, following the ENTROPY-RULE.
12: end for
13: Update the error function ε using the true fractional relative error defined in [2].
14: end while
15: return C, and τ

2.3. Genetic Algorithms 202

Genetic Algorithms (GA), as explained in [3,4], are metaheuristic, nature-inspired 203

algorithms that are classified under evolutionary algorithms (EA), that work by imitating 204

the evolutionary process of natural selection and genetics. In contrast, as Ponce [23] 205

recalls, GA function as a mathematical object that transforms a set of mathematical entities 206

over time through a series of genetic operations, notably including sexual recombination. 207

These operations adhere to patterned procedures based on the Darwinian principle of 208

reproduction and the survival of the fittest. Typically, each mathematical object takes the 209

form of a string of characters (letters or numbers) of a fixed length, resembling chains of 210

chromosomes. These entities are associated with a defined fitness function that gauges their 211

aptitude. To elaborate, a genetic algorithm operates within a given population, subjecting it 212

to an evolutionary process to generate new generations. Usually, the algorithm concludes 213

when most individuals in a population become nearly identical or when a predefined 214

termination criterion is met. While GA are not typically considered a specific subdivision of 215

machine learning (ML), they can be utilized in various aspects of ML. They are particularly 216

used in stochastic optimization, search problems, and have been widely used in financial 217

forecasting tasks. 218

3. Methodology 219

Distinct experiments have been conducted to validate the efficacy of the AHC-algorithm, 220

put forth as a suggested supervised machine learning algorithm, can successfully conduct 221

short-term forecasts of market price trends, as initially specified in [2]. In this context, 222

Section 3.1 details the utilized data and outlines the preprocessing steps undertaken for the 223

experiments. Subsequently, Section 4 provides insight into the selection of the parameters 224

for the implementation of the AHC-algorithm for forecasting eight stock market indices, as 225

well as the parameters used in GA models for the same forecasting purpose. 226
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3.1. Data 227

For these experiments, we used the existing data of the closing price of eight indices, 228

from six countries. The indices are: IPC, S&P 500, DAX, DJIA, FTSE, N225, NDX, and CAC; 229

Table 2 shows some descriptive statistics for the closing price of the stock market indices 230

used in this research. 231

Table 2. Descriptive statistics of the closing price of the corresponding stock market indices.

Descriptive Statistics
Index Mean SD Min 25% 50% 75% Max
IPC 39899.97 8813.83 16653.15 33262.48 41960.44 46190.08 56609.53

S&P 500 2175.65 1022.05 676.53 1343.80 1963.29 2801.97 4796.56
DAX 9730.27 3228.43 3666.40 6795.31 9662.18 12427.14 16275.37
DJIA 18905.68 7938.82 6547.05 12397.85 16837.42 25371.71 36799.65
FTSE 6400.61 880.11 3512.10 5850.83 6486.40 7129.97 8014.31
N225 17399.64 6332.78 7054.97 10965.59 16958.52 22011.19 31328.16
NDX 5332.16 4030.66 1036.51 2084.62 4089.62 7307.99 16573.33
CAC 4794.71 1073.30 2519.29 3939.81 4799.87 5501.77 7577.00

For each index model, the variables included in the dataset are: the daily reported 232

stock market index closing price, the quarterly reported gross domestic product (GDP), 233

the daily reported foreign exchange rate (FX), the monthly reported consumer price index 234

(CPI), the monthly risk-free rate (RFR), the monthly unemployment rate (UR), the monthly 235

reported current account to GDP rate (BOP), and the monthly reported investment rate 236

(GFCF). The time period is from the 1st of June 2006 to the 31st of May 2023. We chose this 237

time period to ensure that no less than one short economic cycle is used for the analysis and 238

prediction [2]. The indices and the FX data are sourced from Yahoo Finance, and the rest of 239

the variables are retrieved from the OECD. The data are available at [24], and preprocessed 240

as follows: 241

1 For each input, we applied an approximation using least-squares polynomial re- 242

gression (LSP); in this regard, the macroeconomic variables (MEVs) are treated as 243

“continuous signals” instead of discrete information. 244

2 The data were standardized by removing the mean, so it can be scaled. 245

3 We used principal component analysis (PCA), to reduce the dimensionality of the data; 246

it was done by considering three principal components (PC). 247

It is crucial to emphasize that, although eight may be considered a relatively small 248

number of features, the utilization of PCA plays an essential role in the implementation 249

of AHC; this arises from the fact that the computational complexity of the original AHN 250

topology was dependent on the number of features. The models are evaluated applying 251

an out-of-sample forecast. The criteria for employing an out-of-sample forecast instead 252

of a one-day-ahead forecast (nonetheless that the last method is a more common forecast 253

practice), attends to the progress achieved for the ongoing investigation by the moment 254

these results were collected. Out-of-sample forecasting refers to the practice of testing the 255

performance of a financial model or forecasting method on data that were not used in the 256

model’s development. Essentially, the idea is to evaluate how well a model generalizes to 257

new, unseen data. This is a crucial step in assessing the reliability and effectiveness of a 258

forecasting model, as it provides insights into how well the model is likely to perform in 259

real-world scenarios. In contrast, a one-day-ahead forecast involves predicting the financial 260

market’s conditions or the price of an asset for the next trading day. This short-term forecast 261

is used by investors and traders to make informed decisions on buying or selling securities 262

based on expected market movements within the next day. 263

To avoid overfitting, besides the consideration that the AHC-algorithm uses the 264

parameter λ as a regularization factor, the data were preprocessed accordingly as mentioned 265

above. The procedure to fine-tune the λ value is explained in Section 4.1. In addition, the 266



Version March 3, 2024 submitted to Big Data Cogn. Comput. 9 of 19

data are split in two: the initial 85% for training, and the remaining 15% for testing; it was 267

chosen this split size because in Section 5.1 we conducted a comparison of the performance 268

of the AHC-algorithm vs. GA. In this regard, after doing a parameter tuning for GA, that 269

included different values of the split size, the best results for GA were obtained using a 270

testing size of 15%. 271

3.2. Forecast of the stock market indices 272

To produce the forecast of the stock market indices, first, all data were preprocessed 273

as described in Section 3.1; subsequently, the data set was passed to each algorithm. The 274

training parameters for AHC-algorithm and GA methods were established by doing a grid 275

search, explained with further detail in Section 4. Once we found the training parameters, 276

the models were fitted using the training set. Afterward, the models were used to do a 277

forecast with the testing sets. The performance of each method is compared in the Section 5; 278

likewise, the section also contains a comparison of the AHC-algorithm against some of 279

the results found across the literature review. The described methodology is illustrated in 280

Figure 2. 281

Figure 2. Methodology to compare the results of the forecast of stock market indices with different
methods.

For the interested reader, the code used in this work is available at [25], and the 282

complete dataset at [24]. 283

4. Experimental Setup 284

At this point, it is crucial to clarify that both models (AHC and GA), were implemented 285

to compute a model with 16 coefficients for benchmarking reasons. This is because, by 286

default, the AHC-algorithm performs this computation owing to its inspirational chemical 287

reaction properties. 288

4.1. AHC parameters tuning 289

To do the forecast of the eight indices, we implemented the AHC-algorithm doing 290

a hyperparameter tuning. For this purpose, we trained the AHC model with an initial 291

set of different parameters; then, a grid search was conducted. The parameters are: the 292

tolerance ϵ, with values in {6× 10−4, 9× 10−4}; the maximum number of molecules nmax, 293

with values in {2, 4, 8, 12}; and the regularization factor λ, with values in {0, 1× 10−10, 294

.95, 1}. The fine-tuned parameters for the AHC model are illustrated in Table 3. These 295

fine-tuned parameters are employed for the forecast of the eight indices. 296

Table 3. Final set of fine-tuned parameters for the AHC experiments.

AHC Parameter Tuning

Tolerance 9× 10−4

Maximum number of molecules 12
Regularization factor 1× 10−10

4.2. GA parameters tuning 297

To obtain the forecast of the eight stock market indices using GA, the implementation 298

of this technique was done by applying a hyperparameter tuning. On this subject, the GA 299

was trained with an initial set of different parameters; then, a grid search was conducted. 300

The parameters are: the training size, with values in {.80, .85, .90, .95}; population size, 301
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with values in {300, 500, 700}; mutation probability, with values in {.25, .5, .75}; and the 302

generations number, with values in {25, 30}. The GA experiments were run through 50 303

iterations. 304

To improve the outcomes derived from the first approach, a second instance of hyper- 305

parameter tuning was conducted; subsequently, the parameters were: the population size, 306

with values in {650, 800}; mutation probability, with values in {.25, .5, .75}; and the genetic 307

operator probability, with values in {.1, .3, .6}. For these cases, the GA experiments were 308

run through 35 iterations. The fine-tuned parameters are shown in Table 4. 309

Table 4. Final set of fine-tuned parameters for the GA experiments.

GA Parameter Tuning
Training size .85

Population size 650
Mutation probability .25

Genetic operator probability .1
Generations 25

5. Results & Analysis 310

Using the fine-tuned parameters for the AHC and GA models defined in Section 4, we 311

conducted the forecast of the closing price of the eight stock market indices. This section 312

presents some of the results of the forecast of the eight indices. Particular attention is given 313

to the IPC results. For the interested reader, the results of the other indices have been 314

included in Sections 1 and 2 of the Supplementary Material. 315

5.1. AHC Forecast 316

The main properties in the design of the AHC-algorithm are adaptability, dynamic, 317

and a topology that is reconfigurable. The AHC-algorithm achieves these characteristics by 318

creating an organic structure while producing a model. In this respect, Table 5 shows 16 319

coefficients computed for each molecule, that conform the computed organic compound 320

that models the IPC. For the interested reader, the coefficients of the organic structures that 321

model the rest of the indices are included in Section 1 of the Supplementary Material. By 322

analyzing all the computed AHC compounds, it can be observed the differences among 323

each structure, reinforcing the capability of the AHC-algorithm to be adaptable and re- 324

configurable. Thus, as examples, it can be remarked that the AHC compound to model 325

the IPC has two molecules (Table 5), while the AHC compound to model the S&P 500 is 326

defined with 12 molecules; likewise, the AHC compound to model the S&P 500 has seven 327

Cl molecules and five Ts molecules, in contrast, the AHC compound to model the DAX has 328

nine Cl molecules and three Ts molecules (Table 6). 329
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Table 5. Structure of the computed AHC compound for the IPC model: two Cl molecules, and 16
coefficients per molecule.

Computed AHC model
Molecule 1 2

τ Cl Cl
â0 5.5511× 10−2 1.7165× 10−1

â1 1.0751 1.0431
â2 −8.1720× 10−2 −6.3559× 10−2

â3 2.0870× 10−4 8.0320× 10−4

â4 −5.0229× 10−4 7.6059× 10−4

â5 1.3830× 10−09 5.3071× 10−10

â6 −5.0932× 10−10 −1.3417× 10−09

â7 5.6099× 10−10 −5.8049× 10−10

â8 −8.9410× 10−10 9.4233× 10−10

â9 4.3678× 10−10 −4.0522× 10−10

â10 −1.4914× 10−10 −9.4375× 10−11

â11 1.3702× 10−10 −2.3062× 10−11

â12 1.5235× 10−10 −2.6964× 10−10

â13 5.1419× 10−08 3.1700× 10−07

â14 4.2263× 10−10 −5.4817× 10−10

â15 0 0

Table 6. Comparison of the structures of the computed AHC compounds for the eight stock market
indices.

Comparison of the AHC computed compounds
Index Cl molecules Ts molecules Total molecules
IPC 2 0 2

S&P 500 7 5 12
DAX 9 3 12
DJIA 2 0 2
FTSE 9 3 12
N225 10 2 12
NDX 8 4 12
CAC 7 5 12

The AHC model offers notorious results obtained from the forecast of the IPC using 330

the testing set: 331

1 Figure 3 shows a comparison between the original values yt of the IPC from the testing 332

set displayed in blue, and the forecast values ŷ displayed in red. From this graph, it 333

can be noticed that the obtained forecast from the AHC-algoritm replicates very well 334

the behavior of the original IPC. 335

2 Figure 4 shows the residuals of the model. The residuals display a satisfactory homo- 336

geneous distribution, reinforcing the claim that the model is behaving well. 337

3 Figure 5 illustrates the behavior of the relative error with a 7 × 10−4 mean and a 338

6× 10−4 SD; this shows how the results of the test data have kept a low error rate and 339

low noise or residual variation. 340

Likewise, we pondered the R-square, which measures the performance of a model, 341

based on how well replicates the original output. In this sense, table 7 shows the sum of 342

squares and the R-square using the testing set of all the indices. From this table, we can 343

observe that not all the values of the R-square are as good as expected, like the cases of 344

the DAX and the NDX. Nevertheless, for the rest of the indices, the R-square of the testing 345
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model is satisfactory, and for some cases is high, as in the cases of CAC, the DJIA, and the 346

IPC. Table 8 shows some descriptive statistics of the relative error of the testing set. From 347

this table we can see that, in general, the results of these statistics are good; in the cases of 348

the DJIA and IPC, they have the smallest mean of the relative error with a 7× 10−4 value. 349

Figure 3. Graphs depicting the AHC model’s forecast using the testing set of the closing price of the
IPC (red line), and the original data (blue line).

Figure 4. Residuals of the AHC model.

Figure 5. Behavior of the relative error of the AHC model.

Table 7. Statistical measures of the sum of squares and the R-square of the AHC model for the eight
indices.

Testing set model performance
Index RSS SSR TSS R-square
IPC 0.0397 2.0127 2.0524 0.9806

S&P 500 1.6715 4.4964 6.1679 0.729
DAX 38.4175 36.9056 75.3231 0.49
DJIA 0.0444 1.9437 1.988 0.9777
FTSE 2.2429 5.4236 7.6666 0.7074
N225 2.632 4.13670 6.7687 0.6111
NDX 36.3486 47.3396 83.6882 0.5657
CAC 0.819 4.0481 4.8671 0.8317
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Table 8. Descriptive statistics of the relative error for the eight indices.

Relative error of the testing set
Index Mean Median SD MAD Max Min Range
IPC 0.0007 0.0006 0.0006 0.0004 0.0031 0.0000 0.0031

S&P 500 0.0049 0.0027 0.0058 0.0042 0.0291 0.0000 0.0291
DAX 0.019 0.0052 0.0251 0.022 0.0753 1.0035× 10−05 0.0752
DJIA 0.0007 0.0005 0.0007 0.0005 0.0039 0.0000 0.0039
FTSE 0.0063 0.005 0.0052 0.0038 0.0265 0.0000 0.0265
N225 0.0064 0.0065 0.0044 0.004 0.0141 0.0000 0.0141
NDX 0.011 0.0033 0.0293 0.0122 0.1464 0.000 0.1464
CAC 0.0038 0.0025 0.0034 0.0028 0.0136 0.0000 0.0136

5.2. Model Comparison with GA 350

Similarly to the previous Section 5.1, some of the results are included here, specifically 351

the results of the IPC index. The complete results for the rest of the indices are provided in 352

Section 2 of the Supplementary Material. In this regard, Table 9 presents the coefficients 353

computed for the IPC model using GA. In addition, Figure 6 depicts the error behavior 354

through the computation of the 25 generations. Figure 7 shows the forecast using the 355

testing set, and compares the original values against the predicted values. Table 10 shows 356

the sum of squared and the R-square of the model performance using the testing set of all 357

the indices. Furthermore, Table 11 illustrates some descriptive statistics of the relative error 358

of the testing sets. 359

360

Table 9. Computed GA’s genotype with the coefficients (Genes) for the IPC model.

Computed GA model
Gene Value

â0 1.9749
â1 3.5800
â2 -2.8185
â3 5.4865× 10−3

â4 3.5244× 10−2

â5 10.9748
â6 11.1065
â7 5.8242
â8 9.6453
â9 8.6060
â10 10.7133
â11 1.2196
â12 -10.8794
â13 -7.6908
â14 3.5332

Figure 6. IPC error behavior through 25 generations.
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Figure 7. Graphs depicting the GA model’s forecast using the testing set of the closing price of the
IPC (red line), and the original data (blue line).

Table 10. Statistical measures of the sum of squares and the R-square of the GA model for the eight
indices.

Testing set model performance
Index RSS SSR TSS R-square
IPC 11.8032 15.0688 26.8721 0.5607

S&P 500 543.1242 549.0494 1092.1737 0.5027
DAX 342.9938 347.9404 690.9343 0.5035
DJIA 34.3704 37.6600 72.0305 0.5228
FTSE 106.3347 104.6426 210.9773 0.4959
N225 87.8507 88.8637 176.7144 0.5028
NDX 30.3829 23.5269 53.9099 0.4364
CAC 79.4216 84.3237 163.7454 0.5149

Table 11. Descriptive statistics of the relative error for the eight indices.

Relative error of the testing set
Index Mean Median SD MAD Max Min Range
IPC 0.0144 0.0150 0.0054 0.0043 0.0275 0.0002 0.0273

S&P 500 0.1347 0.1290 0.0232 0.0169 0.2014 0.0903 0.1111
DAX 0.0824 0.0893 0.0450 0.0396 0.1714 0.0000 0.1714
DJIA 0.0263 0.0266 0.0077 0.0059 0.0510 0.0011 0.0499
FTSE 0.0531 0.0492 0.0184 0.0127 0.1177 0.0232 0.0945
N225 0.0437 0.0437 0.0078 0.0060 0.0653 0.0180 0.0472
NDX 0.0258 0.0278 0.0113 0.0095 0.0522 0.0009 0.0513
CAC 0.0462 0.0473 0.0172 0.0136 0.1081 0.0006 0.1074

By contrasting the results obtained from the AHC and the GA models, it can be 361

remarked that, at first hand, GA has the next advantages over the AHC-algorithm: 362

˘ GA have the capacity of doing a global search, since this method can explore the entire 363

search space and can find global optima in complex spaces. 364

˘ They can find a solution by doing exploration, searching new areas of the solution 365

space; and by doing exploitation, focusing on specific areas. 366

˘ Their stochastic characteristic allows them to escape local optima. 367

On the other hand, despite these advantages, the performance of AHC-algorithm 368

makes evident some of the disadvantages of GA: 369

˘ GA requires an exhausting computational intensity, so they can become computation- 370

ally expensive for complex problems and large solution spaces, requiring a significant 371

amount of computational resources and time. 372

˘ They can converge prematurely to suboptimal solutions. 373

˘ Their performance is sensitive to the choice of parameters, making them susceptible to 374

be not properly tuned; their optimal parameter tuning can be challenging. 375
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˘ Due to its stochastic nature, the results can be more susceptible to white noise. 376

Finally, considering these disadvantages, and the results summarized in Table 12 377

(columns extracted from Tables 7, 8, 10, and 11), we can conclude that for the objectives 378

of this research, the AHC-algorithm has proven to be a preferable alternative over the GA 379

method. 380

Table 12. Comparison of the statistics of the relative error for the eight indices.

Statistics comparison of the Relative Error
Method AHC GA
Index Mean Median SD R-square Mean Median SD R-square
IPC 0.0007 0.0006 0.0006 0.9806 0.0144 0.0150 0.0054 0.5607

S&P 500 0.0049 0.0027 0.0058 0.729 0.1347 0.1290 0.0232 0.5027
DAX 0.019 0.0052 0.0251 0.49 0.0824 0.0893 0.0450 0.5035
DJIA 0.0007 0.0005 0.0007 0.9777 0.0263 0.0266 0.0077 0.5228
FTSE 0.0063 0.005 0.0052 0.7074 0.0531 0.0492 0.0184 0.4959
N225 0.0064 0.0065 0.0044 0.6111 0.0437 0.0437 0.0078 0.5028
NDX 0.011 0.0033 0.0293 0.5657 0.0258 0.0278 0.0113 0.4364
CAC 0.0038 0.0025 0.0034 0.8317 0.0462 0.0473 0.0172 0.5149

Using the data from Table 12, a Wilcoxon signed-rank test was conducted. The p- 381

values are smaller than an alpha of 5%; therefore, statistical significant differences exist 382

between the two methods. This further strengthens the assertion that the AHC-algorithm 383

outperforms the GA model. The outcomes of the Wilcoxon signed-rank test are presented 384

in Table 13. 385

Table 13. Results of the Wilcoxon signed-rank test for the two methods.

Wilcoxon signed-rank test results
Mean Median R-square

Test Statistic 0 0 1
P-value 0.0078 0.0078 0.0156

5.3. Cross-Reference Comparison 386

In addition to the evaluation made in Section 5.2, a further cross-reference [6–12] 387

comparison is presented here, against the results obtained in Section 5.1. In this respect, 388

Table 14 summarizes some of the results found in the literature and compares them to the 389

results of the forecast using our AHC-algorithm. 390

From Table 14, we can state that the AHC-algorithm offers promising results. The 391

forecasts reported in the references use the index historical data as input. In our case, to 392

produce the stock market index forecasts, the AHC-algorithm makes use not only of the 393

historical data but also considers, for each index, seven country-specific macroeconomic 394

variables. Moreover, our models used a large data size of 17 years (the third largest), besides 395

being tested for eight indices of six different countries. Likewise, in the cases of the IPC, the 396

DJIA, and the CAC, the obtained R-square using the AHC-algorithm, is comparable to the 397

R-square obtained using the LSTM method, which provided one of the highest R-square 398

for the DSE with a value of 0.99. 399
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Table 14. Cross-reference comparison against the AHC model’s results from the testing sets.

Compared results from the testing sets

Index Method Error R-square Data Size
(years) Time Period Testing

Set Size
KSE1 SVR 10,615.67∗ -2.51 22 2000 - 2022 30%
KSE1 RF 12,113.12∗ -3.57 22 2000 - 2022 30%
KSE1 KNN 13,404.33∗ -4.60 22 2000 - 2022 30%
KSE1 LSTM 1,844.47∗ 0.89 22 2000 - 2022 30%
DSE1 SVR 170.89∗ 0.82 9 2013 - 2022 30%
DSE1 RF 163.01∗ 0.84 9 2013 - 2022 30%
DSE1 KNN 186.20∗ 0.79 9 2013 - 2022 30%
DSE1 LSTM 48.42∗ 0.99 9 2013 - 2022 30%
BSE1 SVR 12,569.63∗ -1.35 13 2009 - 2022 30%
BSE1 RF 12,356.13∗ -1.27 13 2009 - 2022 30%
BSE1 KNN 13,155.32∗ -1.57 13 2009 - 2022 30%
BSE1 LSTM 3,295.93∗ 0.84 13 2009 - 2022 30%
RTS2 ARIMA-GARCH 35.93∗ 0.977 22 2000 - 2022 10%
RTS2 LSTM 14.91∗ 0.996 22 2000 - 2022 10%
SSE3 ARIMA 9.838∗ 0.9675 1 2020 - 2021 25%
SSE3 LSTM 1.319∗ NA 1 2020 - 2021 25%
IDX4 CNN 719.9594∗ -75.4127 1 2022 20%
IDX4 LSTM 638.0830∗ -33.0115 1 2022 20%
IDX4 GRU 553.3277∗ -40.1303 1 2022 20%

NEPSE5 LSTM 10.4660∗ 0.9874 4 2016 - 2020 20%
NEPSE5 GRU 12.0706∗ 0.9839 4 2016 - 2020 20%
NEPSE5 CNN 13.6554∗ 0.9782 4 2016 - 2020 20%

NIFTY 506 ANN 36.865∗ 0.999 25 1996 - 2021 20%
NIFTY 506 SGD 42.456∗ 0.999 25 1996 - 2021 20%
NIFTY 506 SVM 68.327∗ 0.998 25 1996 - 2021 20%
NIFTY 506 AdaBoost 2277.710∗ -0.930 25 1996 - 2021 20%
NIFTY 506 RF 2290.890∗ -0.952 25 1996 - 2021 20%
NIFTY 506 KNN 2314.720∗ -0.993 25 1996 - 2021 20%

N2257 SVR NA∗ 0.81 3 2016 - 2019 10%
N2257 DNN NA∗ 0.79 3 2016 - 2019 10%
N2257 BPNN NA∗ 0.82 3 2016 - 2019 10%
N2257 SVR NA∗ 0.58 3 2016 - 2019 20%
N2257 DNN NA∗ 0.58 3 2016 - 2019 20%
N2257 BPNN NA∗ 0.56 3 2016 - 2019 20%

IPC AHC 0.0007† 0.9806 17 2006 - 2023 15%
S&P 500 AHC 0.0049† 0.729 17 2006 - 2023 15%

DAX AHC 0.019† 0.49 17 2006 - 2023 15%
DJIA AHC 0.0007† 0.9777 17 2006 - 2023 15%
FTSE AHC 0.0063† 0.7074 17 2006 - 2023 15%
N225 AHC 0.0064† 0.6111 17 2006 - 2023 15%
NDX AHC 0.011† 0.5657 17 2006 - 2023 15%
CAC AHC 0.0038† 0.8317 17 2006 - 2023 15%

1Results reported in [6]. 2Results reported in [7]. 3Results reported in [8]. 4Results reported in [9]. 5Results reported in [10].
6Results reported in [11]. 7Results reported in [12]. ∗Reported as RMSE. †Reported as Relative Error. (NA) Value not provided.

5.4. Complementary Analysis 400

A complementary analysis is presented here, to illustrate the feasibility of using the 401

AHC-algorithm forcast in the financial domain. In this sense, the computed forecast of 402

the stock market indices, using the testing set of the closing prices, is used as input to 403

implement a Buy-and-Hold strategy and to compute the Sharpe ratio. The Buy-and-Hold 404

approach uses two moving averages for the index historical data with different time periods: 405

a slow moving average (SMA) and a fast moving average (FMA). There are many common 406

combinations used [26]: five-day and 20-day averages, 12 and 24, 10 and 30, 10 and 50-day, 407

and so forth. For the development of the current experiments, we use the pair 10-day FMA 408

and 30-day SMA average. Figure 8 shows the frames of the Buy-and-Hold strategy for the 409

model of the IPC forecast computed in Section 5.1. From this figure it is possible to see 410

the intersects between the SMA and FMA frames. The outcomes for the Buy-and-Hold 411
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strategy for the rest of the indices are included in Section 3 of the supplementary material. 412

In addition, Table 15 shows the values of the computed return, volatility, and the Sharpe 413

ratio for the forecast period of each index. 414

Figure 8. Curves of the IPC forecast (blue line), with the 10-day FMA (red line), and 30-day SMA
frames (green line).

Table 15. Financial analysis with the computed return, volatility, and Sharpe ratio, for the forecast of
the stock market indices using the testing set of the closing price.

Financial Analysis
Index Return % Risk Free Rate % Volatility % Sharpe ratio
IPC 121.49 6.06 16.30 7.07

S&P 500 130.28 2.32 23.14 5.52
DAX 84.04 0.66 30.14 2.76
DJIA 114.42 2.32 13.85 8.09
FTSE 91.01 2.15 27.00 3.29
N225 100.59 -0.69 17.20 5.88
NDX 170.45 2.32 50.76 3.31
CAC 103.53 6.06 28.33 3.43

6. Conclusions & Future Work 415

Through this research, different experiments are offered to evaluate the capabilities of 416

the AHC-algorithm, as a new supervised machine learning algorithm, that can effectively 417

satisfy the objective stated in [2]. The final forecast models obtained by the AHC-algorithm 418

provide very encouraging results; for example, in the case of the IPC Mexico stock market 419

index, the R-square is 0.9806, with a mean relative error of 7 × 10−4. Moreover, the 420

experiments overpass the objective, considering that amidst the results, we obtained a 421

series of good forecasts covering months, and in some cases even years. Additionally, 422

we worked on eight different stock market indices from six countries, using 17 years of 423

historical data to cover at least one short economic cycle, employing eight MEVs (including 424

the corresponding index), to produce the prediction model of each rate. 425

As a main contribution, the new algorithm complies with the following properties: 426

it is adaptable, dynamic, and its topology is reconfigurable. Given these properties, the 427

new algorithm can be applied to different approaches or systems that require simulation 428

analysis using time series. Thus, the AHC-algorithm provides an alternative tool to financial 429

analysts to produce forecasting scenarios comparable to existing state-of-the-art methods. 430

The AHC-algorithm, as a new machine learning technique, opens new research windows 431

in the following directions: 432

˘ Improvements to perform a financial forecast. Taking into account that our results are 433

evaluated by applying an out-of-sample forecast, changing this approach to one-day- 434

ahead forecast can improve the performance of the predictions. 435

˘ Extend the comparison with other state-of-the-art methods. An extensive assessment 436

of the performance of the new AHC-algorithm, against other techniques, such as 437
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random forest, neural networks multilayer perceptron, long short term memory neural 438

networks, genetic programming, among others. 439

˘ Explore other types of substitutions for the AHC halogenations. Specific kinds of 440

polynomial expressions are used to produce the halogenations for the AHC-algorithm; 441

these expressions were chosen based on empirical reasons, leaving space to explore 442

other types of substitutions to yield the halogenations while forming the compounds. 443

˘ Increase and diversify the application of the AHC-algorithm to other fields. One 444

immediate natural application is electricity load-forecasting, considering that this 445

task is also based on time series prediction [27]. Another usage that in recent years 446

has gained importance due to its relevance in the medical field is image and pattern 447

recognition, such as cancer detection or kidney stone identification [28]. Further 448

applications where the original AHN-algorithm proved to be efficient can be tested, 449

such as signal processing, facial recognition, motor controller, and intelligent control 450

systems for robotics, amongst many other possibilities. 451

˘ Extend the analysis of the results. An exhaustive examination of the results can be 452

undetaken regarding more specific aspects, such as model robustness, variation of the 453

results over time, and/or consistency across countries, among others. 454

The main challenge along our research was to design a new algorithm based on the 455

AON framework, keeping the main attributes of the former AHN topology, and at the 456

same time, introducing new properties to eliminate the usage of Gradient Descent (used to 457

optimize the position and/or number of molecules); hence, reducing the computational 458

time. In this regard, we reach out a solution that includes two key elements: a) the new 459

topology is inspired by a different functional group from which AHN was originally 460

motivated, and b) the inclusion of PCA, which plays a key role in the implementation of 461

AHC, since it makes the new algorithm’s time complexity independent of the number of 462

features. 463
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