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Abstract
In this work, we present a new and efficient algorithm to perform a short-term market trend forecast, based on the Artificial
Organic Networks (AON)metaheuristic machine learning framework. Regarding this goal, we present the concept of Artificial
HalocarbonCompounds (AHC) orAHC-algorithm as a bio-inspired supervisedmachine learning algorithm based on theAON
framework. Through our research, we contrast the forecast acquired with the proposed AHC model, to previously reported
outcomes using the Artificial Hydrocarbon Networks (AHN) in similar tasks. The AHN algorithm is the first formally defined
topology based on the AON, making the AHN algorithm a vital benchmark to contemplate. After comparing the AHC-
algorithm to the original AHN-algorithm, we found out that due to the high computational complexity of the latter, the new
topology is more convenient when modeling more complex systems; being this characteristic the main contribution of the
AHC-algorithm, allowing it to be a more adaptable, dynamic, and reconfigurable topology. Likewise, we compared the results
of the AHC-algorithm against the outcomes derived from an ARIMA model; we also made a cross-reference contrast against
results concerning the prediction of other stock market indices using former state-of-the-art machine learning methods. The
proficiency of the AHC-algorithm is assessed by doing a forecast of the IPC Mexico index obtaining good results, achieving
a computed R-square of 0.9919, and an 8 × 10−4 mean relative error for the forecast.

Keywords Artificial Intelligence · Machine learning · Bio-inspired · Metaheuristic · Stock market index · Financial
Forecasting

1 Introduction

The Index Tracking Problem (ITP) or stock market predic-
tion asmore commonly known, is a complex process affected
by many factors [1, 2]. As remarked in [3], stock market
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forecasts, despite being a recurrent subject of many inves-
tigation groups, remain an essential financial research topic
within other aspects due to their economic impact. As an
update of the example provided in the previously referred
article, the New York Stock Exchange had a $40.5 trillion
market capitalization (market value of all shares traded from
public companies listed in its market) as of December 2022
and had a $52.2 trillion market capitalization as of December
2021. The ITP is a trading strategy based on the buy-and-hold
of assets [4, 5], that uses an index tracker to replicate the
performance of a stock market index or any other security
found in the capital markets, that considers the risk factor
of investing, anticipating the appealed potential profits that
perhaps can be obtained from these markets. Its behavior is
reproduced through different techniques, including different
state-of-the-art artificial intelligence methods [3], capable of
developing models that provide reliable forecasts.

This paper returns to the objective previously defined in
[6], aiming to apply the Artificial Organic Networks (AON)
metaheuristic machine learning framework, to develop a new
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efficient algorithm, enable to perform a short-term market
trend forecast. Regarding this goal, we present the concept of
Artificial HalocarbonCompounds (AHC) orAHC-algorithm
as a bio-inspired supervisedmachine learning algorithm, and
as a new topologybasedon theAONframework.Throughour
research, we contrast the forecast acquired with the proposed
AHCmodel, to previously reported outcomes using the Arti-
ficial Hydrocarbon Networks (AHN) in similar tasks. The
AHN algorithm is the first formally defined topology based
on the AON, making the AHN algorithm a vital benchmark
to contemplate. After comparing the AHC-algorithm to the
original AHN-algorithm, we found out that due to the high
computational complexity of the latter, the new topology is
more convenient when modeling more complex systems;
being this characteristic the main contribution of the AHC-
algorithm, allowing it to be a more adaptable, dynamic, and
reconfigurable topology. Likewise, we compared the results
of the AHC-algorithm against the outcomes derived from
an ARIMA model; we also made a cross-reference contrast
against results concerning the prediction of other stock mar-
ket indices using former state-of-the-art machine learning
methods.

The rest of the article is structured as follows. In Section 2,
we offer a literature review related to the forecast of stock
market indices using machine learning methods. Further-
more, we introduce some main notions of the AON frame-
work. Afterward, in Section 3, we provide elements about
the used dataset and its preprocessing. Likewise, we describe
themethodology followed to perform the experiments. Then,
Section 4 explains how the AHC-algorithm is designed, as
well as its main characteristics, implementation, and compu-
tational complexity. Through the discussion, we review some
of the disadvantages that the original Artificial Hydrocarbon
Networks (AHN) topology has; these disadvantages are con-
sidered regarding the definition of the new AHC-algorithm.
Section 5 presents the results obtained from the experiments,
including a cross-reference evaluation. Ultimately, Section 6
affords the conclusions of this work, complementing with
possible future lines for research.

2 Background

In this section, we offer a theoretical framework. In this
respect, Section 2.1 presents a literature review. Later,
Section 2.2 illustrates some main notions of the AON frame-
work. Next, Section 2.3 delivers some fundamental concepts
of the AHN-algorithm.

2.1 Literature review

Numerous articles analyze the employment of machine
learning techniques as predicting tools for stock market

indices, contemplating the characteristics around their com-
plex behavior, such as their noisy, unpredictable dynamics,
making this a difficult task. In this respect, Ye [7] offered
the forecast of the Google (GOOG) and Tesla (TSLA)
stock prices using methods such as Support Vector Regres-
sion (SVR), Gated recurrent units (GRUs), Long Short-
Term Memory (LSTM), and Extreme Gradient Boosting
(XGBoost). Sunki et al. [8] delivered the forecast of the
Netflix (NFLX) stock price applying ARIMA, LSTM, and
FBProphet methods. In contrast, Shi et al. [9] predicted the
Standard and Poor’s 500 (S&P 500) implementingXGBoost.
Correspondingly, Aliyev et al. [10], employed the ARIMA-
GARCH and the LSTM methods to produce the forecast of
the Russian Stock Exchange (RTS). In their work, Singh [11]
presented the forecast of the Indian Stock Market Index
(NIFTY 50) utilizing different models, including amongst
them Artificial Neural Networks (ANNs), Adaptive Boost
(AdaBoost), and k-Nearest Neighbors (KNN). Similarly,
Harahap et al. [12] predict the Nikkei 225 (N225) using
SVR, Back Propagation Neural Networks (BPNNs), and
Deep Neural Networks (DNNs). Finally, González-Núñez
et al. [13] used Genetic Algorithms (GA) to predict different
indices like the S&P 500, the N225, the Dow Jones Indus-
trial Average (DJIA), the Financial Times Stock Exchange
(FTSE), and the Cotation Assistée en Continu index (CAC),
amongst others.

2.2 AON framework

As stated above, the main goal of this research is to define a
new algorithm following the notions andmain characteristics
of AON as a machine learning class [14, 15]; considering
that the AON technique allows modeling systems as a gray
box, yet conceding to partially understand the behavior of
the system. As depicted in Table 1, the organization of the
framework comprehends the following aspects:

– It defines the set of components and interactions required
to build a structure.

Table 1 Artificial organic networks framework

AON Framework1

Level Description

Implementation Training and inference

Mathematical model Structure and functionality

Heuristics Rules of organization: three-level energy
scheme

Interactions Relationships: covalent bonds, chemical
balance interaction

|cComponents Units: atoms,molecules, compounds,mixtures

1Source [15]
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– Heuristic rules that state its organization, inspired by
basic chemical rules and observations.

– The artificial organic network is expressed mathemati-
cally.

– It is used through an implementation.

Hence, an AON is a set of graphs built based on heuristic
rules, as per the framework’s guidelines; these organiza-
tion rules are inspired by chemistry to form organic com-
pounds and define their interactions. Each graph represents
a molecule with atoms as vertices and chemical bonds as
edges. These molecules interact via the chemical balance
to form a mixture of compounds; therefore, an AON is
a combination of compounds formed by different compo-
nents. Thus, following the designation of the framework,
four components have been defined: atomic units, molecu-
lar units, compounds, and mixtures; further, two interactions
are characterized among the components: covalent bonds and
chemical balance interaction.

The molecules can be seen as packages of information;
the bonds between the structures of the model describe
its complexity. The seven defined characteristics of the
AONare: structural andbehavioral properties, encapsulation,
inheritance, organization, mixing properties, stability, and
robustness. Accordingly, AON has a structure and behavior
that states its two main characteristics: modeling non-linear
systems and partial interpretation of unknown information.
In consistency with the framework organization, AON as a
learning method needs a two-step implantation: a training
process to build its structure and estimate all the parameter
values inspired by organic chemistry rules, and an inference
process that consists of using the obtained structure to find
an output considering a specific input value.

The AON framework has been classified as enclosing
three types of algorithms: a) chemically inspired algorithms
with defined heuristic rules, based on functional groups and
molecular structures of chemical organic compounds, b) arti-
ficial basis algorithms that define specific functional groups
and molecular structures independently of chemical organic
compounds, and c) hybrid algorithms that define structures
based on a mixture of chemically inspired and artificial basis
algorithms.

2.3 Topological structure and prevalence of AHN

Circumscribing the components and interactions disposed on
the framework’smain characteristics as established by Ponce
et al. [15], the AON requires the usage of a functional group;
these functional groups are the type of molecules that deter-
mine a topological configuration of the AON for its imple-
mentation. Consequently, AON was implemented through
one existing topology: Artificial Hydrocarbon Networks

(AHN); thus, the AHNmodel is AON’s first and only formal
topology defined up to now. The AHN algorithm is defined
as a chemically bio-inspired on the way chemical hydrocar-
bon compounds are formed; it was proposed to perform an
optimization of a cost-energy function, based on two mech-
anisms to form organic compounds and produce an efficient
number of molecules to build the structures:

i. It uses least-squares regression (LSR) to define the struc-
ture of each molecule.

ii. It uses gradient descent (GD) to optimize the position
and number of molecules in the feature space.

AHN has shown improvements in predictive power and
interpretability compared to other well-known machine
learningmodels, such as neural networks and random forests.
However, as explained in [16] big data are mainly character-
ized by the amount of information that can be processed, the
speed of data generation, and the variety of data involved;
existing machine learning algorithms need to be adapted to
profit the advantages of big data and process more informa-
tion efficiently. Thus, AHN has the disadvantage of being
very time-consuming and is unable to deal with big data,
since the model uses GD that, due to its complexity, hinders
the scalability of the AHN model.

To find more examples of applications of the AHN-
algorithm, we recommend the work presented in [13]. For
the interested readers seeking more in-depth information on
the AHN model implementation and the AON framework,
we suggest to explore the lecture by Ponce et al. reported
in [15].

3 Methodology

Contrasting experiments have been carried out to confirm
that the AHC-Algorithm, as a proposed supervised machine
learning algorithm, can effectively perform a short-termmar-
ket price trend forecast, as initially defined in [6]. In this
sense, Section 3.1 provides details of the dataset we used
and its preprocessing. After that, Section 3.2 illustrates the
steps followed along the methodology of the experiments.

3.1 Data

The experiments on this work were performed using existing
data from Mexico. The variables included in the dataset are:

– The daily reported closing price of the IPCMexico stock
market index.

– The daily reported MXN-USD foreign exchange rate
(FX).
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Table 2 Descriptive statistics of
the IPC index

Descriptive Statistics

Mean SD Min 25% 50% 75% Max

39,899.97 8,813.83 16,653.15 33,262.48 41,960.44 46,190.08 56,609.53

– The quarterly reported gross domestic product (GDP).
– The monthly reported consumer price index (CPI).
– The monthly risk-free rate (RFR).
– The monthly unemployment rate (UR).
– The monthly reported current account to GDP rate
(BOP).

– The monthly reported investment rate (GFCF).

All data collected covers a period from the 1st of June
2006 to the 31st of May 2023. The IPC and the FX data were
retrieved from Yahoo Finance, and the rest of the variables
obtained from the OECD. Table 2 shows some descriptive
statistics for data of the closing price of the IPC used in this
research.

The data were preprocessed as follows: a) the macroeco-
nomic variables (MEVs) are treated as “continuous signals”
instead of discrete information, so for each input, an indepen-
dent approximation is made using least-squares polynomial
regression (LSP), b) the data are scaled, for this purpose, the
dataset is standardized by removing the mean, c) the dimen-
sionality of the data is reduced using principal component
analysis (PCA), it is done considering three principal com-
ponents (PC).

At this point, it is essential to remark that, even though
eight features canbepondered as a small amount, the employ-
ment of PCA is pivotal in the implementation of AHC, since
as explained later, the computational complexity of theAHN-
algorithm depends on the number of features. Additionally,
as a measure to prevent overfitting, besides preprocessing,
the data were split into subsets, the initial section for train-
ing, and the remaining portion for testing. Finally, the model
is assessed by using an out-of-sample forecast, where the per-
formance of the financial model is tested on data not used for
building the model; this implementation was applied instead
of a one-day-ahead forecast due to the progress achieved
in our research by the moment the present results were
recovered. For the interested reader, the dataset used on our
research is available at [17].

3.2 Forecast of the index

The methodology observed to achieve the forecast of the
index, using the AHC-algorithm, consists of the following
steps (see Fig. 1):

1. Data are preprocessed as explained above in Section 3.1;
afterward, the dataset is passed into the AHC-algorithm.

2. The training parameters are established by doing a grid
search, as described in Section 5.1.

3. The AHC model is fitted using the training set.
4. The model performs a forecast using the testing set.
5. The results of the forecast and the performance of the

AHC-algorithm are compared in Section 5.3 against the
reported results using the AHN-algorithm in a similar
financial task; likewise, Section 5.5 also includes a com-
parison against some of the results found across the
literature review.

All the experiments have been implemented in Python,
employing in some cases the SciPy [18], Scikit-learn [19],
and statsmodels [20] libraries. For the interested reader, the
code used in this research is accessible at [21] and the dataset
at [17].

4 Artificial halocarbon compounds

We explain here how the AHC-algorithm is designed, as well
as some of its primary notions. In this respect, Section 4.1
exposes the main drivers that inspired the design. Section 4.2
presents the new attributes defined for the AHC-algorithm as
amethod inspired byorganic chemistry. Section 4.3 describes
how the AHC-algorithm forms compounds based on a differ-
ent functional group. Section 4.4 portrays how the algorithm
is implemented. Finally, Section 4.5 analyzes the computa-
tional complexity of the AHC-algorithm.

Fig. 1 Methodology to produce the forecast of stock market applying the AHC-algorithm
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4.1 A new conception: diversifying the AON
topologies

Since the forecast of a stock market index as a time series
phenomenon [22, 23] is a dynamic, non-linear process, that
at the same time has largely non-linear dependencies with
other factors such as the MEVs, it can become very complex
and difficult. As Chacon [24] explains, among the challenges
found when doing a prediction model for a time series, exists
the necessity of detecting non-linear dependencies across
time, excluding the noise and behavior of the time series. Cor-
respondingly, Hou [25] and Sheta [4] state that precise stock
return forecasting as a financial problem remains a particu-
larly demanding task due to its complex, dynamic, non-linear,
and chaotic nature. In contrast, Ordoñez [26] exemplifies the
importance and complexity of analyzing the forecast of stock
returns with the existence of financial investment compa-
nies,with specialized business areaswith teamsof employees
focused on studying these kinds of projections contemplating
their complexities. Consequently, continuing with the work
started in [6], the problemwas narrowed down following two
main constraints:

1. The forecast is done using the historical prices of the con-
cerning index rate and at least five additional MEVs.

2. The MEVs are selected based on their correlated coeffi-
cient (CC) to the analyzed index.

In the most straightforward notion, as explained in the
literature [15], the AHN process, as a supervised learning
algorithm, where an AON structure is built through the algo-
rithm, is identified as f ; along the process, a structure of an
organic compound is produced by segmenting the dataset
received to create a model of the system. Each section is
analyzed by a molecule that fits second- or third-degree
polynomial terms using LSR, the position and number of
molecules are optimized using GD; a set of molecules pro-
duces a compound.

By virtue that AHN is the only existing arrangement for
the AON machine learning class, the postulation of the new
algorithm adept at performing the stated objectives, centers
its attention on the conception of a topology distinct from the
AHN, attending some of its disadvantages. For example, the
AHN-algorithm is very time-consuming, hence it uses GD to
optimize the position of the molecules in the feature space.
Indeed, this strategy of providing a better capability to deal
with big data, while reducing algorithmic time consumption,
must be designed pondering the requirement to avoid losing
either predictive power and/or interpretability. We consider
that these properties are two of the main characteristics that
the originalAHNtopology initially possessed.Consequently,

the approach for establishing a different topology is driven
by the subsequent main goals:

1. To find an alternative to GD to define the position and/or
number of molecules, so the algorithmic time consump-
tion while creating an AON arrangement can be reduced.

2. To circumscribe a new topology that must be able to
handle time series, so it can be capable of producing a
financial forecast.

3. The new organic structure will be produced based on a
functional group different from the hydrocarbons; con-
sequently, the standard LSR method will be discarded.
Additionally, new types of curves to be fitted will be
explored.

4.2 Artificial halocarbon compounds: a hybrid
bio-inspirational algorithm

Artificial Halocarbon Compounds (AHC) or the AHC-
algorithm, is a proposed supervised machine learning algo-
rithm based on the AON framework inspired by chemical
halocarbon compounds. As a new AON arrangement, one
of its principal considerations is focused on relinquishing
the GD mechanism to optimize the position and/or number
of molecules, hence the time consumption can be reduced
while creating an AON structure. The laydown of GD has
been analyzed before [6, 27]. Furthermore, the idea of artifi-
cial aromatic compounds as a recursive network was roughly
explored by Ponce et al. [15]; regardless, these attempts did
not finally peak in an AON arrangement formalizing a new
topology. Therefore, the strategy of using K-means intro-
duced in [6] is recalled toward generating a new type of
organic structure based on the AON framework.

4.2.1 Components and interactions

In the proposed scheme, since the GD method is substituted
by K-means as part of the mechanism to form organic com-
pounds, and the hydrocarbons functional group is replaced
as a topology for the new structure arrangements, intrinsi-
cally some of the main changes of the algorithm take place
through the components and interactions level of the AON
framework. Accordingly, the new topology is based on the
third type of algorithm from the AON framework: hybrid
algorithms that define structures based on amixture of chem-
ically inspired and artificial basis algorithms.

In this hybrid approach, the feature space is segmented
(clustered) using K-means per the number of molecules
required, in this way its position is defined. Therefore, each
timean iterationoccurs, the data are segmented asmany times
as the same number ofmolecules to be created; afterward, the
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structure of eachmolecule is computed for the corresponding
segment.Although this appeal is performedbased on a hybrid
model, it still complies with the seven characteristics defined
for an AON: structural and behavioral properties, encapsu-
lation, inheritance, organization, mixing properties, stability,
and robustness.

As stated before, the structure of each molecule is not
defined directly by using a standard LSR method; instead,
as a significant feature that will characterize the new AON
arrangement, a dynamic topology is offered. Hence, the new
topology is qualified for choosing a wider variety of options
to build the organic structures for a compound, according to
the cost-energy function, and therefore maintaining an over-
all low error of the models being produced. These dynamic
options consider whether to substitute the type of curve to be
fitted for a respective segment, such as sine or cosine, among
others, instead of just fitting a second- or third-degree poly-
nomic term, or even choosing amid different fitting methods,
such as multiple non-linear regressive (MNLR) model [6],
autoregressive (AR) within others, in this sense replacing the
method employed to characterize each molecule. All these
replacements are analyzedwhile the computation of the algo-
rithm is done, just as if an inspirational chemical reactionwas
taking place, and at the end of the reaction, the arrangement
with the best final substitution from the structures compared
is provided.

Halocarbons functional groups

The halocarbons functional group [28], or halocarbons
molecules, are hydrocarbons where a halogenation reaction
has taken place; specifically, organic compound structures
in which one or more carbon atoms are covalently bonded
to one or more halide atoms that have substituted/replaced
hydrogen atoms. Halides or halogens are the six elements
of Group 17 or VIIA of the periodic table; these elements
are: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), asta-
tine (At), and tennessine (Ts); the most common substitution
is made by chlorine halocarbons, known as organochlorine
compounds. The halocarbons have four valence electrons. In
consequence, with the introduction of the halocarbons func-
tional group, the set of atomic units originally defined by
Ponce et al. [15] expands from two to eight different atomic
units for the AHC-algorithm; therefore, F is called fluorine
atom, Cl is called chlorine, Br is called bromine, I is called
iodine, At is called astatine, and Ts is called tennessine, being
these the new six atomic units added to the existent H and C.

The halocarbons are classified into three types: haloalka-
nes, haloalkenes, and aryl halides. Haloalkanes are saturated
compound structures formed by halogenated hydrocarbons,
where all the carbon atoms are linked by single bonds and
at least one hydrogen atom has been replaced by a halide; in
opposition, haloalkenes are unsaturated compounds, which

means that they contain one or more double bonds between
carbon atoms, making them more likely to undergo addition
reactions with other compounds. Aryl halides, also known
as haloaromatics or haloarenes, are organic compounds that
contain a halogen atombonded to one ormore aromatic rings.
An aromatic ring or arene is formed by carbon atoms linked
in a cyclic arrangement, like the benzene ring, which is the
most common example, and is formed by six carbon atoms
organized in a hexagonal shape.

4.3 Forming of compounds

The AHC-algorithm bio-inspiration is particularly based on
the aryl halides subset alluding to their distinctive properties
over the other halogenated organic compounds; the presence
of the arene in aryl halides makes them more stable. Thus,
due to their unique physical and chemical characteristics are
widely used as building blocks in the synthesis of various
organic compounds, such as pharmaceuticals, agrochemi-
cals, and polymers.

Concerning the molecule’s structure, since the halocar-
bons are formed by the substitution of hydrogen atoms in
hydrocarbons, thus, the initially defined set of CH-primitive
molecules with carbon as the central atom, and their corre-
sponding covalent bonds between elements, constitute the
initial bases for a cyclic recursive CH molecule in the new
AHC-algorithm. In addition, since the benzene ring is not
only the most common but a fundamental structure in aro-
matic compounds, it will constitute an essential part of the
new structure. As mentioned before, the benzene arrange-
ment consists of six-membered carbon atoms in a hexagonal
ring with alternating single and double bonds (see Fig. 2).
Each carbon atom in the benzene ring is also bonded to one
hydrogen atom. The benzene ring is highly stable due to its
particularly aromatic bonding characteristics.

Another crucial attribute considered is the capacity of
arenes to bond or join together (fused) in two or more aro-
matic rings. These kinds of more extensive arrangements are
known as polycyclic aromatic compounds; some examples
of these polycyclic aromatic compounds include, amongst
others:

– Naphthalene: It consists of two benzene rings fused; it is
a typical aromatic compound found in coal tar.

– Anthracene: It consists of three fused benzene rings; it is
also found in coal tar and is used as a starting material
for the synthesis of dyes, as colored substances that bond
chemically are widely used to fabric textiles and other
substrates.

– Phenanthrene: It consists of three fused benzene rings; it
is found in fossil fuels.

– Pyrene: It consists of four fused benzene rings; it is com-
monly found in coal tar.
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Fig. 2 Diagram of the benzene ring

Since the mathematical formulation of the target func-
tion f, identified in an earlier stage of this work, was defined
through theMNLRmodel [6], it is essential to remark that the
stated math expression possesses ten coefficients. Hence, at
least ten hydrogens will be needed in the proposed scheme to

represent all the terms of the multivariate polynomial expres-
sion accounted to handle the dynamic system. As it can be
observed in the skeletal formulas represented in Fig. 3, differ-
ent polycyclic aromatic compounds have the presence of ten
hydrogens atoms; however, due to their easier representation
in the skeletal formula, the new polycyclic aromatic network
topology will mainly remain based on the anthracene dispo-
sition.

Afterward, the inspirational halogenation where atoms
of H are replaced by halides is characterized in the AHC-
algorithmby chemically reacting the anthracene-basedmole-
cule with all the halogens, but at the end substituting the H
atoms just by the halide which offers the lowest-cost energy
function. Thus, as a dynamic topology, AHC-algorithm com-
pares (computes) the result of reacting with all the different
halogens and choosing the one with the lowest error; Fig. 4
shows an example of anAHCmoleculewhere all H atoms are
replaced by Cl atoms. Through the halogenation mechanism,
instantiated in Table 3, the replacement of the original LSR
mechanism implemented in the AHN-algorithm that defined
the structure of each molecule, takes place.

The motives to choose these types of polynomial expres-
sions are based on empirical reasons after running different
experiments scrutinized in [6] and in the next section; never-
theless, depending on the specific type of system, criteria,
or application aimed to be modeled, it is encouraged to

Fig. 3 Skeletal formula representation of some polycyclic aromatic compounds
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Fig. 4 Example of the AHC
molecule where all H atoms are
replaced by Cl atoms

explore with these and/or other different kinds of polynomial
expressions or methods used in the substitution mechanisms
for the AHC halogenations. In addition, based again on the
same empirical reason, the attribute of creating mixtures
considered in the AHN-algorithm, was discontinued for the
AHC-algorithm since this feature was no further required.

Finally, the enthalpy property [15] applied in the AHN-
algorithm for optimizing compounds was also ceased. This
property was implemented as a method for building an opti-
mal compound using the minimum number of CH-primitive
molecules, resembling that enthalpy in thermodynamics
measures the heat energy (transferred or exchanged), along
the chemical reactions. Regardless, it is still desired to find
the lowest-cost energy function, again, this is achieved by the
inspirational halogenation described earlier; moreover, this
method allows the introduction of the entropy property, since
along the process a set of possible combinations to form a
compound are computed.

In thermodynamics [29], entropy is a property that
describes the distribution of energybymeasuring the disorder
in chemical reactions. It can be understood as the molecular
disorder in a system or the degree of randomness of its parti-
cles; as the randomness or disorder goes higher, the entropy
increases as well. In essence, entropy describes the energy

within a systemby quantifying the number of possible energy
distributions, specific arrangements (microstates), or config-
urations of particles and energy that are available within a
system, contemplating that in a system, energy can be dis-
tributed among particles in different ways. It is essential to
notice that entropy describes the distribution of energy, not
the total energy of the system. Consequently, the concept of
entropy property or entropy-rule is formally introduced to the
AHC-algorithm, and is measured while the dynamic topol-
ogy compares the level of energy of the different reactions
from the available halogens; the aim is to keep the lowest
entropy of the model system, based on the output error.

4.4 Phases of the AHC-algorithm
and implementation

The artificial halocarbon compounds is implemented using
the AHC-algorithm illustrated in Algorithm 1, which is
the main routine. Algorithm 1 iteratively calls the FORM-
COMPOUND() routine, in charge of forming structures of
organic compounds based on halogenations of anthracene,
this routine is illustrated in Algorithm 2.

Figure 5 illustrates the phases of theAHC-algorithm.After
the initialization steps, in its core, theAHC-algorithm creates

Table 3 AHC Halogenations,
with different substitutions of
the original LSR mechanism
that define the structure of a
molecule in the AHN-algorithm

AHC Halogenations
Substitution Reaction Description

H → F Fluorination Substitution with a second-degree MNLR expression.

H → Cl Chlorination Substitution with a two-lag AR model.

H → Br Bromination Substitution with a cube-root MNLR expression.

H → I Iodination Substitution with a hyperbolic sine MNLR expression.

H → At Astatination Substitution with a hyperbolic cosine MNLR expression.

H → Ts Tennessination Substitution with an element-wise 2x MNLR expression.
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Algorithm 1 AHC-ALGORITHM (�, nmax , ε, λ): Imple-
mentation of the artificial halocarbon compounds using
AHC-algorithm.
Input: the system � = (x, y), the maximum number of molecules
nmax , the tolerance value ε > 0, and the regularization factor λ.
Output: the structure of the compound C , and the type of halogenation
τ for each molecule in C . The coefficients A are included within the
structure C .

1: Initialize the number of molecules, n ← 2.
2: Initialize the error function, ε ← ∞.
3: while (n ≤ nmax ) and (ε > ε) do
4: Initialize a minimal compound C .
5: Split � into n subsets �i with their centers Qi , using K-means.
6: Obtain a new structure ofC , find the halogenations τ , and update

the error function ε with FORM-COMPOUND(
∑n

i=2, Q,C, λ).
7: end while
8: return C , and τ

the structure of an artificial halocarbon compound based on
the number of polycyclic aromatic molecules needed. This
phase corresponds to line 5 in Algorithm 1.

Next, the AHC-algorithm defines the structure of each
polycyclic molecule in the compound depending on the best
halide selected during the halogenation reaction, this step
corresponds to line 6 in Algorithm 1. As stated earlier, the
attribute of creating a set of compounds to combine them
in a mixture, initially defined in the AHN-algorithm, was
discarded as a feature since it was not found further required
based on empirical experience.

Algorithm2FORM-COMPOUND (
∑n

i=2, Q,C, λ): Rou-
tine to form structures of organic compounds based on
halogenations.
Input: the n splits of the system

∑n
i=2, the centers of the splits Q, the

initial compound C , and the regularization factor λ.
Output: the final structure of the compoundC , the type of halogenation
τ for each molecule in C , and the updated error function ε.

1: Initialize τ with all the types of halogenation.
2: for each partition

∑
i do

3: for each type of halogenation τ j do
4: Find the energy level of the subset �i with each halogen τ j ,

considering λ.
5: end for
6: Update the final behavior of the molecule in �i , by selecting the

best halogenation τ j , following the ENTROPY-RULE.
7: end for
8: Update the error function ε using the true fractional relative error

defined in [6].
9: return C , τ , and ε Fig. 5 Flow diagram depicting the phases of the AHC-algorithm
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4.5 Computational complexity

Considering Algorithm 1, the worst-case assumption of the
computational time complexity for the AHC-algorithm is
O(5nmax ∗ 103 + nmax ∗ 153), measured as follows:

Locating at the while loop inside Algorithm 2, the time
complexity for the first assignment can be assumed ∼ O(1),
since the initialization of a minimal compound consists of
defining a DataFrame that holds the structure of a default
CH2-primitive molecule. The second step splits � into i par-
titions �i for i = 1, . . . , nmax . To create the partitions, we
used K-means (from the Scikit-learn library); the computa-
tional complexity for this method is O(kqTD), where T is
the number of iterations, q is the number of data points, k
is the number of clusters, and D is the dimensionality of
the data. Next, the third step considers the computation of
a new compound structure based on the halogenation reac-
tions for each molecule, as explained in Section 4.3; the
target function f of each reaction is characterized through
the MNLR model. For each halogenation, the MNLR model
is solved using an inverse matrix; the time complexity for
solving an inverse matrix is O(n3). Since six halogena-
tions are computed, then six inverse matrix operations are
performed; moreover, as explained in Section 5.1 five halo-
genations consider an MNLR expression defined with ten
coefficients, and one with 15. Thus, the worst-case complex-
ity for the third step is O(5nmax ∗ 103 + nmax ∗ 153). In
consequence, the overall time complexity of one iteration
in the while-loop is O(5nmax ∗ 103 + nmax ∗ 153), because
O(5nmax ∗ 103 + nmax ∗ 153) > O(kqT D) > O(1) if
q ≥ nmax ≥ 2.

5 Results & analysis

In this section, we present the results obtained from the con-
ducted experiments. In this respect, Section 5.1 describes
how the hyperparameters are tuned by doing a grid search
in the training phase. Next, Section 5.2 illustrates the fore-
cast results using the testing set. Subsequently, Section 5.3
compares the prediction obtained with the AHC-algorithm
and its performance against the reported results using the
AHN-algorithm in a similar financial task. Later, Section 5.4
compares our results obtained with the AHC-algorithm
against the outcomes derived from an ARIMA model.
Finally, Section 5.5 includes a benchmark of the forecast
achieved against some of the results found across the lit-
erature review.

5.1 Training phase

Following the AON framework, the AHC is trained with an
initial set of different parameters, so later a hyperparameter

Table 4 Set of initial parameters

AHC Parameters

ε 6 × 10−4 9 × 10−4

nmax 2 4 8 12

λ 0 1 × 10−10 0.95 1

tuning could be conducted. Considering that the AHC-
algorithm requires four inputs (the system and three param-
eters) as defined in the previous section, Table 4 shows the
set of parameters used for a combination of setups that are
trained along this phase.

From Table 4, it can be observed that the set of parameters
allowed for a total combination of 32 setups. However, the
experiments were repeated using seven different subset sizes
for the training and testing, resulting in a total combination
of 224 models trained. Table 5 shows the seven split sizes
used during the experiments.

For each case, all the input data (system and set of param-
eters) are provided to the AHC-algorithm for the training
process. Earlier, in Section 4.3 we described the inspirational
halogenation mechanism that occurs along the algorithm’s
execution. According to Table 3, we described the type
of polynomial expressions employed for the substitutions.
These polynomial expressions are based on theMNLRmodel
first presented in [6] and outlined here in the subsequent
definition, considering ten coefficients for three independent
variables (since three PCs are used):

Definition 1 (MNLR model, with three independent vari-
ables)Letâ0, â1, ..., â9 be the coefficients of themathematical
expression to model f, where xt1, xt2 and xt3 are the inputs,
λ is the scalar value of the regularization term, ŷ is the value
obtained from the model and et is the true error between
both; then, the true value yt is said to be:

yt = â0 + â1xt1 + â2xt2 + â3xt3 + â4λx
2
t1 + â5λx

2
t2

+â6λx
2
t3 + â7λxt1xt2 + â8λxt1xt3 + â9λxt2xt3 + et

(1)

Recapitulating the AHC Halogenations, the Fluorination
reaction was implemented by applying the MNLR model as
stated in (1). In the case of Bromination, Iodination, Astati-
nation, and Tennessination reactions the, lambda term was
not considered, and the quadratic terms were respectively

Table 5 Split sizes applied for the training and testing sets

Subset sizes Train/Test (%)

98/2 95/5 92/8 90/10 85/15 80/20 75/25
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Fig. 6 Skeletal formula
representation of the Hexacene

replaced by other kinds of mathematical functions; an Iod-
ination example with hyperbolic sine substitution is now
illustrated in (2):

yt = â0 + â1xt1 + â2xt2 + â3xt3 + â4 sinh(xt1)

+â5 sinh(xt2) + â6 sinh(xt3) + â7xt1xt2 + â8xt1xt3

+â9xt2xt3 + et (2)

In the case of the Chlorination, the reaction was imple-
mented with a two-lag AR model. Nevertheless, the AR
expression used is based on the original MNLR model; in
this regard, instead of using three PCs, the new equation
includes two-lags of the observed (true) value and two PCs
as variables, redefining the consideration of (1) from ten to
15 coefficients as observed in (3):

yt = â0 + â1yt−1 + â2yt−2 + â3xt1 + â4xt2 + â5λy
2
t−1

+â6λy
2
t−2 + â7λx

2
t1 + â8λx

2
t2 + â9λyt−1yt−2

+â10λyt−1xt1 + â11λyt−1xt2 + â12λyt−2xt1

+â13λyt−2xt2 + â14λxt1xt2 + et (3)

Again, it was stated before in Section 4.3 that the AHC
topology will particularly remain based on the anthracene
disposition because it has ten hydrogens and as a polycyclic
aromatic compound it has a simpler representation in the
skeletal formula. However, for this particular case where (3)
has 15 coefficients, the AHC topology takes form based on
the skeletal formula of the Hexacene (see Fig. 6). From the
skeletal formula, it can be observed that the Hexacene has
16 hydrogens; the discrepancy is eliminated by assuming a
16th coefficient with a constant value of cero.

5.2 Forecasting phase

As stated above, earlier in the training phase a set of param-
eters and split sizes are defined, allowing for 224 different
models trained. We then conducted hyperparameter tuning
on the models to produce a forecast with the best parameters
identified from all results. On this basis, in the forecasting
phase (inference phase as defined in the AON framework),
all 224 models are employed to produce an out-of-sample
forecast using the testing set. Figure 7 illustrates a heatmap

Fig. 7 Results heatmap
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Table 6 Structure of the computed AHC model: two molecules, and
16 coefficients

Computed AHC model
Molecule 1 2
τ Cl Cl

â0 2.727210 × 10−2 9.269068 × 10−2

â1 1.092679 1.004407

â2 −9.594364 × 10−2 −1.519266 × 10−2

â3 1.104696 × 10−4 4.278086 × 10−4

â4 −3.755683 × 10−4 −5.639691 × 10−4

â5 1.608554 × 10−09 1.029201 × 10−09

â6 −3.398093 × 10−10 −6.563887 × 10−10

â7 6.812609 × 10−10 9.461997 × 10−10

â8 −1.551042 × 10−09 −3.771424 × 10−10

â9 6.335330 × 10−10 1.835423 × 10−10

â10 −1.204230 × 10−11 −6.824526 × 10−11

â11 2.267883 × 10−10 1.791191 × 10−11

â12 −2.745103 × 10−10 3.667814 × 10−10

â13 5.987430 × 10−08 2.903713 × 10−08

â14 7.366559 × 10−10 −1.010653 × 10−09

â15 0 0

from these results; afterward, the results are ranked using
the mean of the error from the testing set of each model.
Next, we applied a Friedman test to the ranked top five mod-
els to determine any significant difference among them. The
results from the Friedman test provided a statistic equal to
5.9999, and a p-value of 0.4231, showing no statistical differ-
ence among the results. Hence, for the sake of simplicity, we
chose the first parameters from the top. The best parameters

we found are ε = 9 × 10−4, nmax = 12, and λ = 1 × 10−10.
However, to conduct the final forecast with these parameters
in this phase, we chose a data split size of 75% for training
and the remaining 25% for testing. The reason to choose this
split size is that the results from this forecast are compared in
Section 5.3 to the results presented in [27], where data from
the examples included therein are split into 70% for train-
ing and 30% for testing (the 5% difference is not considered
relevant).

The resulting organic structure computed from these
parameters consists of a compound formed by two chlo-
rinated polycyclic aryl halides (two hexacenes) molecules;
the respective computed coefficients for each molecule are
shown in Table 6, being awarded that a 16th coefficient with
value zero is considered to complete each hexacene, as previ-
ously mentioned. The outcome of the forecast made with the
computed AHC model provided very encouraging results:

1. Figure 8 illustrates the graph with a blue curve corre-
sponding to the original IPC Mexico values yt from the
testing set, and a red curve depicting the estimated val-
ues ŷ, merely no difference can be appreciated between
them. For a more detailed view, we provide Fig. 9, which
is a zoom-in of Fig. 8, for the period 2020-12 to 2021-
09, as part of the months where the COVID-19 pandemic
occurred. The observed behavior in Fig. 9 of the forecast
of the IPC computed with the AHC model can be com-
pared to an AR method since, as explained above, from
Table 6 we have noticed that the compound formed has
two chlorinated molecules, and this reaction was imple-
mented with a two-lag Auto Regression (AR) model as
explained in Section 5.1.

Fig. 8 Graph of the forecast of the IPC computed with the AHC model using a test set size of 25%
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Fig. 9 Zoom of the forecast of the IPC computed with the AHC model

2. Figure 10 presents the graph of Residuals; a good homo-
geneous distribution can be observed along the Predictor
axis. It can be noticed that on the left-hand side of the
values of the Predictor, there are some residual values out-
side the homogeneous distribution strip (outliers), mostly
when the Predictor is< 8.4. Nonetheless, as can be appre-
ciated in Fig. 8, the values of the Index are close to 8.3
at the beginning of 2020; in this sense, it is significant to
remark that this period corresponds to the beginning of
the COVID-19 pandemic when the economy of the world
was severely affected, so it is natural to expect in this

period more variance that can introduce more errors in
the forecast.

3. To evaluate the model, Table 7 shows within other com-
puted statistical measures for the forecast, a very high
R-square and Adjusted R-square with values of 0.9919
and 0.9918 respectively. Additionally, Table 7 provides
the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC), noticing that both have very
low values (big negative numbers). These metrics yield
reliance on how well the model fits and explains the orig-
inal system.

Fig. 10 Residuals of the AHC model
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Table 7 Statistical measures of
the sum of squares, the
R-square, the Adjusted
R-square, the AIC, and the BIC
of the AHC model

Model Performance

RSS SSR TSS R-square Adj. R-square AIC BIC

0.0903 11.0074 11.0976 0.9919 0.9918 −10,431.5535 −10,411.5095

4. Table 8 displays a few measures of the error from the
forecast produced.

5. Table 9 shows some descriptive statistic of the relative
error with an 8× 10−4 mean and a 6× 10−4 median, the
behavior of the error is depicted in Fig. 11.

5.3 Benchmark AHC vs. AHN performance

Ayala et al. in [27] give an example of the employment of the
AHN-algorithm to produce the forecast of the exchange rate
BRICcurrencies toUSD; particularly, theBrazil Real toUSD
(BRL/USD) is illustrated. In this regard, the results presented
by the previous authors are used as a benchmark, since the FX
prediction canbe considered avery similar problem to the one
addressed in this research. The data used in [27] correspond
to the historical data of monthly frequencies from July 1997
toDecember 2015 for a total of 221 samples. The valueswere
normalized, split in sizes of 70% for training and 30% for the
testing sets, and then all the input data were provided to the
AHN-algorithm for the respective training process, where an
organic structure is computed to produce the model f , that
corresponds to the value �yt between yt and yt−1.

Consequently, by comparing the results from both cases,
it can be stated that, for this instance, the model f of the
system obtained from the AHC-algorithm is more complex
and robust in contrast to the model f computed by the AHN-
algorithm, based on the following elements:

1. It is well known that in the everyday operation of stock
markets, the behavior of a market index has far more
volatility (in a riskier financial market), than the behavior
of exchange rate markets; thus, a stock market index is
more difficult to predict.

2. Themodel built by theAHC-algorithmcontemplated two-
lags of the historic data of the stock market index, and
at least two PCs of the seven additional MEVs that are

Table 8 Error measures of the AHC model

Forecast Error

MSE RMSE MAPE

(Relative Error)

2.03 × 10−05 4.5122 × 10−03 0.0008

considered; in contrast, for the prediction of the FX, the
AHN-algorithm only used two-lags of the historic value.

3. The data used for the AHC model are based on a daily
frequency reported value of the index and the other seven
MEVs from June 2006 to May 2023, which constitutes a
dataset of 4,435 samples for eight variables,making a total
of 35,480 values; in contrast, the AHN model is fed with
the historical data of the BRL/USD on monthly frequen-
cies from July 1997 to December 2015, which constitutes
a dataset with a total of 221 values (221 samples for one
variable).

4. As a crucial fact, theAHC-algorithm has been designed to
allow for a more adaptable, dynamic, and reconfigurable
topology, when computing model f , making it more con-
venient for more complex systems. These properties can
be appreciated in the following example: to compute a
model -taking into account a less volatile variable-, the
AHN-algorithm performed at least ten iterations to build
a compound of ten molecules to produce a forecast of the
BRL/USD exchange rate; in contrast, the AHC-algorithm
used two iterations to create a compound of twomolecules
to produce a forecast of the IPC index. This is a 5:1 ratio
in the number of iterations.

5. Furthermore, we compared the computational complexity
of both algorithms. In this regard, the reported time com-
plexity of theAHN-algorithm[15] isO(cmaxnmaxq ln 1/ε)
with q ≥ nmax ≥ cmax ≥ 2, and a small value ε > 0,
where q is the number of samples, cmax is the number
of compounds, and ε is the tolerance value. Nonetheless,
this computational complexity is measured based on the
time complexity of O(C2N ) for least squares estimates,
where C is the dimensionality of the data, and N is the
number of training samples. However, as reported in [27],
theAHN-algorithmfinds the parameters of eachmolecule
using a Vandermonde matrix (polynomial interpolation),
which generally requires a time complexity proportional
to O(n3). In consequence, considering the number of fea-
tures and the number of molecules, the time complexity

Table 9 Descriptive statistics of the relative error

Relative Error (MAPE)

Mean Median SD MAD Max Min Range

0.0008 0.0006 0.0007 0.0005 0.0062 1.2754 × 10−07 0.0062

123



Expanding a machine learning class towards its application... Page 15 of 20    21 

Fig. 11 Behavior of the relative error of the AHC model

of the AHN-algorithm for building the structure of the
compound is O(2(3k)3 + (nmax − 2)(2k)3), where k is
the number features. The time complexity of the AHC-
algorithm is O(5nmax ∗ 103 + nmax ∗ 153), as reported
in Section 4.5. Table 10 shows the evaluation of the time
complexity for the AHN-algorithm in terms of total num-
ber of steps; in contrast, Table 11 shows the evaluation
of the time complexity for the AHC-algorithm. Based
on these results, we can claim that the AHC algorithm
is more convenient to model more complex systems. In
the AHC-algorithm case, PCA is applied during the data
preparation step; hence, the MNLR model is computed
considering a fixed number of coefficients. As a result,
the time complexity does not depend on k, keeping its

Table 10 AHN-algorithm computational complexity O(2(3k)3 +
(nmax − 2)(2k)3) in terms of the total number of steps, k corresponds
to the number of features

AHN-algorithm computational cost

nmax vs k 1 2 3 4

2 54 3,760 813,186 416,353,664

3 62 4,272 923,778 472,976,768

4 70 4,784 1,034,370 529,599,872

5 78 5,296 1,144,962 586,222,976

6 86 5,808 1,255,554 642,846,080

7 94 6,320 1,366,146 699,469,184

8 102 6,832 1,476,738 756,092,288

9 110 7,344 1,587,330 812,715,392

10 118 7,856 1,697,922 869,338,496

value constant regardless of the number of features used
to build the model.

6. The AHC-algorithm yields better results (again, using
fewer iterations to predict a more volatile variable). The
graph of the forecast provided by the AHCmodel behaves
much better, the error is smaller (0.0102 vs. 0.0008) and
the model has a very high R-square (0.99), no R-square
value is provided for the AHN model.

5.4 Model comparison vs. ARIMA performance

Besides comparing the AHC-algorithm performance against
the AHN-algorithm (the original topology defined for the

Table 11 AHC-algorithm computational complexity O(5nmax ∗103 +
nmax ∗ 153) in terms of the total number of steps, k corresponds to the
number of features

AHC-algorithm computational cost

nmax vs k 1 2 3 4

2 16,750 16,750 16,750 16,750

3 25,125 25,125 25,125 25,125

4 33,500 33,500 33,500 33,500

5 41,875 41,875 41,875 41,875

6 50,250 50,250 50,250 50,250

7 58,625 58,625 58,625 58,625

8 67,000 67,000 67,000 67,000

9 75,375 75,375 75,375 75,375

10 83,750 83,750 83,750 83,750
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Table 12 Values of the ADF
Test after data were
differentiated

ADF Test

ADF Statistic: −26.0689

p-value: 0.0000

Critical Values:

1%: −3.432

5%: −2.862

10%: −2.567

AON class) as we did in the previous subsection, here
we compare the outcomes of our proposed model against
the results obtained from a classical statistic method like
ARIMA; for this objective, the ARIMA model was imple-
mented through the statsmodels library. To have a valid
framework for contrasting the results, we kept consistency
with the experiments illustrated in Section 5.2; in this respect,
we preprocessed the data using the same steps described in
Section 3.1 and split the dataset into two subsets based on
the DateTime, employing the first 75% of the observations
for training, and remaining 25% for testing.

The definition of the parameters (p, d, q) of the ARIMA
model is done as follows: the value of the component p used
for the lag order from the mathematical term of the AR is
set to 2 using heuristics. The value of the parameter d used
for the degree of differencing the data to make it stationary,
is computed with the aid of the Augmented Dickey-Fuller
(ADF) test included in the statsmodel library; the data are
differentiated as many times as necessary until it reached an
ADF statistic equal to or below -1 (see Table 12). Finally,
the value of the component q used for the size window
or order of the mathematical term of the Moving Average

(MA), is also computed with the aid of the autocorrelation
and partial autocorrelation test included in the statsmodels
library.

Once the components (p, d, q) are quantified, the ARIMA
method is applied using these parameters; the reliability of
the model is assessed via the relative error (MAPE). Next we
evaluate the performance of the model, just as we did for the
AHC model:

1. Figure 12 illustrates the graph with a blue curve corre-
sponding to the original IPC Mexico values yt from the
testing set, and a red curve depicting the estimated values
ŷ using ARIMA.

2. To evaluate the model, Table 13 shows within other
computed statistical measures for the forecast, the R-
square and Adjusted R-square, both with a value of
0.9979 respectively. Additionally, Table 13 provides the
Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC), noticing that both have very
low values (big negative numbers). These metrics yield
reliance on how well the model fits and explains the orig-
inal system.

3. Table 14 displays a few measures of the error from the
forecast produced.

4. Table 15 shows some descriptive statistic of the relative
error with an 8 × 10−4 mean and a 5 × 10−4 median.

Contrasting the outcomes acquired from the AHC and
the ARIMA models can be attended that both methods had
provided similar results. A MAPE comparison is provided
in Table 16 (columns extracted from Tables 9 and 15).
Moreover, it can be noticed that the AIC and BIC coefficients

Fig. 12 Graph of the forecast of the IPC computed with the ARIMA model using a test set size of 25%
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Table 13 Statistical measures of
the sum of squares, the
R-square, the Adjusted
R-square, the AIC, and the BIC
of the ARIMA model

Model Performance

RSS SSR TSS R-square Adj. R-square AIC BIC

0.3015 140.0247 140.3262 0.9979 0.9979 −30,927.6973 −30,952.1354

of the ARIMA model are smaller, denoting that the model
could be more adequate or that explains better the original
system; regardless, the AHC-algorithm has the subsequent
advantages:

– As a classic statistical model, the ARIMA method can
provide high-average performance solutions; however,
as a classic analytic method its implementation can be
complex with inherent elevated computational costs.

– The development of the forecast graph from the test set
delivered by the AHC-algorithm behaves much better
than the graph provided by the ARIMA model since, as
it can observed in Fig. 12, the gaps between the raw data
and the model are more noticeable.

Considering these benefits, and the fact that the difference
between the error from each method is negligible, we con-
clude that the AHC-algorithm can be an alternative to classic
statistical models.

5.5 Cross-reference comparison

We present here a cross-reference comparison against the
results we obtained using the AHC-algorithm delivered in
Section 5.2. Table 17 reviews some of the outcomes found
within the literature mentioned earlier in Section 2.1 and
compares them to our results.

From our assessment, we identified that some articles like
Ye [7] and Sunki et al. [8], use a specific stock price (security)
such as Google or Netflix; in contrast, in works like Shi et al.
[9], Aliyev et al. [10], Singh [11], and Harahap et al. [12],
they report the usage of an index. Anyhow, these works only
consider the historical data of the analyzed variable as the
only input to produce the forecast. Respectively, to yield the
forecast of the stock market, we pass to the AHC-algorithm
the historical data of the index with seven macroeconomic
variables as part of the parameters; moreover, in [13] the

Table 14 Error measures of the ARIMA model

Forecast Error

MSE RMSE MAPE

(Relative Error)

0.0001 0.0095 0.0008

authors report the employment of the AHC-algorithm for
the forecast of further indices with the same considerations.
Likewise, it can be observed from Table 17 that the R-square
of 0.9919 obtained in the forecast of the IPC using the AHC
model in this research, is comparable to other state-of-the-art
methods like the ARIMA-GARCH model with an R-square
of 0.977 employed for the forecast of the RTS, or the LSTM
method applied for the prediction of the Google stock with
an R-square of 0.9965.

6 Conclusions & future work

In this work, the main aspects of the AON framework are
studied toward the definition of a new algorithm based on
this machine learning class; this analysis led to the review
of the five levels of the AON framework: implementation,
mathematical model, heuristics, interactions, and compo-
nents. Furthermore, we point out the necessity of AON for
using a functional group to determine its topological con-
figuration along the implementation. Also, we recalled how
AONhas been implemented -before this work- usingAHNas
the unique formal topology defined so far. Along the review,
we mentioned the two mechanisms that AHN employs to
optimize a cost-energy function while forming the structures
of organic compounds, as part of the process to model a
given system. These mechanisms are: the utilization of LSR
to define the structure of each molecule, and the employment
of GD to optimize the position and number of molecules in
the feature space.

The AHN algorithm has a very high computational cost
due to the use of GD and is not capable of dealing well with
big data. In this work, we aimed at defining a new topology
to overcome these disadvantages. We proposed an alternate
functional group different from hydrocarbons to define a new
topology. To meet our goal, the concept of Artificial Halo-
carbon Compounds or AHC-algorithm is introduced as a

Table 15 Descriptive statistics of the relative error

Relative Error (MAPE)

Mean Median SD MAD Max Min Range

0.0008 0.0005 0.0009 0.0006 0.0105 0.0 0.0105
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Table 16 Comparison of the
statistics of the MAPE

Statistics Comparison of the Relative Error (MAPE)

Mean Median SD MAD Max Min Range

AHC-algorithm 0.0008 0.0006 0.0007 0.0005 0.0062 1.2754 × 10−07 0.0062

ARIMA 0.0008 0.0005 0.0009 0.0006 0.0105 0.0 0.0105

Table 17 Cross-reference
comparison vs. the AHC
model’s results

Results from the testing sets

Index Method Error R-square Period Testing

Set Size

IPC AHC 4.5122 × 10−03∗ 0.9919 2006 - 2023 25%

GOOG1 SVR 1.10335∗ 0.9979 2014 - 2023 20%

GOOG1 GRUs 2.4863∗ 0.9811 2014 - 2023 20%

GOOG1 LSTM 0.0074∗ 0.9965 2014 - 2023 20%

GOOG1 XGBoost 2.4301∗ 0.9820 2014 - 2023 20%

TSLA1 SVR 23.9910∗ 0.9953 2020 - 2021 20%

TSLA1 GRUs 41.7746∗ 0.8685 2020 - 2021 20%

TSLA1 LSTM 0.0055∗ 0.9952 2020 - 2021 20%

TSLA1 XGBoost 44.122∗ 0.8533 2020 - 2021 20%

NFLX2 ARIMA 7.8919∗ NA 2019 - 2021 15%

NFLX2 LSTM 10.3376∗ NA 2019 - 2021 15%

NFLX2 FBProphet 9.1186∗ NA 2003 - 2021 NA

S&P 5003 XGBoost 5.5235 × 1008∗ 0.316 2017 - 2023 15%

RTS4 ARIMA-GARCH 35.93∗ 0.977 2000 - 2022 10%

RTS4 LSTM 14.91∗ 0.996 2000 - 2022 10%

NIFTY 505 ANN 36.865∗ 0.999 1996 - 2021 20%

NIFTY 505 SGD 42.456∗ 0.999 1996 - 2021 20%

NIFTY 505 SVM 68.327∗ 0.998 1996 - 2021 20%

NIFTY 505 AdaBoost 2277.710∗ −0.930 1996 - 2021 20%

NIFTY 505 RF 2290.890∗ −0.952 1996 - 2021 20%

NIFTY 505 KNN 2314.720∗ −0.993 1996 - 2021 20%

N2256 SVR NA 0.81 2016 - 2019 10%

N2256 DNN NA 0.79 2016 - 2019 10%

N2256 BPNN NA 0.82 2016 - 2019 10%

N2256 SVR NA 0.58 2016 - 2019 20%

N2256 DNN NA 0.58 2016 - 2019 20%

N2256 BPNN NA 0.56 2016 - 2019 20%

S&P 5007 GA 0.1347† 0.5027 2006 - 2023 15%

DJIA7 GA 0.0263† 0.5228 2006 - 2023 15%

FTSE7 GA 0.0531† 0.4959 2006 - 2023 15%

N2257 GA 0.0064† 0.6111 2006 - 2023 15%

CAC7 GA 0.0462† 0.5149 2006 - 2023 15%

S&P 5007 AHC 0.0049† 0.729 2006 - 2023 15%

DJIA7 AHC 0.0007† 0.9777 2006 - 2023 15%

FTSE7 AHC 0.0063† 0.7074 2006 - 2023 15%

N2257 AHC 0.0064† 0.6111 2006 - 2023 15%

CAC7 AHC 0.0038† 0.8317 2006 - 2023 15%

1Results reported in [7]. 2Results reported in [8]. 3Results reported in [9]. 4Results reported in [10]. 5Results
reported in [11]. 6Results reported in [12]. 7Results reported in [13]. ∗Reported as RMSE. †Reported as
Relative Error. (NA) Value not provided
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supervised machine learning algorithm based on the AON
framework.

Within the considerations behind its design, the AHC-
algorithm complies with the following properties:

– It is based on the third type of AON framework: a hybrid
algorithm that defines a structure based on a mixture of
chemically inspired and artificial basis algorithms.

– The conception of the new arrangement was focused on
changes in the layer of components and interactions from
the AON framework.

– For the new algorithm, GDwas arrogated and substituted
by theK-meansmethod, as part of themechanism to form
organic compounds.

– The halocarbons functional group was selected to define
a new topology, specifically from halogenations of
anthracene, from the haloaromatic type.

– As a dynamic topology, the algorithm can conduct reac-
tions using the variety of atoms from the halogens to build
an organic structure.

– The halogenation process is ruled by the entropy-
property, to assure the computation of the lowest cost-
energy function.

– The new topology is capable of producing time series
forecasting.

The AHC-algorithm was tested by modeling and produc-
ing a forecast of the IPCMexico stockmarket index, using 17
years of data, andwith a set of parameters that allowed a com-
bination of 224 models. The final forecast model provided
very encouraging results on the testing set, R-square equal to
0.9919, and a mean relative error of 8 × 10−4. When com-
paring the AHC-algorithm to the original AHN-algorithm,
we claim that due to the high computational complexity of
the latter, the new topology is more convenient when mod-
eling more complex systems; being this characteristic the
main contribution of the AHC-algorithm, allowing it to be a
more adaptable, dynamic, and reconfigurable topology,when
computing model f. In future work, we plan to test the algo-
rithm using other stock market indices and compare it with
other state-of-the-art methods employed for financial analy-
sis.
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