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Abstract

Most forecasting algorithms use a physical time scale data to study price movement
in financial markets by taking snapshots in fixed schedule, making the flow of time
discontinuous. The use of a physical time scale can make traders oblivious to sig-
nificant activities in the market, which poses risks. For example, currency risk, the
risk that exchange rate will change. Directional changes is a different and newer ap-
proach of taking snapshot of the market, which uses an event-based time scale. This
approach summarises data into alternating trends called upward directional change
and downward directional change according to a change in price a trader considers
to be significant, which is expressed as a threshold. The trends in the summary are
dismembered into directional change (DC) and overshoot (OS) events. In this work,
we propose a novel DC-based framework, which uses machine learning algorithms
to forecast when the next, alternate trend is expected to begin. First, we present
a genetic programming (GP) algorithm that evolves equations that express linear
and non-linear relationships between the length of DC and OS events in a given
dataset. Awareness of DC event and OS event lengths provide traders with an idea
of when DC trends are expected to reverse and thus take appropriate action to in-
crease profit or mitigate risk. Second, DC trends can be categories into two distinct

types: (1) trends with OS events; and (2) trends others without. To further improve
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trend reversal estimation accuracy, we identify these categorises using classification
techniques and estimate OS event length for trends that belong in the first category.
We appraised whether this new knowledge could lead to an even greater excess re-
turn. Third, our novel trend reversal estimation approach is then used as part of
a novel genetic algorithm (GA) based trading strategy. This strategy supports and
combines recommendations from multiple thresholds. We assess the efficiency of our
framework (i.e., a novel trend reversal approach and an optimised trading strategy)
by performing an in-depth investigation. We applied our framework to 10-minute
data from 20 major foreign exchange (Forex) markets over a 10-month period, for a
total number of 1000 DC datasets. This allowed us to evaluate that our results can
be generalised and are widely applicable in Forex markets. We compared our results
to six benchmarks techniques, both DC and non-DC based, such as technical anal-
ysis and buy-and-hold. Our findings show that our proposed approach can return a
significantly higher profit at reduced risk, and statistically outperformed the other

trading strategies in a number of different performance metrics.
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Chapter 1

Introduction

After the collapse of the gold standard, the Bretton Woods system, a collective
international currency exchange regime was established (Igwe 2018). The United
States (US) dollar became the replacement for gold and other national currencies
were pegged to the US dollar. With the Bretton Woods System in place, volatility
of Forex rates was minimised. However, the US government was unable maintain
international dollar liquidity as foreign claims on gold started to exceed US gold
supply (Garber 2007). In the early 1970’s, US government unilaterally decided to
stop exchanging gold for the US Dollar and the Bretton Woods system was abolished.
In 1973, there were changes in currency policies of the world major currencies and
floating exchange rate regime emerged (Peng, Wang and Yeh 2020).

Financial forecasting in the Forex market are attempts to estimate future ex-
change rate or predict trend reversal through patterns discovery in historical price
or traded volume (Yu, Wang and Lai 2007; Islam et al. 2020). Up to the early 1970s,
exchange rate was mostly determined by the balance of payments of countries and

their level of importation and exportation of goods and services (Chang and Huang
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2014). The float rate regime introduced after 1973 has attracted more market partic-
ipants across the globe which has led to significant increase in Forex market size to
about $6.6 trillion in daily turnover as of April 2019 (Wooldridge 2019). The increase
in participants coupled with local and international supply-demand factors, such as
economical, political and psychological have made forecasting in the Forex market a
challenging task. Some of these challenges include: 1) pronounce price fluctuation
in the short term (Folger 2020); 2) low-profit margin in comparison to fixed income
trading (Petropoulos et al. 2017); and 3) noise and chaotic signals, which make sep-
aration of uninteresting features from trends difficult (Abu-Mostafa and Atiya 1996;
Kamruzzaman, Sarker and Ahmad 2003).

Despite these inherent challenges, Forex market presents a major opportunity
for informed traders and algorithmic trading developers to make profit. This has
motivated researchers both in academia and industry to investigate regularities in
the Forex market. There are two main methods for performing this investigation,
namely fundamental analysis and technical analysis.

In fundamental analysis approach, fundamentalists evaluate assets’ primary char-
acteristics and financial data, such as Interest Rates (IR), Employment Reports,
Inflation, Gross Domestic Product (GDP), Consumer Price Index (CPI), Producer
Price Index (PPI), Institute of Supply Management (ISM), Commodity Price Index
(CPI), Industry Production Index (IPI), Retail sales Report, Trade Flow and Trade
Balance, Balance of Payment (BOP), Purchasing Power Parity (PPP), central bank
policy and geopolitical events (Dao, McGroarty and Urquhart 2019). On the other
hand, technicians evaluate historical price values. The motivation for evaluating his-
torical price value is based on the belief that all the fundamentals that cause a change
in value of an asset have been factored into the current price and repeating trends

are observable in historical prices data(Cavalcante et al. 2016). Hence, traders are
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able to discover winning strategies from a series of historical price snapshots.

Both fundamental and technical analysis are complimentary. For example, as-
suming we are interested in purchasing a personal computer brand sometime in the
future. To determine the expected price, we can choose to evaluate the different
components that make up a computer such as hard-drive, memory, processor, mon-
itor, mouse, keyboard, etc. In contrast, historical sales price of the computer brand
in the recent past can be evaluated.

Previously, academics adopted fundamental analysis approach and discarded tech-
nical analysis because they concluded that it did not perform better than random
walk (Malkiel 1999; Lo, Mamaysky and Wang 2000). However, there are works that
recorded success in using technical analysis for forecasting. For example (Lo and
MacKinlay 1988) demonstrated that past prices can be used to predict future profit.
This finding was also corroborated by Plastun (2017) who explained that the success
of technical analysis is based on a phenomenon called “Behavioural Finance Market
Hypotheses” (BFMH). BFMH describes the role investors” emotions and psychology
play in their financial decision making. Investors evaluate disseminated information
and news differently according to their experiences, culture and needs which tech-
nical analyst capitalise on, in the short term (Yildirim 2017). It is now common
practice to use fundamental analysis for long-term prediction and technical analysis
for short-term prediction (Cavalcante et al. 2016).

Majority of technical analysis studies utilise historical market data snapshots
taken at fixed intervals (Aloud 2017). To generate the snapshots, investors decide
how often to sample the data, then snapshots are taken at the chosen frequency
forming an interval-based summary. A drawback of using interval-based summary is
that it ignores market activities between snapshots that could be significant, exposing

market participants to risks such as currency risk, interest-rate risks and so on. An
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alternative approach is to utilise snapshots of markets activities that are significant.
To generate these snapshots, investors decide on what a significance market activity
is, then snapshots are taken when the activity is observed.

In our study, we used directional changes (DC), an approach for taking snapshots
of historical price values on an intrinsic time scale. In the directional changes ap-
proach, data is recorded when there is a change in price by a predetermined threshold
f. The threshold value is decided in advance by a trader according to his or her be-
lief of what is significant upwards or downwards price change. This concept provides
traders with a new way of viewing historical data, allowing them to focus on key
price movements, thereby, blurring out other price details which could be considered
irrelevant or noise.

Furthermore, DC has enabled researchers to discover new statistical properties
that were not previous captured from interval-based summaries (Glattfelder, Dupuis
and Olsen 2011). Thus, these new properties give rise to novel opportunities for
traders and open a whole new area for research.

There are two main types of techniques used for financial forecasting, namely
statistical modelling and machine learning (Wang et al. 2011). Statistical modelling
has been applied to forecasting financial time series with relative success (Rangel-
Gonzalez et al. 2018). This approach has the inherent assumption that time series
data are stationary! and are generated from linear processes (Han et al. 2010; Kumar
and Murugan 2018; Siami-Namini and Namin 2018). However, this is not the case in
financial time series, they are noisy, chaotic, non-stationary, non-parametric (Sarabia
et al. 2020) and machine learning algorithms can cope with such properties for latent

pattern and non-linear relationship discoveries (Ryll and Seidens 2019). They have

!Time series do not depend on the epoch at which the observation is made and trend does not
exist over time (Han et al. 2010).
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the capability to learn, adapt and improve over time as more recent historical data are
generated (Holmes, Donkin and Witten 1994). Also, they have been well-employed
for forecasting changes in the financial market and developing trading strategies
(Dymova, Sevastjanov and Kaczmarek 2016; Huang, Chai and Cho 2020; Sezer,
Gudelek and Ozbayoglu 2020; Dixon, Halperin and Bilokon 2020).

In this work, we aim to gain further insight into trend reversal forecasting under
DC approach by estimating OS event length more accurately using machine learning
algorithms. DC event is an activity in the market that has caused a change in price
either upward or downward by a predefined threshold. OS event can be described
as a change in price in the same direction as a preceding DC event until a DC event
in the opposite direction starts. We examine a DC property concerning the relation-
ship between DC and OS event lengths, which when combined give an estimate of
when trend is expected to end. So far, the relationship between DC and OS event
lengths discovered by Glattfelder, Dupuis and Olsen (2011) was linear and under
the assumption that a linear relationship always exists between DC and OS event
lengths. We explore machine learning algorithms as tools for 1) discovering whether
a relationship exists between DC and OS event lengths; and 2) discovering richer
linear and or non-linear relationships when they exist. The insight is then exploited
in a proposed trading strategy algorithm that we test in 20 major Forex markets.
We aim to attain higher rate of return at minimum risk than other trading strategies
embedded with earlier proposed DC trend reversal forecasting algorithms and other

strategies that are based on physical time scale technical indicators.
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1.1 Thesis Structure

The remainder of this thesis is organised as follows. Chapter 2 presents an overview
of financial forecasting and detail two common approaches: fundamental and tech-
nical analysis. We also present an in-depth analysis of directional changes paradigm
from a financial forecasting perspective. Chapter 3 presents an overview of ma-
chine learning, a well-employed approach for financial forecasting and for developing
trading frameworks. Chapter 4 presents the first contribution of the thesis, a novel
approach for estimating overshoot events’ length using symbolic regression genetic
programming. Chapter 5 presents the second contribution of this thesis, an improve-
ment to our approach for forecasting trend reversal, which combines classification
and regression techniques for estimating DC trend reversal. Chapter 6 presents the
third contribution of this thesis, a novel trading framework that uses a genetic algo-
rithm to optimise the parameters of the multi-threshold strategy. Chapter 7 presents

conclusions and final remarks of the thesis, as well as suggestions for future research.

1.2 Publications

The list of publications from the research described in this in thesis in Peer-Reviewed

Journals are as follows:

o Adegboye, A. and Kampouridis, M. (2021). Machine learning classification and
regression models for predicting directional changes trend reversal in FX mar-
kets. Expert Systems with Applications, 173, p. 114645, DOI:10.1016/j.eswa.2021.114645,
Impact factor:5.452.

o Adegboye, A., Kampouridis, M. and Otero, F. (2021). Improving trend re-

versal estimation in forex markets under a directional changes paradigm with
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classification algorithms. International Journal of Intelligent Systems, DOI:

10.1002/int.22601, Impact factor: 8.709.

The list of publications from the research described in this in thesis in Conference

Proceedings are as follows:

» Adegboye, A., Kampouridis, M. and Johnson, C. G. (2017). Regression genetic
programming for estimating trend end in foreign exchange market. In 2017
IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp. 1—
8.

o Kampouridis, M., Adegboye, A. and Johnson, C. (2017). Evolving directional
changes trading strategies with a new event-based indicator. In Asia-Pacific

Conference on Simulated Evolution and Learning, Springer, pp. 727-738



Chapter 2

Financial Forecasting

Financial forecasting can be defined as an attempt to predict future market events
through patterns discovery in historical data (Yildirim, Toroslu and Fiore 2021). In
this work, we developed a Forex trading framework for making decisions according
to certain trading rules and accurate trend reversal forecasting algorithm. The major
challenge is the nature of the data which seem random because of the inherent noise,
making trend reversal forecasting a hard problem (Walczak 2001).

There are two schools of thought concerning financial forecasting. One considers
that the market is perfect and cannot be predicted as it is a summary of all available
information (Zafar 2012). This idea is based on two hypotheses, namely (1) the
efficient market hypothesis (EMH) (Fama 1970) and (2) random walk hypothesis
(RWH) (Regnault 1863; Levy 1967; Fama 1995). The other considers that, in the
short term, markets can be predicted by analysing patterns that may exist in historic
market data (Edwards, Magee and Bassetti 2012; Antony 2020).

We expatiate on the two schools of thought in the remainder of the chapter. In

Section 2.1 we present a high-level description of the random walk hypothesis. In
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Section 2.2, we present an overview of the efficient market hypothesis and arguments
supporting the unfeasibility of forecasting. In Section 2.3, we describe financial
analysis by detailing two common approaches: fundamental analysis and technical
analysis. These two approaches forecast future market movement using snapshots
of data, taken at constant time intervals. In Section 2.4, we present event-based

approach, a new way of summarising data, which is the technique used in this thesis.

2.1 Random walk hypothesis

The random walk hypothesis is based on the consideration that financial time series
data is stochastic (Pesaran and Pick 2008). This makes future price change inde-
pendent of historic price movement and the current price dependent on past price
adjusted for previous errors in the valuation of the market. Thus, the old price values
do not have the power to forecast future prices and the current publicly available
price is considered the best prediction. Nevertheless, it was shown that underlying
economic factors that determine price can be subjected to structural breaks'. When
these breaks occur, a phenomenon known as “Random Walk with a Drift” makes the

series deterministic, creating opportunity for forecasting (Pesaran and Pick 2008).

2.2 Efficient Market Hypothesis

The Efficient Market Hypothesis (EMH) is a proposition that asset-price incorpo-

rates and shows all publicly available information about its value, and it is impossible

L A sudden change in market volatility because of unexpected shift in economic factors (Stawiarski
2015)
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to earn a profit from forecasting future price (Fama 1970). It is based on the follow-
ing assumptions (1) all relevant information is available to all investors; (2) investors
are rational; (3) the market is rational; (4) information acquisition cost is the same
for all participants;( 5) there are no taxes; (6) there is no transaction costs; and (7)
investors are insensitive to the currency of earnings (Zafar 2012). There are three
types of EMH: weak, semi-strong, and strong (Eom et al. 2008).

Weak EMH is based on the assertion that excess return cannot be made from
analysing historic prices because the current price includes past information. Thus,
an investor is unable to profit from publicly available information. Any future price
adjustment would be the result of new information. The time of arrival of the new
information is arbitrary, consequently, future price will also be arbitrary (Stasinakis
and Sermpinis 2014).

Semi-strong EMH asserts that excess return cannot be made from analysing pub-
licly available information because all investors have access to new information, which
will rapidly reflect in the next future price. Publicly available information can be
of financial nature, like historical prices, data reported in financial statements, divi-
dend announcements and merger plan announcements. It can also be non-financial
such as innovation plans, patent applications, etc. The assumption here is stronger
than weak EMH, because the eventual price of an asset has already taken into con-
sideration all publicly available information. Excess return can only be made if an
investor is in possession of information that is unknown to the market (Stasinakis
and Sermpinis 2014).

Strong EMH asserts that excess return cannot be made from analysing both
publicly and privately available information. It is impossible to profit on privately
available information for two reasons, (1) it is a crime and an illegal activity (Woody

2020), and (2) the excess demand /supply will cause under-priced or overpriced asset
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to adjust swiftly to the level supported by the new information (Stasinakis and
Sermpinis 2014).

Earlier research works supported the claim that it is impossible to profit from
financial forecasting (Fama 1970; Jensen 1978). However, more recent studies demon-
strated that it is possible, rejecting the EMH (Fernandez-Rodriguez, Gonzalez-Martel
and Sosvilla-Rivero 2000; Kyriazis 2019). The rational supporting this claim in-
cludes predictable and deliberate human error in reasoning and processing informa-
tion (Neely, Weller and Dittmar 1997). Human emotions also play a role when taking
trading decisions, for example, some investors can be more reactive than others to
new financial market related information (Zafar 2012). Additionally, if the market
is perfectly efficient there would be no motivation for professionals and investors to
trade (Grossman and Stiglitz 1980). Consequently, financial analysis is an impor-
tant tool for understanding market behaviour and supporting trading activities. This

topic will be discussed in the next section.

2.3 Overview of financial analysis

The goal of financial analysis is to understand market behaviour and use the knowl-
edge gained in making future decisions that can potentially provide beneficial out-
comes to investors in maximising profit and reducing risk (Schneeweis 1983). Figure
2.1 illustrates the two approaches used in performing financial analysis, namely fun-
damental and technical analysis. Fundamental analysis is based on the study of
economic factors that influence the demand and supply of an asset to determine its
intrinsic value (Petrusheva and Jordanoski 2016). It is a technique primarily used

by passive investors who do not seek immediate gain, instead they prefer to take a
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Figure 2.1: Classification of financial analysis.

longer-term investment approach. They are willing to wait for the right moment as
long as short losses are within a tolerable limit (Shiryaev, Xu and Zhou 2008).
Financial analysis is data driven, fundamental analysis is based on data generated
from macroeconomic activities while technical analysis is based on historical market
price and volume (Hu et al. 2015; Datta et al. 2021). Indicators are tools for finding
signals of strengths or weaknesses. In both fundamental and technical analysis,
indicators are applied to gain insight into and interpret changes in the macroeconomy
(fundamental analysis) or historical market data (technical analysis). There are two
categories of indicators, (1) lagging indicators explain changes in trends and (2)

leading indicators are used to predict future market direction. Signals picked up
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using indicators are then used to develop a framework of rules and predefined criteria
for making trading decisions such as, (1) what to buy and sell; (2) when to buy and
sell it; and (3) what quantity to buy and sell (Hayes 2021; Balasubramaniam 2021).

Both fundamental and technical analysis tackle the same problem from different
perspectives. In technical analysis, active traders? focus on the effect of market move-
ment and use technical analysis methodology to take advantage of short term price
movements in the financial market (Achelis 2001; Murphy 2012). On the other hand,
in fundamental analysis, passive investors® focus on the cause of market movement
(Murphy 2012). Therefore, the two techniques complement each other. However,
technical analysis is the most frequently used by active traders (Frankel and Froot
2002). This could be attributed to the decentralisation of the financial market which
has opened the market to new players (human and algorithmic traders) and the fre-
quency at which information on the effect of market movement is disseminated in
comparison to macroeconomy data (Chaboud et al. 2014; Schlaepfer 2020).

In this work, the focus is on technical analysis. Notwithstanding, we present a

brief description of fundamental analysis.

2.3.1 Fundamental Analysis

In fundamental analysis, investors evaluate information such as company revenue,
expenses, asset and liabilities to determine performance and potential for future
economic growth or contraction (Hu et al. 2015). The analysis is used to aid in-
vestors when deciding on 1) long term investment in undervalued assets or assets

with growths prospect and 2) sale of overpriced assets or assets tending towards a

2An active traders buy and sell Forex based on short-term movements in price.
3A passive trader follows a buy-and-hold strategy in the Forex market with the goal of holding
the investment for periods of time, long enough to appreciate in value.
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decline in value. In Forex trading specifically, an investor analyses data to determine
a rate that a currency should be exchanged for another. The rate reflects the bal-
ance of trade between two economies. However, forecasting the Forex market using
fundamental analysis approach is challenging because data used are mostly publicly
available and their fundamental value is known to a degree of certainty (Kaltwasser
2010). Hence, there is little competitive advantage from a face-value analysis of such

data.

Data

Three types of data employed in analysing the Forex market from the fundamental
analysis perspective are, (1) demand and supply of Forex, (2) asset market activities,
and (3) political and social events (Lui and Mole 1998; Korczak, Hernes and Bac
2016).

Demand and supply of a currency in exchange for another is swayed by changes
in the inflation rate, unemployment rate, interest rates and the balance of imports
to exports. When disparity exists, investors, guided by the principles of interest
rate parity* and carry trade® are lured into investing in the higher interest rate
country. As a result, the demand for the currency of the higher interest rate country
is increased, strengthening the currency. Export to import imbalance between two
countries can also lead to the higher valuation of the exporting country’s currency.
However, it is not uncommon for countries to use external intervention to ensure that
export remains competitive as currency valuation goes up. To analyse the impact

of changes to interest rate and balance of trade to currency valuation, indicators are

“Interest rate parity is the difference between forward exchange rate of one currency and the
spot rate of another currency.

5Carry trade is the sale of lower interest rate currency to purchase asset denominated in higher
interest rate currency to benefit from greater yield on investment.
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employed. Some of these indicators are Balance of Payment, Consumer Price Index,
Gross Domestic Product and so on (Korczak, Hernes and Bac 2016).

Asset market comprises of the stock and commodity markets which provide lead-
ing signs of the direction of the currency. These signs are sourced from media coverage
and reports generated by participating firms in these markets. For example, a sudden
sell-off in the stock market could be an indication of an eminent economic downturn
which can affect the value of a currency. Also, in a commodity-based economy, an
increase of exported commodity prices by a country could lead to appreciation of
her currency. A common indicator for analysing these markets include Stock Market
Index, Commodity Index, Consumer Price Index and many more (Degiannakis and
Filis 2019).

Political and social landscape of a country also influence the strength of a cur-
rency. Fundamental analysts always keep abreast with such information to evaluate
the impact on Forex rate. Example of events that they pay close attention to includes
election outcomes, climatic stability, government debt, diseases outbreaks, conflicts,

wars and so on (Attigeri et al. 2015; Remias 2021).

Fundamental Indicators

There are several fundamental indicators available to modern Forex traders (Nti,
Adekoya and Weyori 2019). Their exhaustive listing and description are beyond the
scope of this thesis, howbeit we describe some commonly used ones.

Balance of Payment (BOP) is the booking-keeping of all transactions (import,
export, investments) between a country and the rest of the world during a specific
period e.g., quarterly, annually, etc (Kenton 2021). Balance of trade, the total export

value net total import value, is the main component of BOP. A positive balance of
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trade occurs when the total value of goods and services that domestic producers vend
to foreign countries surpasses the total value of foreign goods and services that do-
mestic consumers purchase and vice versa. BOP cannot be used as the only indicator
to forecast exchange rate or trend reversal because it is common for policymaker,
motivated by different goals for their currency to intervene through economic poli-
cies and tariffs(Bernanke 2017; Habib, Mileva and Stracca 2017). Therefore, BOP is
interpreted in the context of macroeconomic policies in place around the same period
(Wong et al. 2019).

Consumer Price Index measures the weighted average of prices of a basket of
consumer goods and services. It is a frequently used measure for identifying periods of
inflation or deflation which at extreme levels can influence exchange rates (Giannellis
and Koukouritakis 2013).

Gross Domestic Product is the total market value of all the finished goods and
services produced within a country in a given time period (Fernando 2021). It is a
lagging indicator to confirm economists’ assessments of long term trends. In Forex
fundamental analysis, it can be used to assess the impact of currency fluctuation on
domestic production.

buy-and-hold is a trading strategy that fundamental analysis traders employ
(Du Plessis 2012; Tun 2020) and it is common to benchmark technical analysis based

strategy against it.

Buy-and-hold

Buy-and-hold (BandH) is a common benchmarking strategy for performing compar-
ison test of trading strategies, is a forbearing investment strategy used by long-term

investors (Yam, Yung and Zhou 2009). Investors buy an asset and hold them for a
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long period of time, without being concerned about short-term price movements or
market volatility (Stasinakis and Sermpinis 2014). The advantages of BandH include
fewer fees, lesser commission and tax benefits, which can add up to net investment.
BandH investors focus on building a portfolio of shares or currencies that will poten-
tially grow over time using passive elements, such as dollar-cost averaging and index
funds (Shiryaev, Xu and Zhou 2008). BandH is not a completely risk-free invest-
ment strategy, an investor who bought RIM (Blackberry) in 2008 at its all-time high
price would have lost 70% of its share price by 2012 and the shares never recovered.
Researchers have performed comparison tests of different trading strategies, using
BandH as the benchmark and their results show that BandH strategy can be out-
performed. However, there have also been cases of BandH outperforming technical
analysis strategies (Neely 2003), generating returns in excess of over 10% per annum
in some cases (Stasinakis and Sermpinis 2014).

From a computer science perspective, researchers argue that a way forward in
tackling market forecasting problems is to investigate the effect of market movements
(technical analysis) rather than the cause (fundamental analysis) of market move-
ment (Agrawal, Chourasia and Mittra 2013). The argument in favour of technical
analysis is based on challenges in formalising the knowledge inherent in fundamen-
tal analysis for the purposes of automation. In addition, knowledge interpretation
can be subjective (Agrawal, Chourasia and Mittra 2013) and there are longer in-
tervals between fundamental analysis data snapshot. For instance, the release of
U.S. macroeconomic data occurs monthly (Gilbert et al. 2010). Also, many of the
large corporations release their financial reports in quarterly intervals, a summary
not commensurate to their market activity details (Sengupta 2004; Wu et al. 2008).

Fundamental analysis works well if all market participants’ logical expectations

are the same, i.e., wait for the release of fundamental data about an asset before
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taking decisions (Achelis 2001). In reality, decisions are made in a shorter time
frame by hesitant or over-reactive investors who do not have complete information
to correctly value assets but react tardily or prematurely (Critchley and Garfinkel
2018). Information will eventually reach all investors and the market will adjust in
the direction of fundamental analysis. However, before this adjustment takes place,
technical analysis can capitalise on market inefficiency to make short-term gains by

evaluating market data using appropriate indicators to find repeating patterns.

2.3.2 Technical analysis

Technical analysis are sets of techniques for examining historical market data with
the aim of identify repeating patterns that can be used in predicting future market
trends in the short term (Picasso et al. 2019). Technical analysis was first introduced
in the 1800s by Charles Dow (Murphy 1999) for studying market inefficiency in stock
market. Since the early 1970s, after the end of Bretton Woods system of currency
valuation agreement, traders have used technical analysis for forecasting in Forex
markets (Bordo 2019). Technical analysis approaches can either be charting or tech-
nical indicators. Charting is the identification of patterns and meaningful pictures
from visual representation of the data to aid trading decision making (Schabacker
2005). Technical indicators are mathematical calculations applied to historical data
to gauge price movement and confirm existence of patterns. While there are critics
of technical indicators there are others in favour of it because charting is subjec-
tive to interpretation and is limited to the experience of the trader (Stasinakis and

Sermpinis 2014).
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Data

Technical analysis looks to predict future changes in the financial market by searching
for repeating patterns in historical market data, mainly price and volume.(Seth 2021).
In technical analysis, first a frequency when snapshots of the market are to be taken
is decided. On the stroke of the chosen frequency, snapshots are taken to create a
physical time series. Technical indicators are then applied to the physical time series
to identify repeating patterns.

There is evidence of higher success in finding repeating patterns when technical
indicators are applied to data snapshots taken in high frequency (Hongguang and
Ping 2015). High-frequency data® has created new opportunities for traders to find
more complex patterns to base their trading strategies (Caginalp and Balevonich

2003).

Technical Indicators

As aforementioned whilst presenting fundamental indicators, the exhaustive listing
of technical indicators is also beyond the scope of this thesis. Instead, the readers is
directed to “The encyclopedia of technical market indicators” by Colby (2003) for a
more detailed look at indicators for technical analysis. Here we present 3 commonly
used technical indicators named: (1)Moving Average, and (2) Bollinger bands.
Moving Average (MA) is a trend following indicator for evaluating a series of
price averages to determine the direction of market trends. A rising MA indicates
an uptrend while a declining MA indicates a downtrend. It forms the building block

for many of the other technical indicators like simple moving average, Stochastic

SHigh frequency data is a series of data snapshots collected at an extremely fine scale to create
a time-series
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oscillator, Bollinger bands, Exponential Moving Average, moving average conver-
gence/divergence and many more (Macedo, Godinho and Alves 2020).

Bollinger bands is a trend following indicator to anticipate price volatility and
signal price move outside a pre-defined bands known as support and resistance level.
These bands are set by adding and subtracting one standard deviation from the
simple moving average. It can be used to anticipates volatility by observing the
expansion and contraction of the bands. Contraction of the bands is customarily
followed by a significant price level that lies beyond the bands (Macedo, Godinho
and Alves 2020). Also, the proximity of price to the support level is believed to
indicate emergence of overbought market and the proximity to the resistance level
indicates that the market is oversold.

Most of the published work in fundamental and technical analysis use historical
data sampled on a physical time scale. As already explained physical time scale data
is generated by first deciding on a sampling interval, then successive data points
at the decided interval are captured. However, sampling data at constant intervals
has the possibility of omitting important details between adjacent data points. This
is due to the assumption that important market events occur constantly in time
which is not always the case. For instance, assuming it is decided to sample price
using daily closing price, the flash crash which occurred across US stock indexes
on the 6th of May 2010 from 2:32 pm EDT till 3:08 pm EDT would be ignored as
prices rebounded shortly afterwards. An alternative approach to sampling physical
time data at a predetermined constant interval is intrinsic time data sampling. In
this approach, data is sampled when events considered to be significant occurs in the
market, obfuscating noise and enabling traders to focus their strategies on important

price events.
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2.4 Event-based approach

Mandelbrot and Taylor (1967) put forward the idea that physical time scale might
not be the fundamental scale for analysing market movement and proposed an event-
based approach as a potential alternative. Event based approach (EBA) captures
important events in price movement. In EBA, data is sampled to model discontinuous
movement in the financial market by summarising changes that are considered to be
significant by an observer (Glattfelder, Dupuis and Olsen 2011).

There are many techniques for transforming physical time-series data into intrin-
sic time-series data, examples are Perceptual Important Points (Chung et al. 2001;
Chen and Chen 2016), Zig-Zag (Raftopoulos 2003; Azzini, da Costa Pereira and
Tettamanzi 2010), Turning Point (Bao and Yang 2008; Yin, Si and Gong 2011) and
Directional Changes (DC) (Guillaume et al. 1997; Gypteau, Otero and Kampouridis
2015). To the best of our knowledge, DC approach is one of the actively researched
EBA approaches (Ao 2018; Bakhach 2018; Petrov, Golub and Olsen 2019a,b; Chen
and Tsang 2020; Petrov, Golub and Olsen 2020; Adegboye and Kampouridis 2021). It
has also demonstrated the ability to yield profitable returns that outperforms state-
of-the-art techniques that are based on physical time technical analysis indicators
(Kampouridis, Adegboye and Johnson 2017; Aloud 2016b).

In directional changes approach, data summary is generated by recording key
events in the market according to a threshold 6, expressed in percentage, and pre-
determined by a trader according to his or her belief of what is a significant change.
Also, to the best of our knowledge, directional changes is the only event based ap-
proach that has the concept of determine the occurrence of a trend whilst the trend
is ongoing. This is an interesting feature because it has the potential for forecasting

trend reversal without additional statistical measures.
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2.4.1 Directional Changes (DC)

Directional changes is a technique employed in transforming physical time-scaled
market data into an intricate time scale one. The idea is to identify and capture im-
portant alternating events, also known as trends, while ignoring noise and irrelevant
price fluctuations. DC framework is composed of different parts as can be seen in
Figure 2.2.
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Figure 2.2: Projection of a DC events defined by a threshold § = 3.0%. Source: (Tsang
et al. 2017)

DC event

A directional changes event highlighted with red lines in Figure 2.2 is characterised
by a scalable threshold that price needs to exceed to be considered significant. A
threshold is a value specified by investors according to their belief. The start and end

of DC event are recorded, while fluctuations between these two points are ignored.
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The starting point of a DC event is called extreme point (EXT) and the end of DC
event is called directional changes confirmation point (DCC)7. There are two types of
DC events, known as upward DC event and downward DC event. Upward DC event
occurs when price movement from current price P, and previous low price P, is equal
to or greater than the magnitude of the specified threshold and it can be captured
using Equation 2.1. Downward DC event occurs when price movement from current
price P. and previous high price P, is equal to or greater than the magnitude of the

specified threshold and it can be captured using Equation 2.2.

p(t) < p" x (1-6) (2.2)

Overshoot Event

Overshoot event (OS), highlighted with light green lines in Figure 2.2, is a region
between two alternating DC events that indicates the effect of the prior DC event
on price which continues beyond the event’s confirmation point. Two types of OS
events exist, downward OS event follows a downward DC event, and an upward OS

event follows an upward DC event.

Directional Changes Run

Directional changes trend (DCT) is an epoch between two successive DC extreme

points. As can be seen in Figure 2.2, it is the sum of DC and OS event lengths

7 1t is only after a directional changes confirmation point occurs that DC event is detected. Prior
to directional change confirmation point, current active event is the previous one
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Algorithm 2.1 Pseudocode for generating directional changes events given thresh-
old 6.

Require: Initialise variables (event is Upturn event, p" = p! = p(ty), Axg.(Fired) >

0,457 = t{* = 16" = 1" ==to )

1: if event is Upturn Event then

2 if p(t) < p" x (1 —-6) then

3 event < Downturn Event

4 P! < p(t) //Price at end time for a Downturn Event

5: te ¢ //End time for a Downturn Event

6 W —t+1 //Start time for a Downward Overshoot Event
7 else

8 if p" < p(t) then

9: p" < p(t) //Price at start of Downturn event
10: tde «t //Start time for Downturn event
11: 1 —t—1 //End time for a Upturn Overshoot Event
12: end if
13: end if
14: else
15: if p(t) > p! x (1+6) then
16: event < Upturn Event
17: P" « p(t) //Price at end time for upturn event
18: tde 1t //End time for a Upturn Event
19: W —t+1 //Start time for a Upturn Overshoot Event
20: else
21: if p' > p(t) then
22: p! < p(t) //Price at start time for upturn event
23: tde «t //Start time for a Upturn Event
24: 1P —t—1 //End time for a Downturn Overshoot Event
25: end if
26: end if
27: end if

shown with adjacent red and green lines. A DCT can either be downward or up-
ward. Algorithm 2.1 shows the pseudocode of how DC trends are recorded from
physical time-series. The algorithm uses Equations 2.1 and 2.2 to record successive,
alternating DC/OS events from the physical time-series. Figure 2.3 is a flowchart
that depicts the sequence of how the events are captured. DCT is detected in hind-
sight at the DC confirmation point after it has already started. Therefore, Algorithm
2.1 determines the end of the previous DCT only after the next DCT is confirmed.
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Figure 2.3: DC framework summarising price movement in a four-event cycle.
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After the next DCT is confirmed, the previous DCT’s OS event region is determined
also in hindsight.

2.4.2 Directional Changes scaling laws

Scaling laws, refers to properties of an object that does not change even if certain
variables that describes the object are scaled up or down. This concept, already es-
tablished in the fields of physics, and mathematics was first pioneered in the financial
market by (Mandelbrot 1967; Mandelbrot and Taylor 1967). The financial market
is a complex system composed of multitude of attributes that influence price move-
ment. The exact impact of an individual attribute’s influence on price movement is
still unknown and simple deterministic models are unable to reproduce them (Cont,
Potters and Bouchaud 1997). However, certain properties have been empirically dis-
covered from historical price movement and accepted as truth due to their statistical

consistency across different snapshot size of historical data and different financial
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market types. A number of scaling laws have been discovered in DC event series
specifically (Sewell 2011; Tsang, Tao and Ma 2015; Tsang et al. 2017). These laws,
46 in total and described in Section 2.5.1, are used in building a profile of general
DC price evolution.

0S;, =2 x DC, (2.3)

08y = DCy (2.4)

In one of the scaling laws, it was observed that a DC event of threshold 6 is on
average followed by an OS event of the same threshold 6 (Glattfelder, Dupuis and
Olsen 2011). Similarly, it was also observed that if a DC event takes ¢ amount of
physical time to complete, the corresponding OS event on average takes twice the
amount of time (2t) (Glattfelder, Dupuis and Olsen 2011). These two observations
shown in Equation 2.3 and 2.4 are critical in forecasting expected trend reversal
points. In this work, we explore Equation 2.3 further by investigating for equations

that better express the relationships between DC and OS event lengths.

2.5 Related works in DC

We divide this section into two categories: (1) related research works on DC scal-
ing laws, and (2) related research works on the application of DC scaling laws in

forecasting DC trend reversal, monitor volatility and develop trading strategies.
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2.5.1 Scaling Laws Discovery

Scaling laws have been discovered in DC event time series. Some of these laws include
the average directional change tick count as a function of the directional change
threshold, the average duration of a price, the average duration of a DC event, the
average length of an overshoot after a DC event is confirmed, the average magnitude
of overshoot after a DC is confirmed, and many more (Glattfelder, Dupuis and
Olsen 2008). These properties are used by traders to empirically monitor volatility
and trends and forecast trend reversal to achieve their financial goals. There has
been advancement in the discovery of scaling laws in DC approach. To be best
of our knowledge, there are 46 DC scaling laws and Table 2.1 presents them in

chronological order.

Table 2.1: DC scaling laws discovery

Author and year Number of Scaling laws
Glattfelder, Dupuis and Olsen (2008) 17
Glattfelder, Dupuis and Olsen (2011) 12
Bisig et al. (2012) 1

Aloud and Fasli (2013)
Aloud (2016¢)

Tsang et al. (2017)

Ma et al. (2017)

Tsang and Chen (2018)
Wang and Wang (2021)

— == s O

2.5.2 DC Trend Reversal Estimations and Trading

A trend is the perceived tendency of financial markets to move in a particular di-

rection over time (Fontanills and Gentile 2002). Trend reversal is a change in the
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direction from upwards to downwards or vice-versa. A successful trading frame-
work is expected to identify trading opportunities that minimise risk and maximise
profit. A trend reversal estimation algorithm is a crucial component of the frame-
work. Table 2.2 presents a summary of DC works that used discovered scaling laws
in trading strategies or trend reversal forecasting algorithms. The work by Aloud,
Tsang and Olsen (2014) focused on gaining insight into market activities through
the understanding of the dynamics of how a human trader makes trading decisions.
The behaviours of interest included traders’ profit objective, risk appetite and limit
order criteria. They modelled this behaviour into artificial agents that emulated hu-
man traders. One of the challenges encountered by Aloud, Tsang and Olsen (2014) is
the complexity involved in emulating human trader interactions in the Forex market.
They argued that this was because of the heterogeneous nature of human traders’ be-
haviour and the asynchronous nature of the Forex market. Aloud, Tsang and Olsen
(2014) therefore used individual traders’ historical transactions to model agent’s
behaviour. To trade, the agents employed a strategy called ZI-DCTO. The charac-
teristics of ZI-DCTO are, (1) random choice by the agent of either trend following
or contrarian trading strategies, and (2) random choice of thresholds to create event
series for trading by the agents. They reported to have successfully constructed an
agent-based model of the Forex market. However, comparison result to similar work
was not presented. In a subsequent work, a trading strategy called ZI-DCT1 was
proposed as improvement to ZI-DCTO (Aloud 2016a). The new strategy incorpo-
rated a model to dynamically select tailored DC threshold that captures the most
significant events in a physical time series. Comparative trading results between ZI-
DCTO0 and ZI-DCT1 showed that ZI-DCT1 was more profitable. To further improve
profitability and accuracy at forecasting DC trend reversal, a trading framework

(DCT?2) with adapting threshold capability was proposed by Aloud (2016b). In this
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approach, they separated DC event series in upward trend event series and downward
event series. This way, separate thresholds can be selected for the subgroups. The
strategy adapted to market conditions to remain profitable by updating threshold
as the trading session progressed. The average return on investment of ZI-DCT,
ZI-DCT1 and DCT?2 were 4%, 30% and 58% respectively.

Bakhach et al. (2016) proposed a dynamic DC-based trading strategy (contrarian)
called ‘DBA’. In the approach, they arbitrarily selected a threshold for transforming
one minute physical time series in a DC event series. Two parameters DBA _up and
DBA _down were introduced at uptrend and downtrend respectively. DBA combined
these parameters with the scaling law on the ratio between DC event length and
OS event length to anticipate trend reversal. To trade, positions are opened within
the OS event region if the magnitude of price change is greater than the parameter
value and less than estimated end of the OS event. Open position are then closes at
the confirmation point of the following DC event. To select the best real values for
these parameters, 100 different values were experimented from 0.01 to 1.00, with a
step size of 0.01. The forecasting algorithm was experimented in three Forex mar-
kets, EUR/CHF, GBP/CHF and EUR/USD. Positive returns were reported in the
markets and buy-and-hold, a comparative strategy yielded negative returns. As a
follow-up work to ‘DBA’, a strategy called “Intelligent Dynamic Backlash Agent”
(IDBA) was proposed by Bakhach et al. (2018). IDBA adopted the same trading
rules as DBA. It incorporated learning modules to manage risk (maximum draw-
down) and moderate quantity traded per transaction. In addition, to overcome the
limitation in DBA, a preliminary threshold selection step was introduced. The tai-
lored threshold was chosen from a range from 0.1% up to 2.5% with a step size of
0.1. The enhancements to the trading framework resulted in improvement in profit

and risk. Reported comparison result to DBA showed that total profit was tripled
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while risk (maximum drawdown) was reduced by around 300%.

A DC trend forecasting classifier was proposed by Bakhach, Tsang and Ng (2015).
The goal was to establish the estimative power of the DC approach. To this end, they
proposed 3 new DC indicators derived from a technical indicator. These indicators
were used in forecasting price value at OS extreme point. The accuracy reported
was around 70%. Another DC trend reversal forecasting classifier was proposed by
Bakhach, Tsang and Jalalian (2016). The goal was to forecast DCCs of a DC event
series sampled using a larger threshold. To this end information from event series
sampled using smaller threshold was used. The idea was based on the hypothesis
that extreme points of an event series sampled with smaller threshold can also be
found in the event series sampled with larger threshold and that the DC trends in
the smaller threshold series are confirmed before those in the larger threshold series.
The goal was therefore transformed into a classification problem with two attributes,
(1) A Boolean dependent variable assigned a true value if an extreme points in a
larger threshold series coincides with an extreme point in the smaller threshold series,
and (2) A real value independent variable, the overshoot event value in the larger
threshold series. J48 algorithm is then used in creating a model that classifies the
DCC point of larger thresholds once the DCC of the smaller threshold is confirmed.
The classification model recorded an accuracy of around 81%.

Bakhach, Tsang and Raju Chinthalapati (2018) proposed the idea of embedding
the forecasting model proposed by Bakhach, Tsang and Jalalian (2016) in a contrar-
ian trading strategy called TSFDC. Bakhach, Tsang and Raju Chinthalapati (2018)
proposed generating separate forecasting models for uptrends and downtrends. De-
pending on the market and DC event type experimented, average rate of return was
between 4% and 81% and maximum drawdown was not worse than — 6%. Bakhach,

Tsang and Raju Chinthalapati (2018) also compared the results to those reported
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Table 2.2: A comprehensive list of existing directional changes works on trend forecasting
algorithms and trading strategies works

Author and year

Summary

Kablan and Ng (2011)

Dataset: EUR/USD, AUD/USD, GBP/USD, USD/CHF, and USD/JPY.
Aim: Trading period forecasting with sensitivity to intra-day volatility.
Result: Outperforms Buy-and-hold and linear forecasting .

Aloud, Tsang and Olsen (2014)

Dataset: EUR/USD

Aim: Develop a trading strategy (DCTO0) based on agent models that mimic
human traders

Result: Agent resembled human trader to a certain degree.

Aloud (2016a)

Dataset: EUR/USD.

Aim: Develop a forecasting algorithm and strategy (DCT1) that outper-
forms DCTO0s.

Result: Return on investment is significantly larger.

Bakhach, Tsang and Ng (2015)

Dataset: EUR/USD and Gold price.

Aim: Forecast DC trend reversal points using J48Graft and M5P.

Result: Average recall, precision and accuracy of both algorithms was
0.658909091, 0.643954546,0.687636364 respectively over 11 quartiles.

Gypteau, Otero and Kampouridis (2015)

Dataset: Stock price of Barclays, Marks & Spencer, NASDAQ and NYSE.
Aim: Develop a multi DC-threshold strategy with Genetic Programming.
Result: Outperformed single threshold strategy.

Bakhach, Tsang and Jalalian (2016)

Dataset: EUR/CHF, GBP/CHF, and USD/JPY.

Aim: Predict DC magnitude.

Result: Mixed results. Accuracy of up to 80% in some cases and unable to
outperform dummy strategy in others.

Aloud (2016b)

Dataset: Saudi Arabia stocks - SAMBA, SABB, RAJHI, STC and ZAIN.
Aim: Develop an adaptive trading strategy (DCT2) with capability to
switch thresholds over trading period and compare with DCTO0 and DCT1.
Result: Average return on investment was 65% better than trend follow
DCTO.

Bakhach et al. (2016)

Dataset: EUR/CHF, GBP/CHF and EUR/USD.

Aim: Develop a trading strategy with dynamic selection of thresholds.
Result: Profitability comparison outperformed Buy-and-hold.  Risk-
adjusted-return comparison outperformed EURO STOXX 50.

Ye et al. (2017)

Dataset: GBP/USD and EUR/USD.

Aim: Develop a trading strategy that combines technical and DC scaling
laws.

Result: Comparison to strategies based on DC only scaling law was not
significant.

Alkhamees and Fasli (2017Db)

Dataset: FTSE 100 index.
Aim: Identify and forecast trends in data streams using dynamic threshold.
Result: Same day match of detected trends to published news headlines.

Alkhamees and Fasli (2017a)

Dataset: FTSE 100 index.
Aim: Develop dynamic threshold trading strategy.
Result: Outperformed a single threshold trading strategy.

Kampouridis and Otero (2017)

Dataset: EUR/GBP, EUR/USD, EUR/JPY, GBP/CHF, and GBP/USD.
Aim: Evolve multi-threshold trading strategies.

Result: Statistically outperformed a single threshold trading strategy, other
multi-threshold trading strategies, a technical analysis based strategy and
buy-and-hold at 10% significance level.

Bakhach et al. (2018)

Dataset: AUD/CAD, AUD/USD, GBP/CAD, GBP/NZD, NZD/USD, and
EUR/NZD.

Aim: Develop dynamic threshold trading strategy incorporated with addi-
tional order size and risk management functionality.

Result: Rate of return and maximum-drawdown result statistically outper-
formed a predecessor trading strategy.

Bakhach et al. (2018)

Dataset: FTSE 100, Hang Seng, NASDAQ 100, Nikkei 225 and S&P 500.
Aim: Develop trading strategies based on mean OS length and Median OS
length..

Result: Average rate of return ranged from -14.93% to 62.60%.

Palsma and Adegboye (2019)

Dataset: EUR/GBP, GBP/CHF, GBP/USD and EUR/USD.

Aim: Develop multi-threshold strategies with Particle Swarm Optimization
and Shuffled Frog Leaping Algorithms.

Result: Average return of around 0.01% by Particle Swarm Optimization.
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in Kampouridis and Otero (2017) (another DC-based strategies compared) and con-
cluded that TSFDC performed considerably better.

Ye et al. (2017) proposed 4 types of strategies with similar trade opening approach
(at the DCC point) and different trade exit timing. The first two strategies used
traders experience to decide when to close opened trades. Strategy one used a limit
order to close opened trade while strategy two used a trailing stop order. It is however
unclear how the limit order and trailing order levels were set. Opened trades using
the third strategy were closed according to a DC trend reversal estimation algorithm.
The fourth strategy, an extension of strategy three combined DC with Directional
Movement Index, a technical analysis indicator to measure the strength of the trend.
Trades opened using the fourth strategy were closed using the same approach as
in strategy three if the strength of the trend is above a certain level specified in
the technical indicator. Ye et al. (2017) experimented the strategies in two markets
(EUR/USD and GBP/USD) and with 10 thresholds, the first five thresholds were
from 0.01 to 0.09, with a step size of 0.02 and the second five thresholds were from
0.1 to 0.9, with a step size of 0.2. Experimental result showed that strategy two was
most profitable across the markets and thresholds while strategy four, a combined
DC trend reversal estimation algorithm and technical indicator strategy was the
least risky. Maximum drawdown (MDD) was used to measure risk. Strategy three
recorded the second-best profitable strategy and the second least risky strategy.
Their result shows that trading using DC trend reversal forecasting techniques can
yield profitable result at comparatively low risk.

Kablan and Ng (2011) proposed a neuro-fuzzy-logic based trading strategy that
can capture the volatility in DC trends. A future price estimation algorithm was
embedded in their trading framework to predict the future price of assets based on

the current price and the immediate past 3 consecutive observations in the market.
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The trading strategy’s returns outclassed the physical-time scale trading strategies
they compared with.

Alkhamees and Fasli (2017a) highlighted a problem in summarizing price move-
ments based on single fixed threshold over a long physical-time period. They argue
that assuming a threshold of 0.01% is used in summarising events, if overtime signif-
icant events level drops to 0.009%, the events will not be captured. Alkhamees and
Fasli (2017a) recommended summarising events over a shorter physical time frame
and recalibrate threshold size for new event summaries. They proposed to generate
event series daily with dynamically adjusted thresholds size according to current and
previous day price movement. Comparison results showed that trading on event se-
ries generated in shorter time frame with dynamic threshold was more profitable than
trading on event series generated using fixed threshold over longer periods. Similar
conclusion was reached by Alkhamees and Fasli (2017b) having explored the same
idea of generating event series using dynamically adjusted thresholds in data-stream.

Evolutionary computation based trading frameworks under DC approach have
also been proposed in the literature. Gypteau, Otero and Kampouridis (2015) pro-
posed a genetic programming (GP) based strategy that combined trend recommen-
dations from multiple thresholds. They argue that sampling DC event series from
physical time series with different thresholds generate different event series. There-
fore, for the same physical time data point one threshold can detect a downward
trend and another detect upward trend. The strategy was used in combining trend
recommendation from multiple thresholds so that strongest trend is selected through
GP evolution. The leaf nodes of the GP tree were Boolean values representing the
type of DC trend detected by randomly selected thresholds. Upward trend resolved
to TRUE while downward trend resolved to FALSE. The inner nodes were logical
operators { AND, OR, NOX, XOR and NOT}. The GP strategy combined the leaf
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values using the logical operators to evolve a multi-threshold trend recommendation.
If the recommended trend was an upward a sell action is triggered otherwise a buy
action was triggered. The Strategy was tested on four datasets, two stocks and two
international indices and compared with results from trading using individual thresh-
olds. Results showed that combining thresholds was more profitable than trading on
single threshold.

Kampouridis and Otero (2017) observed that the DC-OS event length ratio does
not always follow the average 1:2 ratio originally proposed by Glattfelder, Dupuis
and Olsen (2008) and, instead ranged between 1.8 and 2.0 of DC event length. Kam-
pouridis and Otero (2017) therefore proposed tailoring the DC-OS event length ratio
to datasets. Like the approach proposed by Aloud (2016b), DC event series was split
into upward event series and downward event series and separate ratios calculated
for each subtype. To anticipate trend reversal point, DC event lengths known at the
DCC points were summed with estimated OS event length deduced using the appro-
priate subtype ratio. The trend reversal forecasting algorithm was then embedded
in a genetic algorithm based multi-threshold trading strategy that took trading deci-
sions by optimising trend reversal point recommendations from multiple thresholds.
They used two different types of datasets to evaluate the strategy; 1) tick data and 2)
intra-day data at 10-minute intervals and compared its trading result to those from
other DC based strategies and physical-time benchmarks. On tick data, the mean
return of the optimised strategy outperformed all other strategies. On intra-day data
at 10-minute intervals, the mean return of the optimised strategy outperformed all
physical-time benchmarks and all other DC based strategies but one. Howbeit, the
mean return result from that other DC strategy was not statistically significant.

To the best of our knowledge, the only comparative study of optimised multi-

threshold strategy in DC was carried out by Palsma and Adegboye (2019). They
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compared strategies where trading recommendations were optimised using genetic
algorithm, particle swarm optimization and shuffled frog leaping algorithms respec-
tively. In the work, the average return by particle swarm optimization was highest.
However, the performance was neither across all datasets nor statistically significant.
We are therefore of the opinion that further investigation is required in this kind of
comparative study.

We are able to conclude from the works reviewed that (1) successful trend reversal
forecasting algorithms and profitable trading strategies can be developed using the
DC approach, (2) systematic selection of threshold size captures significant event
better than arbitrary selection and this was noticeable in the profit reported, (3)
trading strategy based on multiple recommendation is more profitable than single
threshold based strategies, (4) evolutionary algorithm techniques have shown to be
a promising approach for optimising recommendations from individual thresholds.

We observed that majority of existing works in DC used parametric models in
expressing the relationship between DC and OS event length. As we could see, the
relationship discovered in Ye et al. (2017) was a finite parameter exponential function
and others discovered finite parameter linear functions. We also observed in previous
works on the assumption that a DC trend is always composed of DC and OS event.
Inspection of event series sampled with some thresholds indicated that this is not
always the case even when the stylised fact that on average OS event length is twice
DC event length holds. Nonetheless, estimating OS event where none exists could
lead to incorrect prediction and undesired trading outcomes. In addition, majority
of the works achieved positive returns at minimum risk (i.e., works that reported on
risk metrics). However, it is unknown whether the result can be generalised because

experimentation was carried out using limited datasets.
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We are thus, motivated to explore further the question of forecasting trend rever-
sal according to the stylised fact on the relationship between DC event and OS event
length. We explore for non-parametric models that can express richer relationship

between DC event length and OS event length.



Chapter 3

Machine Learning

Machine learning (ML) research focuses on designing algorithms for building problem
solving models that can learn, adapt and in some cases improve over time according
to new signals received from their external environment (Holmes, Donkin and Wit-
ten 1994). ML-based models are well-employed approaches for financial forecasting
and for developing trading strategies (Dymova, Sevastjanov and Kaczmarek 2016;
Huang, Chai and Cho 2020; Sezer, Gudelek and Ozbayoglu 2020; Dixon, Halperin
and Bilokon 2020). ML algorithms are commonly grouped into two categories namely
unsupervised and supervised learning. The difference between the two groups are

the learning goals and types of input variables.

Unsupervised Learning

Unsupervised learning is a group of machine learning techniques for finding patterns
or correlating anomalies in data without specifying a target attribute (Hastie, Tib-

shirani and Friedman 2009) or reward to guide the learning (Sathya and Abraham

37
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Figure 3.1: In (a) an example of DC and OS event length data from DC trend snapshot
in an event series; (b) potential output of an unsupervised learning algorithm, where the
data is grouped into 2 clusters to depicted DC events that have corresponding OS event.

2013). It aims to describe relationships amongst a set of attributes. Some exam-
ples of common unsupervised learning algorithms are K-mean, Local Outlier Factor,
[solation forest and self-organising map. Unsupervised learning can be used in an-
swering a question like “what types of DC events have a corresponding OS event*?
Figure 3.1a illustrates the scattered graph of a DC event and OS event length at-
tributes of a given DC event series. If we apply an unsupervised learning algorithm,
it could produce an outcome such as in Figure 3.1b which can be interpreted as "DC

events having lengths between 0 and 10 or greater than 18 have OS event”.

Supervised Learning

Supervised learning is a group of machine learning techniques for discovering a model
that maps the relationships between predictor attribute(s) and target attribute(s).

The aim is to use the discovered model in predicting similar relationships in unseen
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Figure 3.2: In (a) an example of DC event and OS event lengths data from DC trend
snapshot in an event series; (b) potential output of a supervised learning algorithm, that
shows a linear equation of best fit that represents the relationship between DC event length
and OS event length. Attribute X in the linear equation represents DC event length known
at DCC point.

data. Examples of supervised learning tasks are classification and regression. Linear
regression, support vector machine, ID3 and evolutionary algorithms are examples
of techniques for solving supervised learning tasks (Kotsiantis et al. 2007). Figure
3.2a shows a graphical representation of a dataset from which we are interested in
learning the relationship between DC event length and OS event length. Figure 3.2b
shows a fitted linear equation function representing the discovered relationship which
can be used in predicting future OS event lengths considering DC event length is the
predictor attribute.

In our study, the nature of our problem falls within supervised learning remit.
We are interested in: (1) predicting whether a DC event is followed by an OS event;
this constitutes a classification problem, and we thus provide more information on
classification problems in Section 3.1, (2) predicting the length of an OS event; this

constitutes a symbolic regression problem, and we provide a discussion on this in
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Section 3.2, and (3) optimising trend reversal point recommendation from multiple
thresholds which constitutes a numerical optimisation problem, and we provide more
information about this concept in Section 3.3. To tackle above problems, (1) we used
an automated machine learning tool presented in Section 3.4 to build a classifier that
categorised into DC event is followed by an OS event and others followed by another
DC event, (2) we used Genetic Programming (GP) to evolve a symbolic regression
model for estimating OS event length after DC event is confirms, and (3) and we
used Genetic Algorithms (GA) to solve out optimisation problem. GP and GA
Evolutionary Computation (EC) algorithms. We thus provide a brief description
of EC in Section 3.5, and then detail the specific characteristics of GP and GA in

Sections 3.5.2 and 3.5.3, respectively. Section 3.6 concludes the chapter.

3.1 Classification

Classification is a type of machine learning problem solved by developing prediction
models from patterns discovered in historical observations. The aim is to categorise
similar patterns into predefined groups, called classes, in unseen data. Each recorded
observation is represented by properties called predictor attributes and target at-
tributes. There are four common groups of predictor attributes namely, categorical,
continuous, discrete, and ordinal. Categorical attribute has unordered finite set of
values, for example, set of colours. Continuous attribute has infinite number of nu-
meric real values, for example, DC event length, OS event length and so on. Discrete
attribute has enumerable number of values between a lower and an upper bound, for
example the number of DC event in a DC series. Ordinal attribute has ordered finite
set of values, for example, the test grade of an exam A, B, C, D, E and F, where

A is considered the highest and descending to the lowest F. Target attributes are
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properties we are interested in understanding from historic observations and seeking

to categorise in future observations.

Table 3.1: Dataset for Loan application classification.

Age group Gender Housing Annual Salary Marital Status Dependency Loan Amount Approve Loan (Class)

20s Male Owned 50K Married 3 20K Yes
30s Male Owned 35K Married 2 5K Yes
20s Male  Renting 10K Single 3 30K No
50s Male  Renting 75K Single 1 20K Yes
40s Male  Renting 0 Married 2 25K No
50s Female Renting 0 Single 0 10K No
50s Female Renting 0 Married 0 20K No
50s Female Renting 50K Married 1 20K Yes
60s Female Renting 60K Married 1 100K No
20s Male  Renting 35K Single 0 40K No
60s Female Owned 100K Married 1 20K Yes

To further illustrate attribute categories, Table 3.1 shows a dataset of applicants
applying for a loan at a financial institution. In the table, there are 7 predictor
attributes: The first attribute “Age group” {20s, 30s, 40s, 50s, 60s} is an ordinal
attribute; the fourth, sixth, seventh and eighth attributes are continuous attribute;
the second and third and fifth attributes, “Gender” {Male, Female} and “Hous-
ing” {Owned, Rent}, “Marital Status” {Married, Single} are categorical attributes;
the target attribute is the “Approve Loan” {Yes, No}. The common steps in cre-
ating classification models from such dataset are data pre-processing, attribute se-
lection and classification algorithm selection and hyper-parameterisation (Beniwal
and Arora 2012). In the pre-processing step, activities such as data integration,
data cleaning and discretization are carried out first. Then, a subset of predictor
attributes, relevant to the classification task is selected. This step is advantageous
at reducing over-fitting, reducing model complexity and increasing model creation
speed. Attribute selection techniques can be divided into filter and wrapper meth-
ods (Karegowda, Manjunath and Jayaram 2010). The filter method uses statistical

methods like information gain and correlation between each predictor attribute and
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the target attribute as criteria for attribute selection. The wrapper method uses
cross-validation in training classifiers on subsets of predictor attributes at a time.
The subset of attributes that generate the best performing classifier is selected for
the remainder of the modelling process. The wrapper methods tend to perform bet-
ter because consideration is given relationships amongst predictor attributes (Wah
et al. 2018). Nevertheless, it can be costly in a high-dimensional dataset.

Many classification algorithms have been proposed in the literature, including
nearest-neighbour methods, decision tree induction, error back-propagation, rein-
forcement learning, lazy learning, rule-based learning, Bayesian learning and so on
(Ali and Smith 2006). With the vast number of classification algorithms, the choice of
algorithm for a given classification problem remains a challenge. This is because it is
possible for Algorithm A to outperform algorithm B on a certain classification prob-
lem 1, at the same time, it is also possible for Algorithm A to underperform algorithm
B on a different classification problem 2 (Wolpert, Macready et al. 1995). Algorithm
performance is usually measure based on the percentage of correct classification and
computational complexity. The finding is, there isn’t a universal classification algo-
rithm that is the most accurate across all datasets (Michie, Spiegelhalter and Taylor
1994). To evaluate and select the best performing classifier, a common approach is
the cross-validation approach after which the algorithms’ performances are ranked
according to percentage of correction classification and weighted F-measure (Ali and
Smith 2006; Reif et al. 2014). After selecting a classification algorithm, it is im-
portant to configure the algorithm’s parameters, called hyper-parameters, to control
the learning process so that an optimised model that balances between accuracy and
generalization is obtained (Maher and Sakr 2019). Due to different possible combi-
nations for these hyper-parameter values, optimisation techniques are employed to

find a good set of values (Braga et al. 2013; Feurer, Springenberg and Hutter 2015;
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Bergstra et al. 2011). The final step in a classification problem is modelling, which
can either be black-box modelling or white-box model. White-box models differ from
black-box models in terms of interpretability. Besides recognising patterns in unseen
data, the inner workings and mapping of predictor attributes to the target attribute

in white-box models are understandable to practitioners.

3.2 Regression

Regression is another type of machine learning problem solved by developing pre-
diction models from patterns discovered in historical observations. It differs from a
classification problem in two ways, the nature of the target attribute and the ob-
jective. In regression problems, the target attribute is continuous, and the goal is
to assign a real value to unseen data. For example, a company could use regression
models to forecast its potential percentage growth in a financial year from models de-
veloped using past spending on adverts. Regression problems models can be grouped
into 2 main categories, namely parametric and non-parametric regression (Mahmoud

et al. 2021).

3.2.1 Parametric Regression

In parametric regression, the form that the equation describing the relationship be-
tween predictor and target attributes is known (Mahmoud et al. 2021). The task is to
find the best coefficients for the attributes of an equation. The modelling techniques
in this category are simple, fast and models can be created from small dataset. An
example of a parametric modelling approach is Linear regression. Assuming we have

a dataset {1, T, ..., Tim, ¥i }1—y of n observations, each observation represented by
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m predictor attribute values and y; the target attribute value, a linear regression

model takes the form of Equation 3.1.
k
yi =B +e+ Z Bjxij (3.1)
j=1

where [y is the y-intercept, that is, the mean of the target attribute when all pre-
dictor attributes values are set to zero; k is the number of predictor attributes used
in representing n observations; 3; is the linear regression coefficient for the j-th pre-
dictor attribute. x;; are the j-th predictor attribute values for the i-th instance,
and e known as residuals is a random error that cannot be explained by the model.
The model searches the space of 3; values so that the mean squared error (MSE) of

observed and predicted target attribute is minimized (Xiao 2015).

3.2.2 Non-Parametric Regression

In non-parametric modelling, the form that the equation that maps predictor at-
tributes to the target attribute is unknown. The task is to find the structural form

of the regression function using large amount of data which we show in Equation 3.2.

yi = f(@) + € (3.2)

Different from parametric regression, we do not assume the number of parameters
the equation should take, neither do we assume that the data follows a normal
distribution. One of the techniques for finding an acceptable form of the equation
is symbolic regression. The idea is to explore a space of possible mathematical
equations that might fit the data, in search of an equation that best describes the said

relationship. It is impossible to know if we have found the optimal equation, so the
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procedure continuously searches the space of candidate equations until a predefined

stop criteria is reached, or the algorithm converges at a local optima.

3.3 Numerical Optimisation

In numerical optimisation, the task is a search for the best fit values (discrete or
continuous) from a large pool of configuration to assign to attributes under certain
constraints to obtain the best possible outcome. The best possible outcome could
either be to maximise or minimise an objective. Constraints are set of conditions
that input variables are required to satisfy. Optimisation problems are commonly
written in the form maximise f(z), where f is the objective function and x is the
input variable whose optimal value and we expect an optimiser to discover so that
the objective function value is improved. Figure 3.3 is a simple example of a such
function where the objective is to find an x value that maximises equation —z%—z—8
which is -0.5, that is highlighted with a green dot and a constraint could be that
X > 5.

In real life unfortunately, finding global maxima is not as simple, the objective
function can consist of multiple attributes and the optimisation surface can have a
range of local maxima which makes finding the global maxima challenging (Dorigo
and Stiitzle 2004). It is well known that an optimisation task can be an NP-hard
problem if the search-space is too large for an exhaustive search (Brookhouse 2018).

Therefore, the likelihood of inventing an efficient algorithm that can find the exact
solution in polynomial time is remote. A common method for finding the optimal
values of input attributes is gradient descent, an algorithm that describes the slope
of a function telling whether it increases or decreases in a certain direction towards

the objective. In a maximisation problem the algorithm takes iterative steps in the
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Figure 3.3: A graph of an equation where the objective is to find the global maxima which
we illustrate with a green dot.

direction of the gradient of the function until maxima point is reached. Some of the
challenges of gradients are (1) choice of learning rate - rates that are too small rate
can lead to slow convergence or hinder convergence and (2) entrapment in numerous
local optima in a complex optimisation surface (Ruder 2016).

An alternative practise is to use meta-heuristic algorithms (Metaxiotis and Liagk-
ouras 2012), a method for finding a near-optimal solution in a reasonable computa-
tional time. Meta-heuristic algorithms can either be single solution based or popula-
tion based. Single solution based algorithm like local search and simulated annealing
focus on exploitative search within a local neighbourhood that is defined according
to certain criteria. Population based algorithms like ant colony optimization and
genetic algorithm are explorative in nature, therefore rely on the diversity of the
population for success. They are non-deterministic, optimal solution is not guaran-
teed and they have a poor theoretical foundation (Carr 2014). Nevertheless, they

have proven to be successful in practise. Population based numerical optimisation
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algorithms share some similarities with non-parametric regression algorithms, they
do not have an upper bound on search duration or provide an indication of when a
discovered solution is close to the optimal solution, therefore a stop criteria and a

fitness function is required.

3.4 AutoML

The efficient selection of classification algorithm for a given problem and the tuning
of the hyper-parameters requires poses a challenge as it requires knowledge and expe-
rience (Khanmohammadi and Rezaeiahari 2014). Advances have been made in cre-
ating tools that automate the learning process so that non-expert can automatically
create well-performing prediction models. These tools, part of a growing research
area called AutoML, automatically perform the steps of non-deterministically select-
ing optimal classification algorithm and tuning the hyper-parameters. It is usually
the case that the only parameter a user is required to specify is the time limit for the
tool to evaluate the best classifier and configuration (Kotthoff, Thornton and Hut-
ter 2017). Examples of such tools are meta-collaborative filtering framework (Smith
et al. 2014), Hyperopt-sklearn (Komer, Bergstra and Eliasmith 2014), Auto-sklearn
(Feurer et al. 2015), TUPAQ (Sparks et al. 2015), Auto-WEKA (Thornton et al.
2013), DAUB (Sabharwal, Samulowitz and Tesauro 2016), MLPlan (Mohr, Wever
and Hiillermeier 2018) and more recently Auto-Keras (Jin, Song and Hu 2019). In
this work, we use Auto-WEKA for selecting and tuning our classifier because it pro-
vides an application programming interface (API) that can easily be incorporated
into our DC trend reversal estimation framework facilitating the creation of custom
model for each dataset we experimented and it is based on Weka (Hall et al. 2009),

a well-known open source package for performing classification tasks.
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3.4.1 Auto-WEKA

Weka (Hall et al. 2009) supports 39 classification algorithms that can potentially be
used for a classification task. However, the performance of the algorithms can vary
from one dataset to another. Therefore, Auto-WEKA framework was introduced. It
uses advances in high-dimensional stochastic optimisation to fully automate the pro-
cess of choosing the best classification algorithm and optimising its hyper-parameter
values. Auto-WEKA can be executed in two modes, namely single-threaded and
multi-threaded. We have chosen to perform our experiments using single-threaded
mode due to limitation of available hardware resources. The default execution time
for Auto-WEKA is 1 minute but to get the best result from Auto-WEKA, tuning is
required to determine the appropriate execution time. Because the search space (i.e.,
39 algorithms) exploration is non-deterministic and result depends on the initialisa-
tion seed, it is recommended to execute Auto-WEKA multiple times with different
seeds, resulting in as many recommended classifiers (Tighe, Lewis-Morris and Fre-
itas 2019; Basgalupp et al. 2020). From the pool of recommended classifier, the best

classifier can then be selected according to a fitness measure.

3.5 Evolutionary Algorithms (EA)

Evolutionary Algorithms are techniques that are based on Darwin inspired biolog-
ical evolutionary theory of natural selection to preserve the fittest individuals for
the procreation of future generations. The fittest individuals’ traits are passed on to
successive generations, resulting in improvement in these traits over the generations.
EA makes use of biological evolutionary concepts such as reproduction, mutation,

recombination, and selection. EAs search for an optimal or near-optimal acceptable
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Figure 3.4: An illustration of EA framework.

solution to optimisation problem by choosing the best-performing solution from a
group of solutions that were stochastically created and evolved over several genera-
tions. Some examples of EA algorithms are evolutionary programming (Fogel, Owens
and Walsh 1966), differential evolution (Storn and Price 1997), genetic programming
(GP) (Koza 1992), genetic algorithm (GA) (Holland 1992) and evolution strategy
(Rechenberg 1973). EAs have a common framework in evolving new individuals
namely initialisation, fitness evaluation, selection strategy, evolutionary operations

and stopping criteria.
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3.5.1 EA Framework

Figure 3.4 presents the building blocks of an EA framework. The process initialises
by stochastically creating a population (also called individuals) representing poten-
tial solutions to a problem. The aim is to have a diverse initial population that
covers a wide range of potential solutions that represents the search space. After
creating the initial population, the next step is to evaluate their fitness. A fitness
function evaluates how well an individual solves a problem. If an individual solves
the problem sufficiently according to a fitness evaluation the process terminates, and
the individual is presented as the solution to the problem. Otherwise, genetic op-
erators are applied to selected parent individuals to evolve new individuals, called
offspring. Offspring constitute a new population called generation, expected to have
better traits for solving the problem. If the new generation is not able to solve the
problem sufficiently, the evolutionary process using genetic operators continues until
a termination criteria is reached. The genetic operators are mutation, crossover, and
reproduction. During evolution, weak individuals in the population are eliminated
and the best individuals known as elites are preserved across generations. Preserva-
tion of best performing individuals across generations follow the principle of survival
of the fittest. Tournament selection is a common method used in identifying parent

programs with desired traits for evolution.

Fitness function

Fitness function is a mechanism that describes the objective that individuals are
expected to fulfil (Poli et al. 2008). It measures the trait of individuals in a population
at solving a problem. The fitness function also has the role of guiding the algorithm

towards regions in the search space with potentially better solutions. An example of
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a fitness function is root mean square error that measures the difference between a

value predicted by an individual and the value observed.

Selection strategy

Similarly to natural evolution, individuals are selected for breeding based on their
quality. In EA, this is known as fitness level, it is a quantifier of the degree to
which an individual can solve a problem. The better an individual is at solving a
problem the higher its fitness level. Several selection strategies can be employed,
and tournament selection commonly used. It involves choosing random individuals
from the population as candidates for breeding. A contest is then held the fittest
individual amongst these candidates is selected for breeding an offspring. Another
selection strategy is the roulette wheel. A probability is assigned to an individual
based on its fitness level in relation to the sum of the fitness level of all individuals
in the population. The probability of the individuals is then normalized whereby
individuals with higher probability have a greater chance of getting selected in a
random selection. Truncation Selection is another selection strategy. In this case,
individuals are ordered according to their fitness level. Candidate individuals for
evolution are randomly selected from individuals with fitness level higher than a

cut-off point (Poli et al. 2008).

Genetic operators

The main evolutionary operations can be categorised as follows:

o Crossover is a binary operation that recombines two parent individuals by
taking parts of their chromosomes to produce a child individual. The aim is to

exploit regions in the search space where promising solutions have been found
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already.

o Mutation is a change in the genetic structure of a single individual. The aim
is to stir the algorithm towards exploring different regions in the search space.
Mutation can occur at single or multiple sites within the gene structure of an

individual.

« Reproduction is the random copy of a program from one generation to the
next without any modification. The aim is to maintain diversity in the popu-

lation.

Elitism

Elitism is a selection operator for preserving the highest fitness level individual(s) in
future generation. This is done to improve performance by reducing the time spent
rediscovering previously found partial solution. Though it speeds up convergence, it

can reduce population diversity if allowed to dominate the population.

Stopping criteria

Stopping criteria indicates when the evolutionary process should end. Different qual-
ities of the population can be used to determine stopping criteria. Four examples of
stopping criteria are when: an upper bound threshold on the number of generations
is attained, an upper bound threshold on the number of fitness function evaluation
is reached, a pre-defined distance from the optimal solution is achieved, a lower
bound on the learning rate from one generation to another is reached (Safe et al.
2004). Once the process ends, the individual with highest fitness level in the latest

generation is returned as the best solution.
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As a reminder, in this work we aim to (1) estimate as accurately as possible OS
event length once a DC event length is known and use the two lengths to forecast
trend reversal, and (2) optimise forecasting models of multiple DC thresholds to
improve trading. To this end, we utilise genetic programming (GP) and genetic
algorithm (GA). These two techniques are state of the art algorithms for solving

symbolic regression problems and solving optimisation problems respectively.

3.5.2 Genetic Programming

GP is an evolutionary algorithm for evolving computer programs' to solve a problem
without specifying explicit information on how the problem should be solved or what
the structure of the program should look like in advance but follows the process

illustrated in Figure 3.4 (Koza 1992).

Representation

A typical GP program is composed of variables, constants and functions and can
vary in shape and size. A common way of representing a GP individual is a tree
representation (Koza 1992). Figure 3.5 presents a sample GP tree. The GP tree
is composed of interdependent components known as the terminals and functions.
Although tree representation is the most common, other forms of representing GP
exist such as linear and cartesian representation (Nordin 1994; Miller 1999). Linear
GP is a flattened tree that expresses a sequence of programming instructions to
mimic how computer architecture represents programs. Cartesian GP is a directed
graph representation of programs. It is based on the idea of creating and evolving

genetic representations of electronic circuits (Miller 2019).

!A computer program in this context is a structure that represents a structure e.g., boolean
expression, mathematical equations.
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Figure 3.5: An illustration of a GP Tree. The terminal nodes of the tree are 5 DC thresh-
olds 0.04, 0.02, 0.34, 0.36 and 0.05. The non-terminal nodes are mathematical operators
X y T +7 /

Terminals set are symbols representing the end of a branch. They consist of
independent variables and constants. Constants are numeric values, either integer
or real (e.g., 4, 3.14). Independent variables represent input values to the program.
For example, in an equation such as 2% + 4x + 5 = 0, z is an independent variable.
Another type of terminals are functions with no argument. For example, Rand()
that returns a different value on each call and Ephemeral random constants (ERC),
a set of randomly generated terminals that retain their values across the population
at initialisation and during evolution.

Function set ( internal nodes of the tree) are symbols representing operations.
The function set consists of different expressions that define permissible relation-
ships between internal nodes, and between internal nodes and terminal set. The
number of child nodes connected to an internal node is based on the number of
operands the function in the internal node can manipulate. For example, the unary
function “NOT” in Figure 3.5 can only have one child node and the binary function

“AN D?” can have exactly two child nodes. Examples of functions are binary operators
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(+, —, X, +), mathematical functions (sin, cos, tan, LOG, EX P), Boolean operators
(AND,OR, NOT), conditional operator (If-Then-Else), comparison operators ( <,

>, <, >, =, =) and other domain specific functions.

GP property

For GP to successfully find the solution to a given problem, it must satisfy certain

properties, namely closure and sufficiency (Koza 1992):

o Closure is the syntactic correctness of a GP tree and the correct handling
of exception that may occur in rare cases. Closure can be divided into type
consistency and evaluation safety. The search for a solution requires that GP
combine nodes from subtrees stochastically. It is important for functions in a
set to be able to accept as input parameters, outputs from others in the set.
This is to ensure that the program is syntactically correct at compile time. If
peradventure a function does not fulfil this requirement, it can be constrain
limiting the functions it can accept output from. In practice, there are three
major approaches for constraining the syntax of evolving trees: simple structure
enforcement, strongly typed GP and grammar-based constraints. Evaluation
safety refers to the syntactic correctness at runtime. A GP program must be
able to be executed from start to finish successfully without crashing. If this
is unavoidable, exception handling can be introduced in such cases (Poli et al.

2008).

o Sufficiency is the completeness of a primitive set so that it can express a
solution to a problem. This is domain-specific, and the user must ensure that
the terminal and functional sets supplied to a GP algorithm is powerful enough

to evolve a valid approximation of the optimal solution (Koza 1992).
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GP Initialisation

Figure 3.6: An example tree showing the Grow initialisation. The tree terminals are
directional changes thresholds and ERCs while the non-terminal nodes are mathematical
operators.

Figure 3.7: An example tree showing the Full initialisation. The tree terminals are di-
rectional changes thresholds and ERCs while the non-terminal nodes are mathematical
operators.

GP population is initialised by randomly combining terminals and functions to
form individuals. The aim is to have a diversified set of individuals that sufficiently

represent the solution space (Poli et al. 2008). Two of the common approaches in
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generating an initial population are grow and full methods (Koza 1992). There is
also ramped half-and-half initialisation, which is a combination of the grow and full
methods (Poli et al. 2008). In all three methods, the generated individuals must not
exceed a maximum depth specified upfront. Maximum depth is the number of edges
traversed between the root node and every leaf node (Poli et al. 2008).

In the grow method, unbalanced and asymmetric trees of varied sizes and shapes
are created. At first, a root node is randomly chosen from the primitive set (i.e.,
function or terminal), if the root node is a terminal, the tree is not grown further.
On the other hand, if the root node is a function, the tree branches out according
to the arity of the function at the root node. The branches are filled with randomly
selected functions or terminals. Branches of terminals are closed out and branches
of functions are recursively grown until terminals is selected or the maximum depth
is reached. If maximum depth is reached and the furthest node is not a terminal,
a terminal is mandatorily selected. An example of such tree is presented in Figure
3.6 which represents an equation that estimates OS event length as OS; = ((ERC +

DCZ) X DCl) — L?}gé’) .

The full method creates balanced and symmetric trees of potentially different
shapes and sizes (Poli et al. 2008). It is initiated by deciding on a depth then a root
node is randomly selected from a function set. The tree branches out according to
the arity of the function at the root node. The inner nodes are filled with randomly
picked functions from the set recursively until the maximum depth is reached. At
maximum depth, a terminal is randomly selected, and recursion ends. An example

of such a tree is presented in Figure 3.7 which represents an equation that estimates

OS event length as OS; = ((DCFRC) x Py — (EEC) 4+ (ERC x ERC)).

ERC DC,

The third type of initialisation is ramped-half-and-half, a combination of grow

and full initialisation which ensures greater diversity of program population. Half of
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the tree population is created using grow and the other half is created using full. This
ensures higher structural diversity of the trees in the initial population to improve

search space coverage (Koza 1992).

Genetic operators

These are operators that lead GP process towards a solution to a problem during
evolution by exchanging genetic material in a program with new/different ones. The
main types of operators are crossover, mutation, and reproduction. An operator
is randomly selected for evolving a tree. Excessive use of just one operator might
not yield desired result. Reproduction alone leads to copies of the same program
in the population. Crossover alone leads to early conversion and a local optimal
might be selected as the best program. Mutation alone will cause GP to make big
jumps without exploring its neighbourhood of solutions sufficiently. Reproduction is
a random copy of a GP individual from one generation to the next without changes

to the tree. More detail about crossover and mutation operator is provided below.

Mutation is a genetic operation that changes the genetic structure of a single tree.
The aim is to maintain diversity in the population by exploring different regions
in the search space. In Figure 3.8, we present sample mutation operation, this
mutation is known as subtree mutation. A new offspring is created by removing
a random node which we highlight in red and its substructure from a tree. The
removed node is replaced with a randomly generated tree. The new program in
Figure 3.8b is then copied to the next generation. Another form of mutation is point
mutation, a single node is replaced with a different member of the primitive set with
the same arity and return type. It is not possible to list all the different types of

mutation operator. Nonetheless, we acknowledge other types of mutation such as
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(a) Parent tree

0.36

(b) Offspring tree

Figure 3.8: An illustration of how an offspring tree is evolved with the mutation operator.
Terminals 0.04, 0.02, 0.05 are DC thresholds and rest of the terminals are ERC. The
function set are /, +, —, Pow, Sin, Cos and x
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Size-fair subtree mutation (Langdon 1998), Hoist mutation (Kinnear 1994), Shrink
mutation (Angeline 1996), Permutation mutation (Koza 1992; Maxwell and Koza

1996), Constant mutation (Schoenauer et al. 1996) to mention a few.

Crossover is a binary operation that merges copies of two selected programs called
parents at randomly selected nodes to create a new tree known as offspring. It works
by selecting parents based on their fitness level and merging them at crossover points.
Crossover points are points of division in parent trees. For example, in Figure 3.9,
crossover points in parent trees A and B, which we highlight in red and black are
selected. The subtree at the crossover point in parent tree A is removed and replaced
with the subtree at crossover point in parent B. The new tree as can be seen in Figure
3.9¢ is a new offspring and it is copied to the next generation. The type of crossover
described in this example is known as subtree crossover (Poli et al. 2008). There are
several types of crossovers cited in the literature like, one-point crossover (Poli et al.
2008), two-point crossover (O’neill et al. 2003), uniform crossover (Poli et al. 2008),
context-preserving crossover (D’haeseleer 1994), size-fair crossover (Langdon 2000),
depth-based crossover (Harries and Smith 1997) and so on. There are also crossover
operators that are based on GP representation such as ripple crossover (O’neill et al.
2003) for grammatical evolution and a real-valued inspired crossover (Clegg, Walker
and Miller 2007) for Cartesian GP. GP naturally select terminals for crossover, and
it is not unusual for crossover to be reduced to exchange of two terminals (Poli et al.
2008). To reverse this and improve fitness crossover with functions selected 90% of

the time should be enforced (Koza 1992).
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(c) Offspring tree

Figure 3.9: An illustration of how an offspring tree is evolved with the crossover operator.
Terminals 0.04, 0.02, 0.05 are DC thresholds and rest of the terminals are ERC. The
function set are /, +, —, Pow and X

3.5.3 Genetic Algorithm (GA)

Genetic Algorithm (GA) is an Evolutionary algorithm to search in a solution-space
for either the optimal or the near-optimal solution to an optimisation problem (Atil-
gan and Hu 2018). An example of such problem is finding the appropriate weight to
assign to thresholds in a multi-threshold trading strategy.
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Representation

A common form of representing GA is an array of binary bits. The gene array
in this representation holds the value of either Os or 1s as can be seen in Figure
3.10. Other forms of representation exist such as integer-value representation, real-
value representation, permutation representation and so on. The determining factor
in choosing a representation is the type and number of attributes that define the
problem to be solved. Once determined, the gene type and chromosome size are

fixed throughout the initialisation and evolution phases.

Figure 3.10: A sample representation of a binary bit genetic algorithm. The array of bits
is known as a chromosome and each cell in the array is a gene.

G A initialisation

GA population is commonly initialised randomly, heuristically or a mixture of both.
In random initialisation, random values are assigned to chromosomes of the gene.
The idea is to have a diverse population that is representative of the search space.
Heuristic initialisation, on the other hand, encodes the population based on prior
knowledge of how to solve a problem. For example, specific values can be assigned
to the chromosomes. This kind of initialisation requires care to avoid the population
from being homogenous, which could inhibit the GA from solving the optimization
problem. The third approach is the combination of random and heuristic initialisa-
tion where only a hand full of individuals are initialised heuristically and the rest are

randomly initialised.
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Genetic operators

Genetic operators lead GA towards an optimal solution to a problem through the
exchange of genetic materials in a GA individual. Similar to GP, the main types of

operators are crossover, mutation, and reproduction.

Mutation is used to keep genetic diversity during evolution to prevent convergence
at a local optimal solution. Mutation is done by modifying one or more gene values
of a chromosome. Different ways of mutating the genome of a GA individual exists.
In a binary problem represented with 0Os and 1s, mutation can be done by flipping

the genes of the individual as illustrated in Figure 3.11.

[ [ofo]1]1]— [EuEo

parent child

Figure 3.11: An illustration of GA evolution using a flip mutation. 0 bit genes are flipped
to 1 and vice-versa.

Another commonly used mutation technique is uniform mutation - the value
of the chosen gene is replaced with a uniform random value selected between the
user-specified upper and lower bounds. Others are Interchanging mutation, reverse

mutation, boundary mutation and so on (Sivanandam and Deepa 2008).

Crossover is used to implements a depth search (exploitation) in a region in the
solution space where individuals with high fitness is found. Crossover is done by
selecting two parent individuals from a mating pool. Then mating sites from the
parent individuals are selected at random along their lengths. Then values at the
mating sites in both parents are swapped to generate the new offspring. Traditional

GA uses a single point crossover illustrated in Figure 3.12.
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Figure 3.12: An illustration of GA evolution using a single point crossover. Genes after
the mating site in one parent are replaced with those from the second parent. Either of
the children can be selected for the next generation

In single point crossover, genes after a mating site in one parent are replace with
genes after mating site in a second parent. Other types of crossovers are two point

crossover, uniform crossover, shuffle cross and so on (Sivanandam and Deepa 2008).

3.6 Summary

In this chapter, we briefly discussed two types of machine learning algorithms: un-
supervised and supervised learning algorithms. We discussed supervised learning
algorithms, where our interest lies. We detailed the two main supervised learning
tasks: classification and regression. Both tasks find patterns in predictor attributes
that express how they relate to a target attribute. The goal in classification task is
to predict a categorical value, while in regression the goal is to predict a continuous
value.

Furthermore, we discussed techniques that can be applied to tack the three prob-
lems studied in this work: our three supervised learning task: AutoML for classifica-
tion task, i.e., classify DC trends into two categories; consisting of DC and OS events
or only DC events; symbolic regression GP for non-parametric regression task, i.e.,
evolve a function that estimate OS event length given a DC event length; and GA

for optimisation task i.e. evolve an optimised multi-threshold trading strategy.



Chapter 4

Symbolic Regression forecasting

model

Directional Changes (DC) is an alternative approach for sampling price movement
and described in Chapter 2.5, the occurrence of a DC event is known only in hind-
sight. Additionally, the length of the corresponding OS event remains unknown until
the next DC event in the opposite direction is confirmed i.e., when the trend is re-
versed. The challenge in trend reversal forecasting from a DC perspective is the
ability to determine the length of OS event before the next DC event is detected.
There has been an empirical study that investigated regularities (Scaling laws) in DC
summarised data (Glattfelder, Dupuis and Olsen 2011). One of the regularities is the
existence of a linear relationship between the DC event length and its correspond-
ing OS event length. It was observed that, on average, if DC event takes t amount
of physical time, its corresponding OS event will take twice the amount (2t). This

regularity provides traders with greater understanding of price movements, which

65
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can be leveraged for trend! reversal prediction and trade strategy modelling. This
is because if investors can accurately estimate OS event length, they will be able
to anticipate when a DC trend is expected to end. Thus, with this OS length reg-
ularity, traders can devise new strategies to maximise return on their investments.
Nevertheless, a drawback of the above regularity formulation (i.e., OS event length
is twice DC length) is that it is based on a simple linear DC-OS length relationship.
This has motivated us to look for equations that express richer relationships that
were not covered by existing linear relationship algorithms (Glattfelder, Dupuis and
Olsen 2011; Kampouridis and Otero 2017).

To this end, we developed a tailored GP that creates equations to describe the
DC-O0S event length relationship. Our goal is twofold: (1) demonstrate that symbolic
regression GP (SRGP) can be used to estimated OS event length, thus anticipating
trend reversal in Forex data, and (2) demonstrate that the SRGP derived equations
can improve trading profitability. We thus replace OS event length estimation equa-
tion of a DC-based trading strategy first proposed by Kampouridis and Otero (2017)
with our SRGP created ones.

We acknowledge that risk is an important trading metric. However, as a first step
we focus on profitability measure of the trading strategy. We analyse profitability
and risk in our proposed trading strategy described in Chapter 5.

The rest of the chapter is organized as follows: Section 4.1 describes the uncov-
ered linear relationships between DC and OS event lengths. Section 4.2 presents our
methodology, where we explain in detail how we use a tailored SRGP in estimating
OS event length, thus forecasting trend reversal. Section 4.3 presents the experimen-

tal setup, and Section 4.4 presents and discusses our findings. Section 4.5 concludes

In the context of directional changes, trend can be described as sum of DC event length and OS event length. At the end of a trend,

another one begins in the opposite direction. Just before the start of the new trend, is the trend reversal point of the trend that just ended.
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the chapter.

4.1 Linear and non-linear DC-OS Relationships

There are two works that described the linear relationships between DC and OS
event lengths, Glattfelder, Dupuis and Olsen (2011); Kampouridis and Otero (2017).
Glattfelder, Dupuis and Olsen (2011) found that an OS event lasts on average twice
the length of a DC event and proposed Equation 4.1 which we call Factor-2. Kam-
pouridis and Otero (2017) confirmed the existence of a linear relationship. However,
also observed that the linear relationship varied across dataset, i.e, it was not al-
ways twice the length of a DC event and proposed Equation 4.2 a tailored real value

representing the observed relationship in each dataset which we call Factor-M.
OS[ ~ 2 X DCl (41)

OSZ =(C x DCZ (42)

where :

OS) = the length of an OS event
DC) = the length of a DC event.

C' = a time-varying? constant, which can take any positive real value, C > 0.

However, there might be cases when any of the above equations do not hold, and
this was discovered during our preliminary empirical studies. There were cases where
DC trends were consisted of only DC events. In such cases, the OS event length was

0 and the two equations above were unsuitable for forecasting DC trend reversal.

2value changes according to the DC trend and the DC:OS ratio in the dataset
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In addition, the relationship between DC and OS event length might not always be
linear. Using a simple linear equation will not consider these dynamics and could
lead to hit-and-miss trend reversal prediction in some cases line the two mentioned
above.

Our contribution in this chapter addresses the limitation of the relationships
discovered so far. We propose re-writing Equations 4.1 and 4.2 in a general form as
Equation 4.3. In the new equation, there exists a relationship between DC and OS
event lengths which can be either linear or non-linear, but the underlying equation
that we call Reg-GP is known. To discover Reg-GP, we use a genetic algorithm,
a state-of-the-art algorithm for evolving unknown solution for a task (Zegklitz and

Posik 2020; Wang, Wagner and Rondinelli 2019).

08 = f(DCY) (4.3)

where :

OS5, = the length of an OS event
DC) = the length of a DC event

4.2 GP - based OS length Estimation

In this section we present the composition and evaluation of our SRGP-based OS
length estimation algorithm. The algorithm is a tree based SRGP and uses as input
the DC length.

First, a threshold is used in transforming physical time-based dataset into DC-
based dataset. Then, the DC dataset is split into separate upward and downward
DC datasets. Finally, we apply a SRGP that searches for an equation f(DC') which
maps DC event length to OS event length. The sum of the DC event length observed
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(a) Sample tree 1 (b) Sample tree 2

Figure 4.1: Sample SRGP individual trees where internal nodes are represented by arith-
metic functions. The leaf nodes are represented by numeric constants and the DC length,
denoted as DC). Given a DC event length the tree estimates the corresponding OS length.

in the dataset and the estimated OS event length by our SRGP algorithm becomes
our forecasted trend reversal point i.e., the start point of the next DC event in
the opposite direction. In our approach there are separate equations tailored for
upward DC trend and downward DC trend respectively. The rational is based on
our preliminary experiment that showed varying ratio between the two types of DC
trends and was also reported by Aloud (2016b). For the equation created by our
SRGP to be valid, the expression must have at least one DC event length as a

parameter to express the equality relationship between DC and OS event lengths.

4.2.1 Model representation

To make the SRGP satisfy the closure property, we catch these errors using run-time
exceptions and reduce the fitness of such programs. This is done to reduce the chance
such programs from getting reproduced in future generations (Poli et al. 2008).

We represent our evolved SRGP individuals using tree structures. The inner
nodes of the trees are composed of linear and non-linear functions. We utilised 2-
arity functions {addition, subtraction, division, multiplication, power} and l-arity

functions {sine, cosine, power, logarithm, exponential}. In certain cases, it was
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possible for SRGP composed of division, logarithm, power and exponential functions
to output undef? (undefined), NaN* (not a number) or Inf® (infinity). We therefore
protected, these functions to ensure that valid numerical values are always returned
as output by first checking for potential problems before execution and returning
a default value in such cases. The terminal nodes consisted of an ERC® and an
external input to represent DC event length. We selected an ERC with a probability
Pr; the DC event length with probability 1— Pr. All our functions and terminals are
presented in Table 4.1. To initialise the population, we used ramped half-and-half
technique. Figures 4.1a and 4.1b show sample trees our GP can create. Figure 4.1a
and 4.1b are trees which represent equations that estimate OS length as ((DC; —
2.5) x 1.51) + (1.8 + DC)) and ((33) x DC)) + (cos(DC;)?2) respectively and the

2.02

DCY in both equations represent the length of DC event.

Table 4.1: Configuration of the proposed SRGP algorithm

Configuration Value

Function set  addition, subtraction, protected
division, multiplication, sine, co-
sine, power, log, exponential

Terminal set  input variable (i.e., DC events
length) and ephemeral random

constant.
Genetic opera- subtree mutation and subtree
tion crossover

31f Divisor is 0.

41f the argument of the Logarithm function less than 0, if the first argument of power function
is a negative real number and the second argument is a positive real number.

5 If the argument to the Logarithm function is 0 or the first argument to the power function is
greater than 0 and the second argument is less than 0 or the argument to the exponential function
is a real number greater than a certain value.

SEphemeral random constants, explained in Chapter 3.5
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4.2.2 Model evaluation

To evaluate our trees, we measure error between actual OS length (OS;) and OS
length that the SRGP estimates (OS;). The prediction error ¢ was calculated using

root mean square error shown in Equation 4.4.

- Wﬁ(osz - 08)?
° = N

where :

N = The sample size

¢ = The root mean squared error

During evolution, we penalise by reducing fitness of tree constructs that (1) have
only constants as terminal nodes since they do not use the DC event length in the
estimation, and (2) estimate a negative value since OS event occurs after DC event
in time and the dimension of time in financial time series is irreversible (Flanagan
and Lacasa 2016). Tournament selection is used to select parents based on fitness
level. If there are more than one candidate trees with the same (highest) fitness, we

evaluate tree size to break the tie and the tree with the smaller depth is selected.

4.2.3 Genetic operators

We use standard genetic operators to evolve the trees. The operators used are subtree
mutation and subtree crossover (see Table 4.1). The evolution was controlled by a
crossover ratio P,. At P, we selected subtree crossover operator and at 1 — P, we
selected subtree mutation operator. We used an elitism ratio to select the best
performing trees and carried them forward from a generation to the next without

modification. To control growth, we used hard limits on the depth of offspring trees.
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4.3 Experimental setup

This section presents the experimental setup to accomplish our two goals. As a
reminder, our first goal is to demonstrate that the SRGP evolved equations can be
used to anticipate trend reversal; the second goal is to demonstrate that accurate
anticipation of trend reversal can improve profitability. This is because forecasting
closely to the true trend reversal point allows traders to make better decisions that
increases profit Chen et al. (2021). To achieve these goals, our experiments are
divided into two parts. In the first part, we use our SRGP algorithm presented in
Algorithm 4.1 to uncover hidden DC-OS relationships i.e., evolve OS event length
estimation equations. We then compared SRGP’s regression error with previous
works in this field (Glattfelder, Dupuis and Olsen 2011; Kampouridis and Otero
2017), i.e., Equation 4.1 and Equation 4.2. In the second part of our experiments, we
embed the equations returned by our SRGP in an existing DC trading strategy, which
was first presented by Kampouridis and Otero (2017), to demonstrate that richer DC-
OS relationships, improves trend reversals estimation leading to improved trading
results. We compare the trading results’ returns to other DC trading strategies and

popular financial benchmarks, such as technical analysis, and buy-and-hold.

4.3.1 Data

We used 10-minute interval high frequency data of the following currency pairs:
EUR/GBP (Euro and British Pound), EUR/USD (Euro and US dollar), EUR/JPY
(Euro and Japanese Yen), GBP/CHF (British Pound and Swiss Franc), and GBP/USD
(British Pound and US dollar) from June 2013 to May 2014. We considered each

month in the period as a separate physical-time dataset. Datasets from the months
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of June and July 2013 were used for tuning OS length prediction and trading strat-
egy algorithms. The remaining dataset from the month of August 2013 to May 2014
were used for testing the tuned algorithm. We chose a ratio of 70:30 for training and

testing sets.

4.3.2 GP parameter tuning

In total, we used 50 DC datasets for tuning. They were derived using thresholds
0.010%, 0.013%, 0.015%, 0.018% and 0.020% to generate DC price curves from
Forex data of June and July 2013 across 5 currency pairs: EUR/GBP, EUR/USD,
EUR/JPY, GBP/CHF and GBP/USD. The selected thresholds were the same as
those in previous work by Kampouridis and Otero (2017) that also experimented
with the same dataset. In their work these thresholds were selected after a threshold
tuning step. We acknowledge that using the same thresholds across dataset might
not be optimal and we address this in Chapter 5 by tailoring threshold selection to
dataset. However, by having similar experimental setup as (Kampouridis and Otero
2017), we are able to have an unbiased comparison of our trend reversal forecasting

algorithm to a published work.

Table 4.2: IRACE setup for tuning the parameters of our SRGP.

Parameter Type Values

Population Size Categorical 100, 200, 300, 400, 500, 600, 1000
Generation Categorical 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75
Tournament size Integer 2-7

Tree Depth Categorical 3,4,5,6,7,8,9

Pruning Categorical True, False

Crossover probability Ream 0.7-1

Mutation probability Real 0.1-0.2

Elitism Real 0-0.20
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Table 4.2 presents GP parameters and the configuration setup for tuning them
using the I/F-Race package (Lépez-Ibanez et al. 2011). I/F-Race package is an
extension of an iterated racing procedures. It implements racing methods for the
selection of the best configuration for an optimisation algorithm by empirically voting
the most appropriate settings from a set of instances of an optimisation problem
(Birattari et al. 2010). IRace procedure was run with a budget of 2000 iterations. At
the end of IRace run, 4 candidate SRGP configurations are presented. From the 4
candidate configurations, we choose a configuration with the highest population size
because in SRGP, population diversity is important in preventing early convergence
or convergence in local optima (Rosca 1995; Langdon 1996; Banzhaf et al. 1998).
Table 4.3 presents our SRGP configuration after the tuning step.

Table 4.3: Regression GP experimental parameters for detecting DC-OS relationship, de-
termined using I/F-Race.

Parameter Configuration
Population 500
Generation 35
Tournament size 3

Crossover probability 0.98
Mutation probability 0.02
Maximum depth 3

Elitism 0.10

4.3.3 Trading algorithm experimental setup

As previously explained, in the second step of our experiments we aim to show that
trend reversal forecasting accuracy impacts profitability. We embed the OS event
length estimator by our SRGP into an existing DC-based trading strategy previously
presented in Kampouridis and Otero (2017). The trading strategy which we describe
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Algorithm 4.1 Pseudocode for evolving Equation 4.3 i.e., equation to estimate OS
event length given a DC event length.

Require: Initialise variables (PopulationSize= 500; GenerationSize= 35; Tournamente-
Size = 3; CrossoverRate = 0.98; MutationRate = 0.02; MaximumDepth = 3; Elitism-
Ratio = 0.1; Prune = True )

1: Initialise population: P <— Generate PopulationSize individuals (Candidate programs)
using ramped half-and-half

2: Evaluate: for each p in P, calculate Fitness with Equation 4.4

3: while termination condition not satisfied do

4: P, + Initialise new population for generation g

5: Get elite individuals in P: ERJ[1,...,( ElitismRatio x PopulationSize)]

6: Add elite individuals to P,

7 for i = FR+1to P; do

8: if RandomNumber < CrossoverRate then

9: Select parentl: probabilistically select TournamenteSize individuals from P
10: Select parent2: probabilistically select TournamenteSize individuals from P
11: P,; : + Perform crossover between parentl and parent2
12: end if
13: if RandomNumber < MutationRate then
14: P,; : + Perform mutation on Py
15: end if
16: end for
17: Update: P «+ P,

18: Evaluate: for each p in P, calculate Fitness with Equation 4.4
19: end while
20: Return the individual (i.e., equation) with the highest fitness from P

below uses a genetic algorithm to optimise the recommendations of multiple DC
thresholds; it also uses Equation 4.2 as OS event length estimator. To test the
effectiveness of our SRGP created equations, we replace Equation 4.2 originally in
Factor-M+GA with the best performing equation returned by our SRGP. We refer
to this trading algorithm as Reg-GP+GA. In addition, we also test the strategy with
Equation 4.1 as the OS event length estimator; we refer to this as Factor-2+GA.
Lastly, we run experiments with a technical analysis algorithm and buy-and-hold.

All these algorithms are summarised below.
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Technical analysis

Several technical indicators exist for algorithmic trading. To combine different in-
dicators to formulate trading strategies, we use a GP algorithm called EDDIE. The
technical indicators EDDIE combines in our experiments are moving average, trade

break out, filter, volatility, momentum and momentum moving average (Tsang et al.

2000).

Buy-and-hold

Buy-and-hold is a common benchmark for trading algorithms. A trading strategy
that buys a financial product at the start of a period with the expectation that price

will appreciate over time, then sells at the end of the period.

Factor-M+GA

This is the original DC work by (Kampouridis and Otero 2017), which uses Equation
4.2 (i.e., Factor-M) to estimate OS event length and also proposed a trading strat-
egy called Factor-M+GA,. The idea behind Factor-M+GA is to optimally combine
multiple DC thresholds. This is because different thresholds provide different event
summaries. Smaller threshold sizes are used in detecting more events, and this al-
lows traders react more promptly to price movements. However, this might not be
an optimal strategy because there is a transaction cost” associated with each trad-
ing. On the other hand, with a larger threshold, fewer events are detected, providing
opportunities for acting when price change is more sizeable. Selecting a threshold

that is too large can lead to inaction or opportunity loss®. Because the Factor-M

"The cost incurred for trading a currency with another
8Getting locked-in to a position because the event direction never changed by the defined thresh-
old along the rest of the price coast line



CHAPTER 4. SYMBOLIC REGRESSION FORECASTING MODEL 7

estimated by each threshold is an approximation and it was possible for the actual
OS events length to last longer or shorter than the estimated Factor-M value, three
additional parameters were introduced to improve forecasting accuracy. The first
two attribute defined a price region around the forecasted trend reversal point (i.e.,
DCC point + Factor-M) within which trading is allowed. The third parameter was
used to time trading so that trading actions were taken only at peak/trough price
within the specified region. Each threshold then recommended trading action based
on its evaluation of these three parameters and Factor-M. The values of these three
parameters, a weight associated with five thresholds and the quantity to trade on
each transaction were optimised using genetic algorithm.

At any point in time, each threshold can recommend an action: buy, hold, or
sell. As there are multiple thresholds, each threshold might recommend a different
action. The strategy decides the action to take by performing a majority vote, where
the recommendation with the highest sum of weights wins. For example, assuming
the first three of the five thresholds recommended buy and the remaining two sell,
the strategy then sums the weight values of the first three thresholds, and the weight
values of the last two thresholds respectively. The strategy evaluates the two sums
and follows the action with the larger sum and trades the optimised quantity if price
reaches a peak/trough within the allowed trading region. More information about

this trading strategy can be found in (Kampouridis and Otero 2017).

Factor-2+GA

This is a modified version of Factor-M+GA. In this trading strategy, Factor-M is
replaced with Factor-2 proposed by Glattfelder, Dupuis and Olsen (2011) and pre-

sented in Section 4.1.



CHAPTER 4. SYMBOLIC REGRESSION FORECASTING MODEL 78

Reg-GP+GA (proposed algorithm)

This is also a modified version of Factor-M+GA. In this trading strategy, Factor-M is
replaced with Reg-GP, an equation evolved by our symbolic regression and presented

in Section 4.1.

Evolutionary algorithms tuned parameters

Except for buy-and-hold trading strategy, the rest of the trading strategies we tested
are evolutionary based and required parameter tuning. These tuned parameters are
population size, number of generations, tournament size, crossover probability, mu-
tation probability, and number of thresholds (for the multi-threshold DC strategies).
Table 4.4 presents the value for each parameter. We used the same parameter config-
uration for all DC based trading strategies to avoid bias. Finally, for all evolutionary
algorithms, the experiments are run 50 times on each dataset and the results pre-
sented correspond to the average value over the 50 executions. The buy-and-hold

strategy is run just once per dataset since it represents a deterministic strategy.

Table 4.4: Trading strategy experimental parameters determined using I/F-Race.

Parameter EDDIE Factor-M+GA Factor-24+GA Reg-GP+GA
Population 500 1000 1000 1000
Generation 30 35 35 35
Tournament size 2 7 7 7
Crossover probability 0.9 0.9 0.9 0.9

Mutation probability 0.1 0.1 0.1 0.1
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4.4 Results

This section is divided in three parts. In the first part (Section 4.4.1), we present
the results from the first step of our experiments, where we compare the regression
performance of our proposed SRGP to Equations 4.1 and 4.2. In the second part
(Section 4.4.2), we present trading results from the DC based trading strategies
Factor-2+GA, Factor-M+GA and Reg-GP+GA, as well as EDDIE and buy and

hold and discuss our findings.

4.4.1 Regression results

To evaluate our algorithm, we used 250 DC datasets. These datasets were generated
using 5 DC thresholds (i.e., 0.010%, 0.013%, 0.015%, 0.018%, 0.020%) and the 10
months dataset from 5 currency pairs described in Section 4.3.1. We observed that on
the average, the ratio between DC and OS lengths varied between 1.5 and 2.5, which
corroborates the scaling law findings in (Glattfelder, Dupuis and Olsen 2011). Table
4.5 presents the average of root mean squared error for these datasets. From the
table we see that the Reg-GP consistently outperformed both Factor-2 and Factor-
M at estimating OS length in all currency pairs. To confirm the above results, we
applied Friedman’s non-parametric statistical test and compared the result of the
best OS event length estimation equation (control method) to others to measure
statistical significance. Our null hypothesis was that the algorithms come from the
same continuous distribution. The result of the statistical test presented in Table
4.6 shows Equation Reg-GP ranking the highest. The adjusted p-value at the a =

0.05 level, according to the Hommel post-hoc?, shows the differences in ranks of our

9An adjustment applied to the probability of obtaining a significant difference between algo-
rithms after testing them under similar conditions with the same out-of-sample data.
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results to be statistically significant.

Table 4.5: Estimation results by OS length estimator algorithms on 10-minute interval out-
of-sample data. Results show RMSE value. They are averaged over 5 different thresholds
(0.010%, 0.013%, 0.015%, 0.018%, 0.020%), 5 different currency pairs and 10 different
datasets (August 2013 to May 2014).

Algorithm Reg-GP Factor-2 Factor-M
EUR/GBP 6.77462 6.82228 7.15624
EUR/JPY 4.08026 4.70026 4.42172
EUR/USD 5.77218 6.41959 6.27207
GBP/CHF 5.86789 6.33501 6.36392
GBP/USD 6.09010 6.42833 6.66513
Mean 5.71024 6.13421 6.16841

The above results demonstrate that Reg-GP is able to create new equations that
better describe the relationship between DC and OS lengths, and this is shown
by the significantly smaller error recorded in comparison to Factor-2 and Factor-
M. Our interest now shifts to using these new equations as part of a DC-based
trading strategy to investigate whether these new and improved equations can lead

to increased profit margins.

Table 4.6: Statistical test results of OS length prediction according to the non-parametric
Friedman test adjusted with the Hommel post-hoc (using the best method (GP) as the
control (¢) method. Significant differences at the o = 0.05 level. Statistically significant
ranking in bold text.

Algorithm Average Rank AdjustyHomm
Reg-GP (c) 1.272 -
Factor-2 2.332 2.12E-32

Factor-M 2.396 6.44E-36
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Table 4.7: Average return (%) results for all trading strategies. DC strategies using 5
thresholds. 10-minute interval out-of-sample data. 5 different currency pairs and 10 differ-
ent datasets (August 2013 to May 2014)..

Algorithm  Reg-GP+GA  Factor-M+GA  Factor-2+GA EDDIE

EUR/GBP 0.00703 0.00058 0.00341 0.00001
EUR/JPY 0.11600 0.06327 -0.07723 -0.00378
EUR/USD 0.00733 0.00055 0.02455 -0.00002
GBP/CHF -0.0198 -0.00357 0.00903 0.00004
GBP/USD -0.00629 -0.00045 -0.00580 0.00001
Mean 0.01896 0.01125 -0.0093 -0.00076

4.4.2 Comparison among trading algorithms

Table 4.7 presents the average (over 50 runs) daily returns after trading 5 currency
pairs from August 2013 to May 2014. Reg-GP+GA was the best in 2 currency
pairs, second best in 1 currency pair and performed worst in two currency pairs.
However, Reg-GP+GA had higher mean return than Factor-M+GA and Factor-
24+GA 1i.e., 0.01896%, 0.01125% and -0.0093% respectively. Forex market is open
24 hours a day in different parts of the globe, therefore, the annualised return'® of
Reg-GP+GA is 0.22776%. The annualised return is relatively small in comparison to
alternative investments opportunities around the same period of our sample datasets.
For instance, individual savings account (ISA), a type of investment in the UK
that is exempted from tax, yielded between 0.5% and 1.0% around the same period
(mortgage strategy 2019). Nonetheless, from the mean return result of the DC
based strategies, we can infer that it is more profitable to use equations that express
richer relationships as estimators of OS event length in trend reversal forecasting
algorithms.

We also compared profitability between Reg-GP+GA and physical time-based

Oformula for calculating annualised return is [(1 + return)'? — 1] x 100
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trading strategies. Results showed that returns obtained by Reg-GP+GA signifi-
cantly exceeded that of EDDIE and buy and hold. In fact, EDDIE experienced neg-
ative returns in 4 out of the 5 currency pairs (EUR/JPY, EUR/USD, GBP/CHF,
GBP/USD), which also resulted in a negative mean return of -0.00076%. On aver-
age, over all currency pairs analysed, buy-and-hold strategy made a mean return of
0.01274% which was 32.81% less than the mean return by Reg-GP+GA.

Table 4.8: Total number of positive months per currency pair in 10 months in % values

Algorithm Reg-GP+GA  Factor-M+GA  Factor-24+GA  EDDIE

EUR/GBP 60% 50% 50% 60%
EUR/JPY 60% 40% 50% 20%
EUR/USD 50% 30% 80% 40%
GBP/CHF 30% 20% 70% 70%
GBP/USD 50% 40% 40% 60%
Total 50% 36% 58% 50%

Furthermore, we performed Friedman’s non-parametric statistical test to evalu-
ate the statistical significance of the returns by the evolutionary algorithm based
trading strategies. The null hypothesis is that the trading strategies come from
the same continuous distribution. From the result presented in Table 4.9, we ob-
served that returns from Reg-GP+GA is ranked the highest and they statistically
outperformed Factor-M+GA and EDDIFE at a = 0.05 level. There was no statisti-
cal significance between Reg-GP+GA and Factor-24+GA; nevertheless, Reg-GP+GA
was ranked higher than Factor-2+GA.

Table 4.8 details the number of positive trading days over which the excess return
in Table 4.7 was made. This information further shows the consistency of the trading
strategies over the trading period. Reg-GP+GA is ranked second, achieving 50%
positive trading days across all currencies. Factor-2+GA had the highest number

of positive trading days (58%) across all currency pairs analysed, notwithstanding,
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Table 4.9: Statistical test of trading returns according to the non-parametric Friedman
test with Homel post-hoc test (using the best strategy (Reg-GP+GA) as the control (c) .
10-minute interval out-of-sample data. Significant differences at the o = 0.05 level

Algorithm Average ranking  Adjustymomm
Reg-GP+GA (¢) 1.64 -
Factor-2-+GA 1.76 0.64
Factor-M+GA 2.78 2.01E-17
EDDIE 3.82 9.27TE-17

result indicates that of the 5 currency pairs, Reg-GP+GA had more profitable days
than Factor-24+GA in 3 (EUR/GBP, EUR/JPY, GBP/USD). Factor-2+GA incurred
higher loss during the non-profitable days, and this was evident in the negative
return of -0.0093%. Similarly, EDDIE had the same number of profitable days as
Reg-GP+GA but loss incurred during the non-profitable days was high which led to
a negative return. Finally, Factor-M+GA had the least number of profitable days
(36%), the excess return was large enough to remain profitable after trading across
all currency pairs, nevertheless it was not enough to surpass Reg-GP+GA due to the

difference in the number of profitable days.

4.5 Summary

Based on our experimentations and results, we achieved our main goal to improve
estimation of trend reversal. Greater insight into trend reversal prediction in DC
can be achieved if we can correctly estimate OS event length. Our out-of-sample
experimentation results show that our algorithm was able to estimate OS length
better than the other two algorithms currently in use. To evaluate the performance
of our algorithm at trading, we embedded it in an existing trading strategy. Overall,

test results showed that our version of the trading strategy called Reg-GP+GA was
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the most profitable trading strategy statistically outperform on of the DC based
strategies and the physical time-based trading strategies.

In summary, anticipating trend reversal correctly is crucial for record profitable
trading results. Once a directional change is confirmed, we can estimate OS length,
thus forecast trend reversal in DC. We used SRGP to create equations that im-
proved prediction of OS event length. We showed that our SRGP can estimate OS
length with improved accuracy in comparison to other known OS length estimation
techniques experimented. We showed that profitability of an existing trading strat-
egy was improved after replacing the OS event length estimation equation with the
SRGP created one, thereby, outperforming two intrinsic-time and two physical-time
trading strategies (technical analysis, buy-and-hold). The limitations of this contri-
bution includes; (1) assumption that all DC trends are composed of both DC event
and OS event which makes the our trend reversal forecasting algorithms prone to
incorrect predictions when DC trend is composed of only DC event,(2) use of gener-
alised threshold size to summarise DC events which may not be efficient in capturing
the most significant events in physical time dataset, (3) limited number of currency
pairs compared which limits the ability to generalise the findings and (4) limited
analysis without consideration for the risk level of the trading strategies to achieve

profitable returns. These are all going to be addressed in the next chapter.



Chapter 5

Combining Classification and
Symbolic Regression for Trend

Reversal Prediction

In the previous chapter, we presented a symbolic regression GP-based algorithm
that explores the types of relationship discoverable between DC event and OS event
lengths. To the best of our knowledge, a limitation in existing approaches for discov-
ering a relationship between DC event and OS event lengths is the assumption that
all DC events have a corresponding OS event. We observe that, in certain cases, it
is possible to have as little as 14.77% of DC event having a corresponding OS event.
The maximum observed in our dataset is 52.46%. This is of course, threshold de-
pendent. Nevertheless, the fact remains that one should assume that all DC events
are followed by an OS event since it can lead to incorrect trend reversal prediction,
consequentially causing traders to make incorrect trading decisions.

Another observation, which we made in the previous chapter is the technique

85
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used in selecting threshold to sample DC event series. Although it was reported by
Kampouridis and Otero (2017) that thresholds are chosen by first performing tuning
to select best performing threshold, tuning was done across their five currency pair
datasets. According to Tsang et al. (2017), different thresholds observe distinct DC
events and trends from the same physical time-series. We can thus hypothesise that
the same threshold can observe different DC events and trends from different physical
time-series. These observations have motivated us to propose two improvements to
our current DC trend reversal approach.

We propose, (1) a dynamic threshold selection step that finds a threshold that
best captures significant events in physical time dataset, and (2) a classification
step to separate DC trends into two categories. In the first category are DC trends
composed of DC event and OS event which we call «DC' | and in the second category
are those composed of only DC event which we call SDC. In SDC's, DC events are
followed by another DC event of the opposite direction (e.g., a downwards DC trend
is directly followed by an upwards DC trend). This knowledge will enable us use the
OS event length estimation equation more efficiently, thus improving trend reversal
point forecast accuracy.

Therefore, our goal in this chapter is twofold: (1) to improve our trend reversal
estimation model by tailoring threshold selection, distinguishing DC trends composed
of DC event and OS event from others without OS event and estimate OS event
length only when a DC trend is classified to compose of OS event and DC event,
(2) to embed our trend reversal estimation approach in a novel trading strategy, to
show that improved trend reversal estimation leads to increase in excess return at
reduced risk. The improvement proposed in our trend reversal estimation model is
carried out using only training data to avoid bias when we apply our algorithm to the

unseen data. The rest of the chapter is organized as follows: Section 5.1 presents our
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dynamic DC threshold selection and OS event length estimation approaches. Section
5.2 presents our novel DC trend classification approach. Section 5.3 presents our DC
trend estimating framework that combines DC trend classification and OS event
length estimation. Section 5.4 presents our novel trading algorithm. 5.5 presents
our experimental setup. Section 5.6 presents our benchmark trading strategies, and
Section 5.7 presents and discusses our findings. Finally, Section 5.8 concludes the

chapter.

5.1 DC threshold and Symbolic Regression GP
Selection

Selection of an appropriate threshold to snapshot significant events from a physical
time series is vital. This is because each threshold provides a distinct perspective of
the data.

Figure 5.1 presents a physical time-series that is transformed into a DC event
series using thresholds 0.01% and 0.018%. As can be seen from Figure 5.1, each
threshold produces different event series. Each event series has a distinct number of
trends which conditions the maximum possible profit of the event series it captures
(Tsang et al. 2017). Therefore, the choice of the appropriate threshold size is crucial.
In our first contribution in Chapter 4, we use 5 fixed size thresholds across the
currency pairs that we compared which may not be optimal. To overcome this
limitation, we tailor the selection of thresholds according to the DC:OS event ratio
in the event-series they generate. We take this approach because event series with
a high number of OS events (i.e., aDC trends) gives the chance to maximise return

by estimating trend lengths before they reverse.
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Figure 5.1: Directional changes for GBP_JPY currency pair. The red lines denote a set
of events defined by a threshold § = 0.01% , while the blue lines refer to events defined
by a threshold # = 0.018% . The solid lines indicate the DC events, and the dashed lines
indicate the OS events. Under 6 = 0.01%, the data is summarised as follows: Point A — B
(downturn directional change event), Point B — C (downward overshoot event), Point
C +— D (Upturn directional change event), Point D +— E (Upward overshoot event), Point
E — F (Downturn directional change event). Under # = 0.018% , the data is summarised
as follows: Point A — B" (Downturn directional change event), Point B" — C' (Downward
overshoot event), Point C' + E (Upturn directional change event), Point F +— E' (Upward
overshoot event). Points A, C, E, and E’ are DCE points (DC Extreme). Points B, B, D,
E, and F are called DCC points (DC Confirmation).

Figure 5.2 presents how we simultaneously select the best fit threshold, DC event
series and OS event length estimation model ( i.e., symbolic regression GP) using
only training data under perfect foresight of aDC'. First, we create a pool of DC
thresholds, with each threshold, a DC event series is generated. From each event
series, we select aDC' trends to create a new pool of event series called aDC' series.
We then evolved a symbolic regression GP model Equation 5.1 for each aDC' series.

We rank all models and select a threshold and original DC event series associated
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Figure 5.2: Our proposed framework for evolving symbolic regression model and selecting
threshold and DC event with high DC:0S event ratio.

with the model with the least root mean squared error (RMSE).

The rationale for evolving our OS event length estimation model using aDC' series
is that DC trend misclassification errors will affect the effectiveness of the OS event
length estimation model. More specifically, let us assume that we have a dataset of
10 DC events and that the first eight DC events are followed by an OS event, whereas
the last two DC events are not followed by an OS event. Assuming that a classifier
incorrectly predicts that all 10 DC events are followed by an OS event. In this case,
when applying Equation 5.1 to perform the length estimation task, it will incorrectly
use information (data) from all 10 events to construct its models. However, it would
be more accurate to apply these OS event length estimation model only to the DC
event that have a corresponding OS event, given that the information to determine

that a DC trend consist of DC event and OS event is available.

08, = f(DCy) (5.1)

where :
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OS; = the length of an OS event
DCy = the length of a DC event

5.2 Classification Step

Best DC event series
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Direction changes attributes (Training dataset)
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Price | Time | Price| OS Event
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Figure 5.3: Our proposed framework for creating a classification model. The classification
model classifies DC trends into aDC and gDC

Figure 5.3 presents how we used Auto-WEKA, an AutoML framework we already

described in Chapter 3.4.1 to find a suitable classifier for classifying DC trends as
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either aDC or fDC. As can be seen in the figure, we extracted relevant DC at-
tributes from ‘Best DC event series’, that is, the DC events series that was selected
in the previous step we described in Section 5.1. We then fed the attributes dataset
into Auto-WEKA which outputs the recommended classification model.

Table 5.1: Classification dataset attributes - A brief description of independent variables
used for classifying whether a DC trend has OS event or not.

Formula
P, ext — P, dcc

P ext

Attributes Name
X1 DC’eventPrice

Description

= 9’ This is the price difference between

the upturn/downturn extreme point
and the confirmation point (Tsang
et al. 2017).

Teat — Taee

X2 DC eventTime
Temt

+9‘ This is the time difference be-
tween the upturn/downturn point
and the directional change confirma-

tion point (Tsang et al. 2017).

! D m)en,P ice 9
X3 Sigma M'

This is the speed at which price
Dcm.vent Time P P

change from upturn/downturn ex-
treme point to the directional
changes confirmation point.

This is the market price at previous

X4 DCevent_4 Piee1

price

confirmation points.

X5

DCevent_q
0S

This is a Boolean variable (Yes/No).
Indicates whether the immediate

previous DC trend has an OS
event.

X6 Flash event This is a Boolean variable (Yes/No).
Indicates whether DC event start

time and end time are equal

The attributes used for creating our classification model are all DC-related and
presented in Table 5.1. We use six different attributes, which are related to DC and
OS events’ price and time, as well as the speed of price changing. Attributes X1
and X2, were first derived and presented in (Glattfelder, Dupuis and Olsen 2011).
Attributes X3, X4, X5 and X6 are new attributes derived from experiments with

a set of different attributes and identifying the ones with the best classification
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performance on the validation dataset. To illustrate how the attributes are derived
from a DC event series of EUR_USD, we use the second DC trend presented in Figure
5.4. The price and time at the extreme point are 1.37 USD and around 4.5 x 10%
respectively and the price and time at DCC point are 1.33 USD and 7.2 x 10*. The
value of attribute X1, X2 and X3 are 1.33, 20 and 0.002 respectively. The value of
attribute X4, X5 and X6 are extracted directly from the dataset and are 1.34, Yes
and No respectively.
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Figure 5.4: A set of directional changes trends (three DC events and two OS events) for
EUR_USD currency pair captured from a minute physical time series using a 3% threshold.
The red lines denote DC events and the green lines marks OS events. Source Tsang et al.
(2017)
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5.3 Trend Reversal Estimation Model

Classification

model

Addy

DC event series

No Yos 0S5, estima-
Is aDC? ——————— tion model
DC, sa Estimate O.5;

(Equation 5.1)

Trend reversal point

Figure 5.5: Our proposed framework to build a trend reversal point forecasting model. A
DC trend classified to compose of only DC event is expected to reverse at DCC point, while
DC trend classified to compose of DC and OS events is expected to reverse at estimated
DCE point, which is the sum of DC event length at DCC point, and the OS event length
predicted using SRGP derived Equation 5.1.

Figure 5.6 presents our framework for forecasting trend reversal point. Having
chosen the best threshold, evolved a symbolic regression GP model and selected a
classification model, we are now able to combine them to form our trend reversal
point forecasting model. The model uses the classifier to determine whether a DC

trend is an aDC or SDC. If the DC trend is classified as aDC', we conclude that,
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at the end of the DC event an OS event in the same direction follows. We use our
symbolic regression GP model formulated according to Equation (5.1) to estimate
the OS event length. The estimated trend reversal point is then calculated as the
sum of the DC event length and the estimated OS event length. On the other hand,
if the DC trend is classified as fDC, we conclude that the trend reverses at the

directional change confirmation point.

5.4 Trading Strategy

To evaluate the effectiveness of our trend reversal forecasting model, we embed it in
a novel trading strategy and Figure 5.4 presents the framework of the strategy. In

the rest of the section, we present the trading strategy and how it is evaluated.

5.4.1 Rules Overview

Algorithms 6.3 and 6.4 present the rules used by our trading algorithm for selling
and buying the base currency. We sell the base currency at the estimated trend
reversal point of upward DC trends, provided there is not an existing open position
and return is positive after deducting transaction costs. We buy the base currency
at the estimated trend reversal point of downward DC trends if there is an existing
open position and the return is positive after deducting transaction costs. It is worth
noting that the trend reversal point can be either of a aDC or SDC' trend. In all
other cases, we adopt a hold trading strategy. For example, if a new DC trend is
confirmed before the estimation trend reversal point is reached. All transactions are

done using our entire capital. The transaction cost is 0.025% per transaction.
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Algorithm 5.1 Trading rules used for selling the base currency

Require: Sell rule
if DC trend is upward then
if There is no open position then
if Is BDC && Return is not negative then Open a position at DCC point
else if Is aDC && DC trend does not reverse before estimated DCE point
&& Return is not negative then Open a position at forecasted DCE point
else Hold
end if
end if
end if

Algorithm 5.2 Trading rules used for buying the base currency

Require: Buy rule
if DC trend is downward then
if There is an open position then
if Is SDC && Return is not negative then Close position at DCC point
else if Is aDC && DC trend does not reverse before estimated DCE point
&& Return is not negative then Close position at forecasted DCE point
else Hold
end if
end if
end if
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Figure 5.6: Our proposed framework to build an single threshold-based trading strategy.
It combines a DC trend reversal point forecasting model and trading rules. The forecasting
model and trading rules are applied at every directional change confirmation point in the
DC event series.

5.4.2 Trading strategy evaluation

To evaluate our trading strategy, we measure profitability and risk. We report aver-
age return, Sharpe ratio and Maximum Drawdown (MDD). Return, shown in Equa-
tion 5.2, measures the amount earned or the loss incurred from a Forex buy or sell
transaction after considering transaction cost. Transaction cost, shown in Equation
5.3, is the expense incurred for completing a trade transaction and it is calculated per

transaction as 0.025% of the Forex amount traded. We also measure return relative
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to the degree of risk involved in achieving it using Sharpe ratio, shown in Equation
5.5. Sharpe ratio is used by investors to determine whether the expected return out-
weighs the risk involved with the transaction. It is calculated by deducting risk-free
rate from the mean return and dividing the result by the standard deviation.

In this work, we assign 0 as our risk-free rate. To evaluate the potential loss in
value of the currency that we buy due to changes in market conditions, we measure
MDD, shown in Equation 5.4. It is measured by calculating the maximum observed

loss from a peak price to a trough before a new peak is reached.

R=(Q —TC)« FXrate (5.2)

0.025
TC = Qs 22 .

C=0Q = 100 (5.3)

MDD — Ptrough_Ppeak (54)
Ppeak

— RF
SharpeRatio = R RER (5.5)
OR

In Equation 5.2, R is the return, @) is the quantity, TC' the transaction cost,
FRrate the FX rate of the relevant currency pair, MDD is the mean Maximum
Drawdown, Pyrougn the trough of the price, Ppeqr the peak of the price, REF'R the risk

free rate, and op is the standard deviation of the return.
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5.5 Experimental setup

We use 10-minute interval high frequency data from March 2016 to February 2017
of the following currency pairs: AUD_JPY (Australian Dollar and Japanese Yen),
AUD_NZD (Australian Dollar and New Zealand Dollar), AUD_USD (Australian Dol-
lar and US Dollar), CAD_JPY (CAD Dollar and Japanese Yen), EUR_AUD (Euro
and Australian Dollar), EUR_.CAD (Euro and Canadian Dollar), EUR_.CSK (Euro
and Czechoslovak koruna), EUR_.NOK (Euro and NOK), GBP_AUD (British Pound
and Australian Dollar), NZD_USD (New Zealand Dollar and US Dollar), USD_CAD
(US Dollar and Canadian Dollar), USD_NOK (US Dollar and Norwegian Krona),
USD_JPY (US Dollar and Japanese Yen), USD_SGD (US Dollar and Singaporean
Dollar), USD_ZAR (US Dollar and South African Rand), EUR.GBP (Euro and
British Pound).

We also use 10-minute interval data from June 2013 to May 2014 of the following
currency pairs: EUR_USD (Euro and US dollar), EUR_JPY (Euro and Japanese
Yen), GBP_CHF (British Pound and Swiss Franc), and GBP_USD (British Pound
and US Dollar). We consider each month in the period as a separate physical-time
dataset. In our tuning phase, we use 200 DC datasets for tuning (i.e., five DC
thresholds x 20 currency pairs x first two months of our physical-time data). For
the rest of the experiment, we use 1000 DC datasets (i.e. five DC thresholds x 20
currency pairs X remaining 10 months of our physical time datasets). Each tuning
and non-tuning DC dataset is split in 70:30 ratio as training and testing sets.

As different DC thresholds produce different DC event series, we chose to evaluate
five different thresholds for all tuning and non-tuning DC datasets. These thresholds
are the best five thresholds that are dynamically selected based on the RMSE of their

associated OS event length estimation algorithm that we already presented in Section
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5.1. In the results section, we report the average performance of each algorithm over
these five DC thresholds.
stopped here

5.5.1 Parameter tuning

With regards to the classification task, the only parameter of Auto-WEKA requiring
tuning was the execution time. This is because Auto-WEKA requires time to search
its algorithms and hyperparameter space for a classification model that best predict
our two class labels (aDC,; BDC). To avoid any bias and ensure that all data
points are considered, Auto-WEKA trains the best fit classifier is determined using
only training dataset and 10-fold cross-validation. We experimented with different
runtime configurations, namely 15, 30, 45, 60 and 75 minutes. We chose a runtime
of 60 minutes based on the mean F-measure, which we observed to diminish at a
runtime of 75 minutes. Depending on the number of CPU cores available, it is
possible to execute Auto-WEKA in serial or parallel mode. For our experiments we
executed Auto-WEKA in serial mode, using a single CPU core..

With regards to the OS length estimation task, the only necessary tuning was
for the GP algorithm (Equation 5.1). We tuned the GP population size, number
of generations, tournament size, crossover probability and maximum depth parame-
ters using the I/F-Race package (Lépez-Ibanez et al. 2011). It implements a racing
method for the selection of the best configuration for an optimisation algorithm
by empirically selecting the most appropriate settings for the parameters of an op-
timisation problem (Birattari et al. 2010). Table 5.2 presents our GP parameter
configuration determined by using I/F-Race run with a budget of 2000 iterations, a

survivor rate of 4 and selecting the configuration with the largest population size.
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Table 5.2: Regression GP experimental parameters for detecting DC-OS relationship, de-
termined using I/F-Race.

Parameters Configuration
Population 500

Generation 37

Tournament size 3

Crossover probability 0.98

Mutation probability 0.02

Maximum depth 3

Elitism 0.10

5.6 Trading

To evaluate the efficiency of our proposed trading framework, we compare it with
several other benchmarks. These benchmarks are grouped into two categories: DC-
related algorithms, and non-DC-related algorithms. In the rest of the section, we
present in detail the different algorithms that we use as benchmarks.

To evaluate the efficiency of our proposed novel trend reversal estimation frame-
work and trading strategy, compare it with several other benchmarks. These bench-
marks can be separated into two categories: DC-based algorithms, and non-DC-based

algorithms.

5.6.1 DC-related algorithm

(C+) Factor-2 : This is an algorithm that is based on the DC approach originally
presented in Glattfelder, Dupuis and Olsen (2011) where Factor-2, already described
in Chapter 4, is used to estimate OS event length at directional change confirmation
point. In this algorithm, we dynamically select the best threshold for sampling DC
event series and replace the classification, and regression steps of our trend reversal
estimation approach with Equation 5.6. Thus, Factor-2 is the approach without

classification, and we estimate trend reversal for all DC trends in the dataset. DC
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trend reversal is calculated as the sum of DC and OS event length. OS event length
is calculated as DC event length multiplied by 2 and calculated . C'+Factor-2 is the
same approach with an additional classification step. In C+Fuactor-2, we estimate

OS event length with Equation 5.6 only if a classifier predicts a trend to be aDC.

OSZ ~ 2 X DCl (56)

(C+) Factor-M : This is an algorithm that is based on the DC approach originally
presented in (Kampouridis and Otero 2017) where Factor-M, already described in
Chapter 4, is used to estimate OS event length at directional change confirmation
point. In this algorithm, we dynamically select the best threshold for sampling DC
event series and replace the classification, and regression steps of our trend reversal
estimation approach with Equation 5.7. Thus, Factor-M is the approach without
classification, and we estimate trend reversal for all DC trends in the dataset. DC
trend reversal is calculated as the sum of DC and OS event length. OS event length
is calculated as DC event length x M. C+Factor-M is the same approach with an
additional classification step. In C+Factor-M, we estimate OS event length with

Equation 5.7 only if the classifier predicts a trend to be aDC.

0S, = M x DC, (5.7)

where :

OS; = the length of an OS event
DC) = the length of a DC event.

C = a time-varying constant, which can take any positive real value, M > 0 .
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(C+) Reg-GP : This is an algorithm that is based on the DC approach presented
in our first contribution presented in Chapter 4 where Reg-GP is used to estimate
OS event length at directional change confirmation point. In this approach, we
dynamically select the best threshold for sampling DC event series and use Equation
5.1 for estimating OS event length. DC trend reversal point is calculated as the sum
of DC and estimated OS event length. Reg-GP is the approach without classification,
and we estimate OS event length at every DCC point encounter in the event series.
C+Reg-GP is the same approach with an additional classification step which we
already describe in Section 5.3. we estimate OS event length with Equation 5.1 only
if the classifier predicts a trend to be aDC'.

p-trading : These are variations of the three algorithms afore mentioned and they
work as follows. We obtain the training set probability p of a DC event being followed
by an OS event. At the directional change confirmation (DCC) point, we decide with
this p probability whether a DC trend has a corresponding OS event. If it has, we
apply any of the three equations to estimate OS event length (i.e., predict trend
reversal point which is our estimated directional change extreme point). If false, the
DCC point is the estimated DC trend reversal point. The motivation behind this
scenario is to highlight the importance of the classification step before estimating
OS event length. As there are three different OS length estimation models, there are
as a result three variations of the tailored trading benchmark namely, p+Factor-2,

p+Factor-M and p+Reg-GP.

Trade at DCC point : In this scenario, trade actions are taken as soon as a
directional change has been confirmed, i.e., at the DC confirmation point (DCC). The
motivation behind this scenario is to investigate the trading profitability if the OS
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events length is ignored and instead, focus trading only on the DC events. Provided
that our proposed classification algorithms outperform this scenario, it would again
demonstrate that the introduction of the classification step is advantageous and
better than not having classification and the knowledge of the OS length.

As there are three different OS length estimation models, there are as a result

three variations namely, DCC+Factor-2, DCC+Factor-M and DCC+Reg-GP.

Non-DC benchmarks

Technical analysis trading strategy : Technical analysis based trading strat-
egy is a well-known approach used in trading. It uses technical indicators for in-
sight when to make trading decisions. We experimented with seven trading strate-
gies that utilised the following technical indicators; Exponential Movement Average
(EMA), Bollinger Bands (BOLLIN), Simple Moving Average (SMA), AROON Oscil-
lator (AROON), Rate of Change (ROC), Relative Strength Index (RSI) and Moving
Average Convergence Divergence (MACD).

Buy-and-hold : Buy and hold is a well-known benchmark for trading algorithms.
Under this trading strategy we buy the quoted currency in the first month of our
non-tuning data and then sell it in exchange for the base currency after the 10 month

period.

5.7 Results

Our experiment aims: (1) to demonstrate that the introduction of the classification

step led to improvement in trend reversal estimation, and (2) to demonstrate that the



CHAPTER 5. A COMBINED TREND PREDICTION MODEL 104

dynamic selection of thresholds and the introduction of the classification step signif-
icantly improve the profitability of DC-based strategies in general, and specifically,
our proposed trading strategy that embed our trend reversal estimation algorithm
yielded more profit, outperforming other DC and non-DC based trading strategies

such as technical analysis and buy-and-hold.

5.7.1 Regression result

Table 5.3 presents the average RMSE result of the OS length estimation step from
the top five DC thresholds over 10 months for GP-Reg, Factor-M, and Factor-2. For
each of these three algorithms, we present the RMSE for two variations: (1) with
the classification step and (2) without the classification step. For the variation that
include the classification step (denoted with prefix C'+), we estimate the OS event
length only in DC trends that have been classified as aDC'.

Table 5.3 shows that C+Reg-GP has the lowest average RMSE (18.8175) across all
six algorithms. C+Reg-GP has 11 cases (out of the 20 currency pairs) that returned
the lowest RMSE per currency pair, Reg-GP has four such cases, C+Factor-M three
cases, and C+Factor-2 two cases. More importantly, we observe that the average
RMSE for each algorithm with the classification step has returned a lower average
RMSE when compared to its respective variation without classification: C+Reg-GP
(18.6550) vs Reg-GP (20.3216), C+Factor-M (20.5592) vs Factor-M (34.4474), and
C+Factor-2 (21.3247) vs Factor-2 (25.7951). It is worth noting that the classification
accuracy (presented in brackets) is high, ranging between 70% and 85%. As we
have hypothesised, the introduction of classification step played an important role in
reducing the average RMSE for all three algorithms (Reg-GP, Factor-M, and Factor-
2).
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An interesting observation is that while the EUR/CSK pair has relatively low
classification accuracy across all variants (55-58%), average RMSE still outperforms
the variants without the classification step. We investigated further and found that
the EUR/CSK currency pair has the lowest average number of DC events (55 in the
training set, 18 in the test set), while the average number of DC events for all other
currency pairs is 194 in training and 60 in test. In addition, the length of DC events
(i.e., number of physical time data points making up a single event) is the longest for
EUR/CSK (46 in training, 32 in test), compared to an average of 12 in both training
and test for all other currency pairs. This meant that there were fewer significant
events captured from the EUR/CSK physical time datasets and considering that not
all DC events have corresponding OS event. When the algorithms are run without
the classification step, every DC event is assumed to be followed by an OS event
and because the DC event lengths are long, the estimated OS event lengths are
also long. Therefore, every time that an OS length estimation algorithm (Reg-GP,
Factor-M, Factor-2) makes a prediction when there is no OS event, this results in
a larger RMSE. The classification step, despite the low accuracy (55-58%), reduces
significantly the RMSE by reducing the number of times that the OS estimation
algorithm is used which in turn avoid larger trend reversal estimation errors.

Table 5.4 presents the result of Friedman’s non-parametric statistical test. The
null hypothesis is that all algorithms come from the same continuous distribution.
The table shows the average rank according to the Friedman test (first column),
and the adjusted p-value of the statistical test when that algorithm’s average rank is
compared to the average rank of the algorithm with the best rank (control algorithm)
according to the Hommel post-hoc test (second column). As we can observe, C+Reg-
GP ranks first and statistically outperforms at the a = 0.05 level all other algorithms.
More importantly, C+Reg-GP outranks Reg-GP, C+Factor-2 outranks Factor-2, and
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Table 5.3: Mean RMSE values for each OS length estimator algorithm. 1000 datasets
consisting of five different dynamically generated thresholds tailored to each DC dataset,
20 currency pairs, and 10 months of 10-minute interval data for each currency pair. In
brackets is reported the classification accuracy, for reference (for C+Reg-GP, C+Factor-M,
C+Factor-2). The best mean RMSE per currency pair is in bold text

Algorithms ~ C+4+Reg-GP  Reg-GP  C+Factor-M  Factor-M ~ C+Factor-2  Factor-2
AUD/JPY 15.5670 (0.851) 15.6270 17.1570 (0.778) 25.5270 18.4720 (0.782) 22.2690
AUD/NZD 27.368 (0.805) 24.3320 27.4110 (0.806) 51.2420 31.9260 (0.761) 41.5920
AUD/USD 11.5800 (0.829) 12.8140 12.7200 (0.768) 16.0950 11.8270 (0.745) 14.0600
CAD/JPY 11.8430 (0.820) 18.7850 14.6860 (0.779) 39.9700 16.8800 (0.764) 27.2510
EUR/AUD 21.1710 (0.821) 20.5690 20.2010 (0.799) 25.7280 14.7520 (0.751) 19.7490
EUR/CAD 16.2050 (0.839) 17.7190 21.0950 (0.784) 23.1830 22.6420 (0.750) 24.8670
EUR/CSK 41.9900 (0.557) 52.9490 46.0270 (0.581) 188.6080 63.0420 (0.565) 83.8450
EUR/GBP 24.1730 (0.825) 22.6350 25.5870 (0.766) 31.4300 17.2120 (0.752) 18.7900
EUR/JPY 19.9650 (0.821) 21.1170 23.4540 (0.758) 28.1620 23.1640 (0.748) 25.2040
EUR/NOK 13.7170 (0.818) 13.7620 20.4120 (0.727) 27.2010 19.5710 (0.728) 22.4990
EUR/USD 28.2600 (0.806) 31.0610 26.8990 (0.786) 38.5320 27.6690 (0.762) 30.0380
GBP/AUD 15.1380 (0.837) 14.7190 19.2820 (0.832) 21.6700 14.8810 (0.780) 17.9100
GBP/CHF 15.9610 (0.831) 17.2040 17.5260 (0.784) 19.3580 21.4210 (0.769) 23.6690
GBP/USD 19.2040 (0.851) 24.8890 17.8250 (0.790) 21.2230 25.3210 (0.746) 27.7780
NZD/USD 10.2300 (0.848) 10.5880 11.0920 (0.772) 14.7310 13.1350 (0.773) 15.8960
USD/CAD 26.9340 (0.797) 26.8180 27.1330 (0.766) 34.6540 27.5190 (0.739) 29.3150
USD/JPY 13.7040 (0.850) 14.5430 15.9860 (0.774) 17.9980 16.0310 (0.777) 18.3260
USD/NOK 07.7180 (0.887) 7.3570 9.96900 (0.813) 14.1280 8.1830 (0.792) 10.7640
USD/SGD 26.9320 (0.780) 34.1480 31.9440 (0.799) 41.7120 27.4980 (0.720) 34.3600
USD/ZAR  5.4400 (0.877) 4.7960 4.7770 (0.807) 7.7960  5.3470 (0.813)  7.7200
Average 18.8175(0.818) 20.5687 20.7382(0.773) 34.9169 21.4748 (0.749) 25.9807

C+Factor-M outranks Factor-M.

Summarising our findings so far, the addition of the classification step (C+Reg-
GP, C+Factor-M, C+Factor-2) to existing DC-based algorithms (Reg-GP, Factor-
M, Factor-2) that use Equations 4.1, 5.7 and 5.1 has reduced the average predictive
error. Additionally, the DC algorithms that use the classification step outrank their

variation that estimate OS event length at every DC event.
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Table 5.4: Statistical test results of OS length estimation according to the non-parametric
Friedman test with the Hommel post-hoc test. Significant differences at the a = 0.05 level
are shown in boldface.

Algorithm Average Rank Adjusty i omm
C+Reg-GP (c) 1.9000

Reg-GP 2.5 0.3105
C+Factor-M 2.9499 0.1518
C+Factor-2 3.1500 0.1038
Factor-2 4.8999 1.5835E-6
Factor-M 5.5999 1.9985E-9

5.7.2 Trading result

Our interest now shifts to the trading step in order to investigate whether the intro-
duction of classification step also leads to an increase in trading profit margins (in
addition to reduced OS length estimation error, as we have just seen in the previous
section).

We compare the average returns, maximum drawdown and Sharpe ratio results
of our approach to other strategies. We group the results according to data sampling
technique namely, directional changes, technical analysis and buy-and-hold. We
further breakdown the presentation of directional changes based result according
to their trend reversal prediction algorithm. We would like to draw the attention
to cases where 0.00 is reported as return. This indicates that a hold action was
taken by the trading strategy in the 10 months period we experimented. Best value
for each row (currency pair) is shown in boldface. In all tables, the best value
among the different variants (Reg-GP, Factor-M, Factor-2, technical indicator) is
underlined. We also present their Friedman non-parametric statistical test result.
The null hypothesis in all cases is that the algorithms come from the same continuous

distribution. The first column on the table for the Friedman test result presents the
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average rank of each algorithm and the second column presents the adjusted p-value
of other algorithm’s average rank compared to that of the control algorithm (i.e.,
algorithm with the best rank). The adjusted p-value is calculated by the Hommel
post-hoc test.

Comparison to DC based trading strategies

Table 5.5 presents comparison mean return result of C+Reg-GP and other strate-
gies that estimated OS event length using symbolic regression GP, namely Reg-GP,
p+Reg-GP and DCC+Reg-GP. The results shows that C+Reg-GP has the highest
return and outperformed them in 14 of the 20 currency pairs compared.

Table 5.6 presents comparison result of return between C+Reg-GP and C+Factor-
M, Factor-M, p+Factor-M and DCC+Factor-M. Result shows that C+Reg-GP out-
performed all Factor-M variants in 14 currency pairs. C+Factor-M outperformed
other Factor-M variants in 13 currency pairs.

Table 5.7 presents comparison result between C+Reg-GP and C+Factor-2, Factor-
2, p+Factor-2 and DCC+Factor-2. Return shows that C+Reg-GP outperformed all
Factor-2 variants in 12 currency pairs. C+Factor-2 outperformed other Factor-2
variants in 10 currency pairs.

C+Reg-GP has the highest mean return (0.2247%) across all algorithms and
an annualised return of 2.73% . Furthermore, all versions that have introduced
the classification step recorded the highest average return in their respective group
(C+Reg-GP, : 0.2247, C+Factor-M: 0.0684, C+Factor-2: 0.1186), whereas all other
DC based strategies had negative mean returns, with the exception of Factor-2, which
shows marginally positive average returns of 0.0260.

To support our findings, we applied Friedman’s non-parametric statistical test.
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Table 5.5: Average GP return (%) result for trading strategies compared. 10-minute inter-
val out-of-sample data. 20 different currency pairs and 10 calendar months each represent-
ing the physical dataset. five DC dataset were generated using five dynamically generated
thresholds tailored to each DC dataset. Best value for each row (currency pair) is shown
in boldface. Result shown in % values.

Dataset C+Reg-GP  Reg-GP  p+Reg-GP DCC+Reg-GP

AUD_JPY 0.0000 0.0000 0.0000 0.0000
AUD_NZD 0.2600 -0.0890 0.0709 0.0110
AUD_USD 0.2727 -0.4636 -0.2061 -0.2223
CAD_JPY 0.0000 0.0000 0.0000 0.0000
EUR_AUD 0.1861 -0.0391 -0.0868 -0.1626
EUR_CAD 0.1922 -0.2428 -0.2218 -0.1332
EUR_CSK 0.0336 0.0102 0.0191 0.0455
EUR_GBP 0.1040 -0.0865 -0.0350 0.0218
EUR_JPY 0.0202 -0.0623 -0.0036 -0.0486
EUR_NOK 0.3509 -0.0428 -0.1281 0.0048
EUR_USD -0.0006 0.0202 -0.0688 -0.2548
GBP_AUD 0.3542 0.2956 -0.1312 -0.0526
GBP_CHF 0.2022 -0.1160 -0.0536 -0.1384
GBP_USD -0.0590 -0.0478 -0.1415 -0.4172
NZD_USD 0.2803 -0.4779 -0.0115 0.0738
USD_CAD 0.0443 0.0109 -0.3405 -0.3064
USD_JPY 0.0000 0.0000 0.0000 0.0000
USD_NOK 0.4612 -0.0208 -0.2210 -0.0662
USD_SGD 0.0303 0.0272 -0.0516 -0.1478
USD_ZAR 1.7625 0.8403 -0.0913 0.6432
Average 0.2247 -0.0242 -0.0851 -0.0575

The result of the statistical test presented in Table 5.8 shows that all three DC
versions with the classification step (i.e., C+Reg-GP, C+Factor-M, C+Factor-2) rank
the highest, and outperform all other variants without the classification step. In
addition, C+Reg-GP ranks first and statistically outperforms all algorithms, apart
from C+Factor-M and C+Factor-2, at the 5% significance level.

Even though C+Reg-GP recorded higher return than other DC based trading

strategies, it is important to measure the risk taken to achieve it. For this reason,
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Table 5.6: Average MF return result (%) for trading strategies compared. 10-minute inter-
val out-of-sample data. 20 different currency pairs and 10 calendar months each represent-
ing the physical dataset. five DC dataset were generated using five dynamically generated
thresholds tailored to each DC dataset. Best value for each row (currency pair) is shown
in boldface. Result shown in % values

Dataset C+Reg-GP ‘ C+Factor-M  Factor-M  p+Factor-M  DCCHFactor-M

AUD_JPY 0.0000 0.0000 0.0000 0.0000 0.0000
AUD_NZD 0.2600 0.0747 -0.0626 0.1084 0.0223
AUD_USD 0.2727 -0.0037 -0.3270 -0.1749 -0.2933
CAD_JPY 0.0000 0.0000 0.0000 0.0000 0.0000
EUR_AUD 0.1861 0.0139 -0.1244 -0.0974 -0.0197
EUR_CAD 0.1922 0.0784 -0.0194 0.0621 -0.2208
EUR_CSK 0.0336 0.0381 0.0355 0.0264 0.0643
EUR_GBP 0.1040 0.0682 -0.0609 0.0625 -0.1136
EUR_JPY 0.0202 0.0112 -0.0197 0.0218 0.0007
EUR.NOK  0.3509 0.1703 -0.1475 -0.0895 0.0955
EUR_USD -0.0006 -0.0894 -0.1049 -0.1939 -0.1396
GBP_AUD 0.3542 0.1012 -0.2473 0.0719 0.0035
GBP_CHF 0.2022 -0.0209 -0.0866 -0.1372 -0.1590
GBP_USD  -0.0590 -0.1226 -0.2035 -0.2336 -0.3485
NZD_USD 0.2803 -0.1234 -0.1586 -0.0155 -0.0886
USD_CAD 0.0443 -0.0293 -0.2238 -0.2230 -0.2475
USD_JPY 0.0000 0.0000 0.0000 0.0000 0.0000
USD_NOK 0.4612 0.1419 -0.4332 -0.1482 0.0011
USD_SGD 0.0303 0.1108 -0.0233 0.0229 -0.0028
USD_ZAR 1.7625 0.9516 0.6954 0.3467 0.6417
Average 0.2247 ‘ 0.0686 -0.0756 -0.0295 -0.0402

we also present results of our risk measures, namely MDD (maximum draw down)
and Sharpe ratio. We did not record risk measures for currency pair AUD_JPY,
CAD_JPY and USD_JPY, as no trading took place in these markets. Table 5.9 shows
that C+Reg-GP had the lowest average MDD amongst Reg-GP based strategies
recording a total of 0.1259 and outperform them in 13 currency pairs.

Table 5.10 presents comparison between the mean MDD result of C+Reg-GP
and Factor-M based strategies. C+Reg-GP recorded the lowest average MDD and
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Table 5.7: Average Olsen return (%) result for trading strategies compared. 10-minute
interval out-of-sample data. 20 different currency pairs and 10 calendar months each repre-
senting the physical dataset. five DC dataset were generated using f dynamically generated
thresholds tailored to each DC dataset. Best value for each row (currency pair) is shown
in boldface. Result shown in % values.

Dataset C+Reg-GP ‘ C+Factor-2 Factor-2 p+Factor-2 DCC+HFactor-2

AUD_JPY  0.0000 0.0000 0.0000  0.0000 0.0000
AUDNZD  0.2600 0.0328  -0.0122  0.0616 0.0248
AUD_USD  0.2727 -0.0223  -0.1321  -0.2752 -0.4222
CAD_JPY  0.0000 0.0000 0.0000  0.0000 0.0000
EUR.AUD  0.1861 0.1434 0.0547  0.0926 -0.1400
EUR.CAD  0.1922 0.0810  -0.1512  -0.1225 -0.0871
EUR.CSK  0.0336 0.0139 0.0046  0.0146 0.0548
EUR.GBP  0.1040 0.1105  0.0317  0.0792 -0.0595
EURJPY  0.0202 -0.0287  -0.0156  0.0161 -0.0145
EURNOK  0.3509 -0.0300  -0.0691  0.1651 0.0693
EUR.USD  -0.0006 0.0779  0.0318  -0.0416 -0.1367
GBP_AUD  0.3542 0.0990 04061  -0.2356 0.0387
GBP_.CHF  0.2022 0.0514  -0.0283  -0.1698 -0.2131
GBP_USD  -0.0590 -0.0050  -0.0466  -0.1524 -0.3188
NZD.USD  0.2803 01294  -0.1738  -0.1421 -0.2045
USD.CAD  0.0443 -0.0465  0.0224  -0.3631 -0.1372
USD_JPY  0.0000 0.0000 0.0000  0.0000 0.0000
USD.NOK  0.4612 0.3920  -0.0188  -0.1846 0.0995
USD.SGD  0.0303 0.0712  0.1299  -0.0222 0.0348
USD_ZAR  1.7625 1.4571 04870  0.7265 0.8492
Average 0.2247 | (0.1186 0.0260  -0.0277 -0.0281

outperform these strategies in 9 currency pairs.

Table 5.11 presents comparison between the mean MDD result C4+Reg-GP and
Factor-2 strategies and it shows that C+Reg-GP has the lowest MDD, outperforming
them in 12 currency pairs. Surprisingly, our result shows Factor-M and Factor-2 are
the best strategies in their categories, they outperform the version with the additional

classification step in 15 currency pairs each.
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Table 5.8: Statistical test results of average returns according to the non-parametric Fried-
man test with the Hommel post-hoc test of C+Reg-GP (c) vs DC based trading strategies.
10-minute interval out-of-sample date. Significant differences between the control algo-
rithm (denoted with (c) and the algorithms represented by a row at the o = 5% level are
shown in boldface indicating that the adjusted p value is lower than 0.05.

Trading strategies Average Rank Adjust,momm
C+Reg-GP (¢) 2.6750 -

C+Factor-M 4.2250 0.1740
C+Factor-2 4.4250 0.1740
Factor-2 5.9250 0.0131
p+Factor-M 6.7750 0.0013
p+Factor-2 6.9250 8.0806E-4
DCC+Factor-2 7.2250 3.9541E-4
DCC+Factor-M  7.5250 1.4717E-4
Reg-GP 7.6250 9.9088E-5
p+Reg-GP 7.8250 5.6490E-5
DCC+Reg-GP 8.2750 9.0371E-6
Factor-M 8.5750 2.5118E-6

Comparison between the MDD results of Factor-M and Factor-2 and their respec-
tive returns results that is presented in Tables 5.6 and 5.7, appear to indicate that
there’s a trade-off between higher return and risk. The MDD result of classification
variants ranked second in both categories.

To evaluate statistical significance of our MDD finding, we perform the Friedman
statistical test, presented in presented in Table 5.12. As we can observe, the best
ranking algorithm is C+4reg-GP and it statistically outranked 8 of the strategies
compared at the 5% significance level.

Figure 5.7 presents the total number of positive 5-month average Sharpe ratio.
Excluding 6 periods where no trading took place, there are 34 risk-adjusted return
summaries in total. Out of the 34, C+Reg-GP had positive Sharpe ratio in 28 which

was the highest recorded amongst trading strategies compared. Of the 28 positive
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Table 5.9: Average maximum drawdown (%) result for Reg-GP based trading strategies.
10-minute interval out-of-sample data. 20 different currency pairs and 10 calendar months
each representing the physical dataset. five DC dataset were generated using five dynam-
ically generated thresholds tailored to each DC dataset. Best (lowest) value for each row
(currency pair) is shown in boldface. Result shown in % values.

Dataset ~ C+Reg-GP Reg-GP p+Reg-GP DCC+Reg-GP

AUD_NZD 0.1230 0.1506 0.1713 0.3185
AUD_USD 0.1595 0.3123 0.5710 0.6917
EUR_AUD 0.1058 0.1545 0.4086 0.6214
EUR_CAD 0.1353 0.2577 0.4772 0.4494
EUR_CSK 0.0057 0.0080 0.0218 0.0253
EUR_GBP 0.1005 0.0778 0.1460 0.2789
EUR_JPY 0.0106 0.0383 0.0112 0.0255
EUR_NOK 0.1331 0.1476 0.2844 0.3871
EUR_USD 0.1555 0.0688 0.2059 0.4034
GBP_AUD 0.1912 0.2391 0.6403 0.6260
GBP_CHF 0.0956 0.1064 0.1897 0.3278
GBP_USD 0.1323 0.1797 0.2095 0.3867
NZD_USD 0.2892 0.3242 0.4777 0.6830
USD_CAD 0.1678 0.1615 0.5727 0.5389
USD_NOK 0.1406 0.1747 0.7049 0.7367
USD_SGD 0.0770 0.0741 0.1891 0.3058
USD_ZAR 0.1168 0.1453 1.2417 1.2160
Average 0.1259 0.1542 0.3837 0.4719

Sharpe ratio results, 6 where above 0.5, 18 were above 0.2 and less than 0.5. The
rest were below 0.2.! Friedman test presented in Table 5.13, confirms our findings.
C+Reg-GP ranks first and statistically outperforms all other trading strategies at
the 5% level. In addition, C+Factor-M and C+Factor-2 rank second and third,
respectively, which again demonstrates that the introduction of the classification
step is beneficial to the DC algorithms.

Our final assessment measure of DC based strategies is Sharpe ratio presented in

LA ratio of 0.2-0.3 is in line with the general market. A value of 0.5 is considered a market-
beating performance if achieved over a long period, a ratio of 1 or better considered superb and
difficult to achieve over long periods and a negative Sharpe ratio indicates negative returns.
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Table 5.10: Average maximum drawdown (%) result for Factor-M based trading strategies.
10-minute interval out-of-sample data. 20 different currency pairs and 10 calendar months
each representing the physical dataset. five DC dataset were generated using five dynam-
ically generated thresholds tailored to each DC dataset. Best (lowest) value for each row
(currency pair) is shown in bold face. Result shown in % values

Dataset C+Reg-GP ‘ C+Factor-M  Factor-M  p+Factor-M DCC+Factor-M
AUD_NZD 0.1230 0.2699 0.1588 0.2896 0.6500
AUD_USD 0.1595 0.5750 0.1484 0.6657 0.7631
EUR_AUD 0.1058 0.3006 0.0768 0.4332 0.9292
EUR_.CAD 0.1353 0.2334 0.2033 0.3325 0.7941
EUR_CSK 0.0057 0.0133 0.0128 0.0189 0.1117
EUR_GBP 0.1005 0.1891 0.1375 0.2513 0.4845
EUR_JPY 0.0106 0.0091 0.0084 0.0157 0.0509
EUR_NOK 0.1331 0.2699 0.2560 0.4492 0.4974
EUR_USD 0.1555 0.2383 0.1262 0.3368 0.8276
GBP_AUD 0.1912 0.4910 0.2009 0.6226 0.8899
GBP_CHF 0.0956 0.3558 0.0493 0.4552 0.6282
GBP_USD 0.1323 0.3054 0.1222 0.3887 0.9857
NZD_USD 0.2892 0.5831 0.2664 0.6115 0.9989
USD_CAD 0.1678 0.2835 0.3403 0.6001 0.6407
USD_NOK 0.1406 0.4890 0.5694 0.6361 0.5926
USD_SGD 0.0770 0.1128 0.0689 0.1463 0.7689
USD_ZAR 0.1168 0.8950 0.2811 1.1893 0.8155
Average MDD 0.1259 [  0.3302 0.1780 0.4378 0.6723

Figure 5.8. Results in cases where a hold strategy is used by the trading algorithms
throughout the 10 months test periods are excluded. The x-axis presents the time
period covered for the relevant currency pair, and the y-axis presents the average risk-
adjusted return in percentages. C+Reg-GP consistently records positive adjusted
returns, whereas the other strategies have a mix of both positive and negative returns

over time.
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Table 5.11: Average maximum drawdown (%) result for Factor-2 based trading strategies
compared. 10-minute interval out-of-sample data. 20 different currency pairs and 10
calendar months each representing the physical dataset. five DC dataset were generated
using five dynamically generated thresholds tailored to each DC dataset. Best (lowest)
value for each row (currency pair) is shown in bold face. Result shown in % values.

Dataset C+Reg-GP ‘ C+Factor-2 Factor-2 p+Factor-2 DCC+Factor-2
AUD_NZD 0.1230 0.3270 0.2059 0.3368 0.4763
AUD_USD 0.1595 0.4846 0.2754 0.7167 0.8327
EUR-AUD 0.1058 0.2599 0.2062 0.3246 0.5396
EUR-CAD 0.1353 0.2191 0.3079 0.3928 0.3773
EUR_CSK 0.0057 0.0171 0.0024 0.0254 0.0224
EUR_GBP 0.1005 0.2120 0.0864 0.2000 0.3884
EUR.JPY 0.0106 0.0372 0.0519 0.0100 0.0210
EUR_NOK 0.1331 0.4232 0.1516 0.2737 0.4209
EUR_USD 0.1555 0.2400 0.0828 0.2137 0.3925
GBP_AUD 0.1912 0.5337 0.1773 0.7777 0.9015
GBP_CHF 0.0956 0.2836 0.1908 0.3821 0.5696
GBP_USD 0.1323 0.2815 0.1617 0.3774 0.5990
NZD_USD 0.2892 0.4226 0.4036 0.7056 0.7510
USD_CAD 0.1678 0.3781 0.2393 0.5912 0.5521
USD_NOK 0.1406 0.3772 0.1716 0.7149 0.6544
USD_SGD 0.0770 0.1332 0.0358 0.2067 0.2644
USD_ZAR 0.1168 0.6761 0.3312 0.9046 1.0415
Average MDD 0.1259 0.3121 0.1813 0.4208 0.5179
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Table 5.12: Statistical test results of average maximum drawdown according to the non-
parametric Friedman test with the Hommel post-hoc test of C+Reg-GP (c) vs DC based
trading strategies. 10-minute interval out-of-sample date. Significant differences between
the control algorithm (denoted with (c) and the algorithms represented by a row at the a
= 5% level are shown in boldface indicating that the adjusted p value is lower than 0.05.

Trading strategies  Average Rank — Adjust,momm
C+Reg-GP (c) 2.1176 -

Factor-M 2.6471 0.6686
Reg-GP 3.1765 0.6686
Factor-2 3.5882 0.5879
C+Factor-M 5.6471 0.0173
C+Factor-2 6.2941 0.0037
p+Reg-GP 7.1765 2.5815E-4
p+Factor-2 8.4706 1.9537E-6
p+Factor-M 8.4706 1.9537E-6
DCC+Reg-GP 9.3529 4.4105E-8
DCC+Factor-2 9.8834 3.4164E-9
DCC+Factor-M 11.1765 2.6272E-12
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Figure 5.7: A comparison of total number of positive Sharpe Ratio between C+Reg-GP and
other DC based trading approaches. 10-minute interval out-of-sample data. 20 currency
pairs and 10 calendar months. Total of 40 Sharpe ratio results from five month average
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Figure 5.8: Average Sharpe ratio for all currency pairs. C+Reg-GP versus other directional
changes based trading strategies
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Table 5.13: Statistical test results of average Sharpe ratio according to the non-parametric
Friedman test with the Hommel post-hoc test of C+Reg-GP (c) vs DC based trading
strategies. 10-minute interval out-of-sample date. Significant differences between the con-
trol algorithm (denoted with (c¢) and the algorithms represented by a row at the a = 5%
level are shown in boldface indicating that the adjusted p value is lower than 0.05.

Trading strategies Average Rank Adjusty i omm

C+Reg-GP (c) 2.6714 -
C+Factor-2 4.7571 0.0155
C+Factor-M 4.8714 0.0155
p+Factor-M 5.8714 6.1502E-4
Factor-2 6.0714 3.1945E-4
p+Reg-GP 6.5286 3.8169E-5
p+Factor-2 6.6143 2.3850E-5
Reg-GP 7.5857 8.3011E-8
DCC+Factor-M 7.7000 4.3202E-8
DCC+Factor-2 7.9000 1.1773E-8
DCC+Reg-GP 8.4143 2.6814E-10

Factor-M 9.0143 2.0347E-12
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Comparison to technical indicator based trading strategies

Our attention now shifts to comparison between C+Reg-GP and technical indicator
based strategies namely, EMA, BOLLIN, SMA, AROON, ROC, RSI, MACD. Table
5.14 presents their average returns. We observe that C+reg-GP records higher return
in 16 of the currency pairs and achieves the highest return amongst the strategies.
All technical indicator based strategy recorded negative mean return. From this
result, there isn’t a clear second best strategy due to the fact that SMA record the
second best average return overall and is second best in 4 currency pairs meanwhile

AROON and RSI are second best in five currency pairs respectively.

Table 5.14: Average Technical Indicator return result for trading strategies compared. 10-
minute interval out-of-sample data. 20 different currency pairs and 10 calendar months each
representing the physical dataset. five DC dataset were generated using five dynamically
generated thresholds tailored to each DC dataset. Best result per currency pair presented
in boldface. BOLLIN is Bollinger bandwidth indicator

Dataset C+Reg-GP ‘ EMA BOLLIN SMA AROON ROC RSI MACD
AUD/JPY 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000
AUD/NZD 0.260 0.002 -0.007  -0.026  -0.002  -0.447 0.056  0.005
AUD/USD 0.273 -0.145 -0.393  -0.069  -0.025  -0.321 0.046 -0.147
CAD/JPY 0.000 0.000 0.000 0.000 0.000 0.000  0.000  0.000
EUR/AUD 0.186 0.057 -0.365  -0.127 0.002 -0.166 -0.06  -0.092
EUR/CAD 0.192 -0.226  -0.759  -0.032  -0.068  -0.486 -0.013 -0.346
EUR/CSK 0.034 -0.233  -0.067  -0.164 0.000 -0.781 -0.138 -0.281
EUR/GBP 0.104 -0.135 -0.067  -0.048  -0.061  -0.367 -0.028 -0.240
EUR/JPY 0.020 0.015 0 -0.027 0 0 -0.022  0.013
EUR/NOK 0.351 -0.118  -0.232 0.149 0.003 -0.261 -0.043 -0.233
EUR/USD -0.001 -0.492 -0.366 -0.25 -0.064  -0.262 -0.106  -0.409
GBP/AUD 0.354 -0.302 -0.201 -0.022  -0.061  -0.531 -0.159 -0.061
GBP/CHF 0.202 -0.268  -0.356 0.009 -0.087  -0.653 0.035 -0.331
GBP/USD -0.059 -0.076 -0.61 -0.111  -0.045  -0.337 0.008 -0.361
NZD/USD 0.280 -0.234  -0445  -0.151  -0.025 -0.333 0.124  -0.366
USD/CAD 0.044 -0.306 -0.64 -0.458  -0.016  -0.708 -0.299 -0.571
USD/JPY 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000
USD/NOK 0.461 -0.075 -0.592 0.069 -0.048 -0.7  -0.144 -0.154
USD/SGD 0.03 -0.044  -0.122  -0.178  -0.015 -0.513 -0.057 -0.295
USD/ZAR 1.762 0.344 -0.573  -0.356 0.004 -0.057 0.044  0.110

Average Return 0.225 ‘—0.112 -0.29 -0.09 -0.025  -0.346 -0.038 -0.188
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Friedman statistical test presented in Table 5.15 shows that the average return
by C+Reg-GP is statistically significant in comparison to technical indicator based
strategies and AROON;, the best technical indicator based strategy in our experiment

ranked second.

Table 5.15: Statistical test results of average returns according to the non-parametric
Friedman test with the Hommel post-hoc test of C+Reg-GP (c) vs Technical Analysis
based trading strategies. 10-minute interval out-of-sample date. Significant differences
between the control algorithm (denoted with (c) and the algorithms represented by a row
at the a = 5% level are shown in boldface indicating that the adjusted p value is lower
than 0.05.

Trading strategies  Average Rank  Adjust,momm
C+Reg-GP (c) 1.6250 -

AROON 3.4500 0.0185
RSI 3.4750 0.0185
SMA 4.4750 7.0153E-4
EMA 4.5250 7.0153E-4
MACD 5.9999 2.8281E-6
BOLLIN 6.2250 1.7251E-8
ROC 6.7250 3.2042E-10

Average MDD result presented in Table 5.16 shows AROON the most risk aversive
strategy followed by C4reg-GP. AROON recording the least MDD in 14 currency
pairs. Table 5.17 presents Friedman statistical test of mean MDD results. Tt shows
AROON statistically outperforms other strategy and C+reg-GP is ranked second.

To measure the risk-reward trade-off, we perform Sharp ratio comparison. Figure
5.9 presents comparison result between Sharpe ratio result of C+Reg-GP and the
technical indicator based strategies.

Figure 5.10 presents the total number of positive Sharpe ratio recorded by each
algorithm. The result shows that C4+Reg-GP recorded 28 positive Sharpe ratios and

had the best Sharpe ratio measure in 18 of the 34 risk-adjusted return summaries.
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Figure 5.9: Average Sharpe ratio for all currency pairs. C+Reg-GP versus technical analysis
based trading strategies
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Table 5.16: Average maximum drawdown (%) results for Technical Indicator based strate-
gies. 10-minute interval out-of-sample data. 20 different currency pairs and 10 calendar
months each representing the physical dataset. five DC dataset were generated using five
dynamically generated thresholds tailored to each DC dataset. Best result per currency
pair shown in boldface.

Dataset C+Reg-GP ‘ EMA BOLLIN SMA AROON ROC RSI MACD
AUD_NZD 0.1230 0.1700  0.3680  0.2860 0.0180  0.6810 0.0710  0.1590
AUD_USD 0.1600 0.1180  0.6340  0.2280 0.0250  0.6220 0.1620  0.1700
EUR_AUD 0.1060 0.1200  0.4960  0.3800 0.0410 0.5080 0.1040  0.1730
EUR_CAD 0.1350 0.1230  0.8230  0.1720  0.0890 0.7480 0.0800 0.1480
EUR_CSK 0.0060 0.0360  0.0740  0.1660 0.0030  0.7830 0.1860  0.0390
EUR_GBP 0.1000 0.2420  0.3720  0.2040 0.0640  0.5320 0.0720  0.1960
EUR_JPY 0.0110 0.0040  0.0000 0.0400 0.0000 0.0000 0.0220 0.0010
EUR_NOK 0.1330 0.1140  0.4690  0.1860 0.0040  0.6880 0.0900  0.1010
EUR_USD 0.1550 0.2240  0.4950  0.2990 0.0950  0.4160 0.1910  0.2230
GBP_AUD 0.1910 0.2080  0.7310  0.2730 0.0810  1.0300 0.2830  0.2160
GBP_CHF 0.0960 0.1630  0.5250  0.2810  0.0870 0.7800 0.0160 0.2000
GBP_USD 0.1320 0.1220  0.8420  0.3400 0.0770  0.5080 0.1120  0.2700
NZD_USD 0.2890 0.2700  0.8610  0.3850  0.0260 0.6980 0.0000 0.2630
USD_CAD 0.1680 0.3230  0.8980  0.6090 0.0240  0.9060 0.3330  0.1670
USD_NOK 0.1410 0.2350  1.0510  0.2450  0.0540  0.9280 0.1730  0.0990
USD_SGD 0.0770 0.1270  0.3160  0.2670  0.0150  0.5900 0.1520  0.0790
USD_ZAR 0.1170 0.3570  1.4760  0.6280 0.0000  1.0690 0.1490  0.7090
Average MDD 0.126 ‘ 0.1739  0.6136  0.2935 0.0414  0.6757 0.1292  0.1890

Table 5.17: Statistical test results of maximum drawdown of non-DC based trading strate-
gies according to the non-parametric Friedman test with the Hommel post-hoc test. 10-
minute interval out-of-sample data. Significant differences between the control algorithm
(denoted with (c) and the algorithms represented by a row at the o = 5% level are shown
in boldface indicating that the adjusted p value is lower than 0.05.

Trading strategies

Average Rank  Adjustymomm

AROON (c)

C+Reg-GP
RSI

MACD
EMA

SMA
BOLLIN
ROC

1.2353
3.2353
3.3529
4.0000
4.0000
5.9412
7.0001
7.2353

0.0173
0.0173
0.0030
0.0030
1.0649E-7
4.0921E-11
6.4656E-12
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Figure 5.10: A comparison of total number of positive Sharpe Ratio between C+Reg-GP
and technical indicator based trading approaches. 10-minute interval out-of-sample data.
20 currency pairs and 10 calendar months. Total of 40 Sharp ratio results from five month

average

Finally, we perform Friedman statistical test of Sharpe ratio result presented in
Table 5.18 which confirms our findings that C+Reg-GP outperformed all technical
indicator based strategies and the performance is statistically significant at the 5%

level.
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Table 5.18: Statistical test results of Sharpe ratio of C+Reg-GP Vs non-DC based trading
strategies according to the non-parametric Friedman test with the Hommel post-hoc test.
10-minute interval out-of-sample data. Significant differences between the control algorithm
(denoted with (c) and the algorithms represented by a row at the a = 5% level are shown
in boldface indicating that the adjusted p value is lower than 0.05.

Trading strategies Average Rank  Adjust,momm

C+Reg-GP (c) 1.8286

RSI 3.7429
EMA 4.3571
AROON 4.4000
SMA 4.4857
MACD 5.1857
BOLLIN 5.5143
ROC 6.4857

0.0011
3.1439E-5
2.3579E-5
2.0959E-5
4.9215E-8
1.8497E-9
1.2683E-14
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Comparison with Buy-and-hold

In terms of returns and risk, since C+Reg-GP was found to be the best algorithm
in comparison with DC and technical analysis algorithms, we now turn our focus to
comparing it against the well-known buy-and-hold (BandH) benchmark. We compare
BandH separately because it is a fundamental analysis based strategy, a strategy that
is not based on short-term price movements. We thus buy on the first day of the
first month, and sell on the last day of the tenth month

Table 5.19 presents comparison trading result between C+Reg-GP and BandH.
C+Reg-GP recorded positive mean returns in 15 of 20 currency pairs outperform-
ing BandH in 12 currency pairs. C+Reg-GP’s average return across all currency
pairs was 0.225% and BandH was -0.128%; C+Reg-GP reported a variance of 0.153
and BandH’s reported a variance of 0.515. Finally, we performed the Kolmogorov-
Smirnoff statistical test to investigate whether there is a statistical significance in
the results between C+Reg-GP and BandH. The p-value of the test was 7.2529e-04,
which confirms that this difference is statistically significant. Therefore, the results
show that C+Reg-GP can outperform BandH in more markets which makes it a

more attractive investment strategy according to our data sample.

5.7.3 Sample of best GP models

We present four samples equations that C+Reg-GP created. They are four of the best
equations in terms of profitability across datasets experimented. In the equations,

OS; is the estimated OS event length and DC; is DC event length.

0S8, = log(a 4+ DC})
where a= 1609.55 and b = 5.023.
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OS[ = log((DCl X a)b)

(5.9)
where a= 4.117 and b = 5.764.
OS; = cos(a x cos(DCY)) + b
: : el'p(COS(DOl) (510)
where a = 292.160 and b= 4.569
0S8, = exp(exp(sin(sin(DC))))) + (a x (b + log(DCY))) (5.11)

where a = 1.750 and b = 1.957.

As we can see, the equations have different structures; the first two are logarithmic
equations, whereas the third has both cosine and exponential functions, and the
fourth equation has exponential, sine and logarithmic functions. This is important
because they confirm that the relationship between the DC and OS lengths can
also be non-linear. Thus, our work of using C+Reg-GP to create equations for DC
trends that are classified to have both DC and OS events has allowed uncover richer

relationships and led to increase in profitability of the trading strategy.

5.7.4 Computational time

Table 6.11 presents the average computational times for all algorithms. We can ob-
serve that different algorithms can have significantly different computational times,
which is not surprising. An algorithm such as C+Reg-GP includes the classifica-
tion step, which consisted of Auto-WEKA running for 60 minutes to find the best
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classification model per dataset, and optimise its hyperparameters.? Additionally,
it includes a GP, which requires some time to evolve an acceptable solution, since
multiple individuals and generations are involved.

To elucidate, we present the computational times for each task in our framework:
classification, (OS length) estimation, and trading. Not all algorithms use the clas-
sification step, but the ones that use it need approximately 65 minutes to complete
this task. The estimation task takes approximately 5-6 minutes for algorithms that
use a GP to complete, and 20-30 seconds for the other algorithms. With regards to
the trading step, all algorithms need around 3 seconds.

It is important to note here that, for trading, we would normally do the learning
processes on the training data off-line, and then simply apply the best model to the
test data. Thus, the fact that classification and estimation last above 70 minutes
is not a problem since they happen off-line. In contrast, applying the best model
for trading takes only 3 seconds. Therefore, we believe that given the significant
improvements we observed in returns and risk, this slower execution time is justified.
Lastly, the overhead of including a classification step can be reduced by parallelis-
ing the Auto-WEKA process. It has been shown in the literature (e.g., (Ong and

Schroder 2020)) that parallelisation can reduce computational times significantly.

5.8 Summary

Based on our experimental results, we can reach the following conclusions.

Introducing a classification step to a DC algorithm is an effective way of predicting

2The time taken in the classification phase of C+Reg-GP, C+Factor-M, and C+Factor-2, went
above the allotted time of 60 minutes due to CPU time slice as other processes were running on
the hardware simultaneously. With the availability of a dedicated hardware with sufficient CPU
cores, a large speed up might be obtained by switching the classification phase from serial mode to
parallel mode.
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the trend reversal in DC summaries. As we observed in Table 5.4, the positive
classification results have led to significantly reduced RMSE, ranking each algorithm
that uses a classifier higher than its respective variant without classification. In
addition, C4+GP ranked first and statistically outperformed all other DC-based trend
reversal algorithms.

Introducing a classification step to a DC algorithm leads to higher returns during
trading. As we observed in Tables 5.5, 5.6, 5.7 and 5.8, all algorithms that used a
classifier (C+Reg-GP, C+Factor-M, C+Factor-2) outperformed other variants with-
out a classifier. Furthermore, C+Reg-GP ranked first among 13 trading algorithms
and statistically outperformed 12 algorithms, with the only exception the two other
algorithms that were using a classifier.

Introducing a classification step to a DC algorithm leads to less risky strategies.
As we observed in the Sharpe ratio results, all the variants with the classifier ranked
in the first 3 places (Table 5.13). This could potentially be attributed to the fact that
the Sharpe ratio is a metric that includes both returns and risk. On the other hand,
the MDD results presented a mixed picture, with C+Reg-GP ranking first across all
algorithms, but Factor-M and Factor-2 ranking being higher than their variants with
a classifier.

There is no generalised formula for predicting trend reversal in DC-based sum-
maries. As C+Reg-GP’s sample GP OS length estimation models demonstrated,
each dataset has its own unique characteristics, and predicting trend reversal re-
quires tailored solutions and not equations that are applied to all trends, irrespective
of their characteristics.

C+Reg-GP is an effective trading algorithm. It not only outperformed other
DC-based algorithms, but it also performed better than seven different technical

indicator based strategies, as well as buy-and-hold in all metrics compared namely
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average returns, MDD and Sharpe ratio.

In our next contribution, we focus our attention on combining the best tailored
thresholds under a single trading strategy. Our goal is to investigate whether using
input from multiple DC thresholds to make trading decisions can lead to an increase

in profitability while keeping risk at a minimum.
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Table 5.19: Average trading (%) result of C+Reg-GP vs Buy-and-hold trading strategies
per currency pair. 10-minute interval out-of-sample data. Results show RMSE value.
They are averaged over five different dynamically generated thresholds tailored to each DC
dataset and 20 currency pairs.

Trading strategies C+Reg-GP Buy-and-hold

AUD_JPY 0.000 -6.278
AUD_NZD 0.260 -0.516
AUD_USD 0.273 -5.728
CAD_JPY 0.000 -4.109
EUR_AUD 0.186 -2.672
EUR_CAD 0.192 18.555
EUR_CSK 0.034 7.770
EUR_GBP 0.104 -0.292
EUR_JPY 0.020 -6.211
EUR_NOK 0.351 2.046
EUR_USD -0.001 8.801
GBP_AUD 0.354 3.936
GBP_CHF 0.202 -2.395
GBP_USD -0.059 8.464
NZD_USD 0.280 -6.443
USD_CAD 0.044 2.345
USD_JPY 0.000 -9.430
USD_NOK 0.461 -6.102
USD_SGD 0.030 0.207
USD_ZAR 1.762 -4.505

Mean 0.225 -0.128
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Table 5.20: Average computational times per run for C+Reg-GP, Reg-GP , p+Reg-
GP, DCC+Reg-GP, C+Factor-M, Factor-M, p+Factor-M, DCC+Factor-M, C+Factor-2,
Factor-2, p+Factor-2, DCC+Factor-2, RSI, EMA, MACD. BH takes less than 1 second
to execute because we buy quoted currency at the start of trading period and sell quoted

currency at the end of trading period.

Trading strategies =~ C+Reg-GP Reg-GP p+Reg-GP DCC+Reg-GP
Classification ~ 65 mins - - -

Estimation ~ 5.45 mins ~ 6.20 mins ~ 5.25 mins -

Trading ~ 3 sec ~ 3 sec ~ 3 sec ~ 3 sec
Trading strategies C+Factor-M Factor-M p+Factor-M DCC+Factor-M
Classification ~ 65 mins - - -

Estimation ~ 30 secs ~ 30 secs ~ 30 secs -

Trading ~ 3 sec ~ 3 sec ~ 3 sec ~ 3 sec
Trading strategies = C+Factor-2 Factor-2 p+Factor-2 DCC+Factor-2
Classification ~ 65 mins - - -

Estimation ~ 20 secs ~ 20 secs ~ 20 secs -

Trading ~ 3 sec ~ 3 sec ~ 3 sec ~ 3 sec
Trading strategies ~ EMA BOLLIN SMA AROON
Classification - - - -

Estimation - - - -

Trading ~ 3 sec ~ 3 sec ~ 3 sec ~ 3 sec
Trading strategies =~ ROC RSI MACD -
Classification - - - -

Estimation - - - -

Trading ~ 3 sec ~ 3 sec ~ 3 sec ~ 3 sec




Chapter 6

A Novel Multiple Threshold based
Trading Strategy

In the previous chapter, we presented Figure 5.4 a trading strategy framework em-
bedded with our proposed trend reversal forecasting model. The model consisted of
a tailored classifier, which determines whether a DC trend is composed of either a
DC and OS events (aDC) or just a DC event (5DC). If a DC trend is classified as
aDC, we then used our tailored symbolic regression GP to estimate the expected
length of the associated OS event. In this case, the forecasted trend reversal point
occurs at the sum of the last known DC event length and the estimated OS event
length measured from the start of the last known DC event. Conversely, if a trend
is classified as fDC, we forecast trend reversal point to be the DCC point. The
rationale behind forecasting trend reversal is to be able to anticipate reversal points
whilst still in the trend, since directional changes are confirmed in hindsight and
the ability to anticipate the points give traders opportunity to develop profitable

strategies.

132
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Despite the improvements we have made so far at both forecasting trend reversal
points and trading profitably, the trading strategy framework in the previous chapter
comes with a certain limitation. It views the market from a single trader’s perspective
thereby limiting insight into other market activities that influences price moment
(Deng and Sakurai 2013) - i.e., once a threshold for sampling event summary is
decided, we are locked-in at viewing the market activities from only the threshold’s
perspective. There are chances that potentially profitable price variations different
from those captured by the threshold are ignored, leading to inaction or opportunity
loss.

To address this issue and increase profit at reduced risk, we propose a novel multi-
threshold trading strategy framework. This innovative approach allows a trader to
view market activities from multiple perspectives before taking trading decisions.
Thus, instead of selecting the best threshold from the threshold pool as was done
for single threshold strategies in the previous chapter (see Figure 5.2), we instead
select the best set of thresholds and optimise their trading recommendations. In
this new approach (illustrated in Figure 6.1), trading actions and forecasted trend
reversal points by individual thresholds become recommendations only. Same recom-
mendations are combined, and trading action is decided through a majority voting
system. However, there are some associated challenges that combining recommen-
dations pose: (1) how to select the best set of threshold adequately; (2) how to
determine whether a DC event is either a«DC or SDC'; (3) how to decide on a trad-
ing action when recommendations from multiple thresholds are conflicting; and (4)
how to decide on the trend reversal point to trade when forecasted trend reversal
points of multiple thresholds are different? For the first two challenges, we address

them using similar approach as the one from Chapter 5. For the last two challenges,
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we address them with the new framework presented in this chapter. Our contribu-
tion in this chapter can thus be summarised as the creation of a DC trading strategy
using recommendations from multiple DC thresholds that are optimised by a tailored
GA algorithm.

We organize the rest of the chapter as follows: Section 6.1 describes the new trad-
ing strategy and the methodology employed. Section 6.2 presents the experimental
and evaluation setup. Section 6.3 presents the test results. Section 6.4 concludes the

chapter

6.1 Methodology

To address the two outstanding challenges, highlight in the introduction to this
chapter, we associate initial weights to the contributing thresholds and apply GA to
optimise their weight value. We then used a majority voting technique to determine
the winner action to follow i.e., the action with the highest combined weight. To
determine the point in the future when the trading action should be taken, we use the
weighted average of forecasted trend reversal points of thresholds that contributed

to the winner action.

6.1.1 Optimised multi-threshold strategies using a Genetic
Algorithm

Our multi-threshold trading strategy framework is composed of 4 modules: (1) a
pre-step for threshold selection; (2) symbolic regression model evolution; (3) clas-
sification model selection; and (4) trading strategy evolution. The first 3 modules

of our framework follow the same approach described in Chapter 5. After creating
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Figure 6.1: Our proposed framework for a multi-threshold based trading strategy. It
embeds multiple thresholds and combines their recommendations using a majority vote
system. It uses weighted average of contributing thresholds’ forecast of trend reversal

point in deciding when to trade.

forecasting model (i.e., classification and symbolic regression GP models combined)
per threshold, we embedded them in our trading strategy and assigned weights to
represent each threshold. FEach chromosome consisted of Ny genes, where Ny is the
number of thresholds used in the multi-threshold strategy. As a first step, we decide
on the number of thresholds to use in our multi-threshold strategy. Then we assign
an initial weight to each gene. The weight is a measure of the importance of a thresh-

old recommendation in the trading decisions. The weights are real values where the
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Figure 6.2: Illustration of GA population initialisation. Chromosomes 1-5 represents ini-
tialisation where only a single threshold is active

maximum weight value is 1 and the minimum value is 0. We initialise the first gene
in the first chromosome with the maximum weight value and initialise the rest of
the genes with minimum weight value. We initialise the second gene in the second
chromosome with the maximum weight value and initialise the rest of the genes with
minimum weight value. We initialise the third gene in the third chromosome with
the maximum weight value and initialise the rest of the genes with minimum weight
value. We repeat this initialisation of weights for the first Ny chromosomes in our
GA population. The idea is to ensure that, in the worst case scenario, the trading
result of our strategy is as good as the result of the best performing single thresh-
old. The genes of the remaining chromosome in our GA population are randomly
assigned real values between the minimum and maximum weights (inclusive). The
pseudocode presented in Algorithm 6.1 summarises this procedure and Figure 6.2
illustrates the initialisations step. The GA then evolves real value weights for each
threshold over a number of generations. At the end of the evolution process our
optimisation model is created.

During trading, thresholds traverse their own event series. At each DCC point
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Algorithm 6.1 Pseudocode for initialising chromosome weight in GA population

for i = 0; i < numberOfThresholds; i++ do
for j = 0;j < chromosomelnPopulation[i]; j++ do
if index ¢ is threshold position in chromosome then
w; — 1.0
else
w; +— 0.0
end if
end for
end for
for i = numberOfThresholds; i < chromosomelnPopulation; i++ do
for j = 0;j < chromosomelnPopulation[i]; j++ do
w; — RandomNumber Function(0.0,1.0)
end for
end for

of the current trend in individual event series, trend reversal points are forecasted.
First, each thresholds classifies DC trend as either aDC or SDC'. Then, the trend
reversal forecasting models use their symbolic regression GP to forecast trend reversal
points of trends classified as aDC's. Otherwise, trend reversal points are forecasted
to occur at a DCC point. The recommended action and forecasted trend reversal
point of all thresholds are passed to the multi-threshold trading strategy. The trading
strategy uses the recommendations optimise decisions: (1) the action to follow; and
(2) when in the future to act.

Recommended trading actions can be different because each threshold’s event se-
ries is unique. Therefore, it is possible for one threshold to recommend a buy action
while another simultaneously recommend a sell action. The strategy evaluates rec-
ommended actions according to the weights associated with each threshold. Weights
of actions that are the same are summed up and the action with the highest sum of

weight is followed, which we call “optimal trade action” (T'Ap,¢). Also, because of the
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distinct nature of individual event series, the multiple thresholds from which T'App:
is based can forecast trend reversal points differently. The strategy uses Equation
6.1 to optimise individually forecasted trend reversal point of a subset of thresholds
that recommended T'Ap,;. It considers the weights of the thresholds, so the opti-
mised forecasted trend reversal points tend towards the threshold with the largest
weight. Algorithm 6.2 summarises the procedure of optimising trading actions and
trend reversal points. Algorithms 6.3 and 6.4 summarise the trading rules applied

at optimised trend reversal point at optimal trade action buy and sell respectively.

o i WiX;

n
i=1 Wi

W (6.1)

The types of action the strategy takes are buy, sell and hold. We consider the first
two actions to be active actions and hold to be a passive action. Thus, if the winner
action is a sell, we sell all available base currency in exchange for the quoted currency
at the calculated trend reversal point. On the other hand, if the winner action is
a buy, we buy all available base currency in exchange for the quoted currency at
the calculated trend reversal point. Therefore, we do not have a situation where we
have both base currency and quoted currency in our portfolio. Our action is passive
(1) if the action is sell and there isn’t enough base currency available to sell or (2)
the action is buy and there isn’t enough base currency to buy or (3) if the return is
negative after deducting transaction cost.

We now clarify our proposed strategy with an example. Let’s assume it is decided
to use 5 thresholds for sampling significant events in the market. Due to aforemen-
tioned reasons, the recommendations of each threshold can be different. Thus, we
use 5 gene GA algorithm to optimise the recommendations. Fach gene in the GA

is a weight to be associated with the recommendation of each threshold. Suppose
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at the end of the GA evolutions step, weights [0.3, 0.35, 0.1, 0.1, 0.15] are assign to
each threshold respectively, coincidentally, all 5 thresholds consider a certain point
in the dataset to be a DCC point. The first two thresholds [0.3 and 0.35] recom-
mend a buy action with a weight sum of 0.65 and the last three thresholds [0.1,
0.1 and 0.15] recommend a sell action with a weight sum of 0.35. To resolve the
divergence in the recommended action, we apply a majority voting system, and, in
this case, the strategy will follow the buy action because of the larger weight sum.
To determine the optimal trend reversal point, we calculate the weighted average of
forecasted trend reversal points by the first two thresholds that recommended the
optimal trading action (i.e., ‘buy’ in this particular case). Assume that the current
DCC point in this example coincides with data point 290 and the forecasted trend
reversal points by thresholds [0.3, 0.35] are 312 and 300, respectively. We thus make
a decision to perform a buy action at data point 305, which is the weight sum of

their forecasted trend reversal points derived by applying Equation 6.1 calculated as

(0.3x312)+(0.35x300)
(0.3+0.35)

6.1.2 Genetic Operators

We use three operators namely elitism, uniform crossover and uniform mutation. For
elitism, we copy the chromosome with the best fitness value into the next generation.
For uniform crossover and uniform mutation, individuals from the population are se-
lected into a mating pool. From the pool, through tournament selection, individuals
that best favour the optimisation goal are selected as parents of individuals for the
next generation. In this work we select as parent, individual in the pool with highest
fitness. In uniform crossover both parents contribute their genes where each gene

has a fixed probability of 0.5 of being swapped. In uniform mutation operation, the
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Algorithm 6.2 Pseudocode for Multi-threshold Optimisation

Require: Initialise base_quantity = budget, quote_quantity = 0.0
Require: current_price = 0.0, LastUpPrice = 0.0
Require: Initialise weight values Wy, Wy, W5 ... Wy, according to Algorithm 6.1
Require: Get forecast model Fi, Fy, F; ... Fy, for each threshold
for i = 0;i < dataset_length ; i++ do
Initialise forecast and action dictionary: Dict = empty
Initialise weights for buy and sell: Wg = W, =0
Initialise buy and sell trend reversal list: Listg = Listg = empty
for j=0;j < Ny; j++ do
Initialise trend reversal point: TRP = 0.0
if event is upturn && DCC _point then
TRP < F;
Insert TRP into Listg
Wg <+ We+ Wj
else if event is downward trend && DCC_point then
TRP «+ F;
Insert TRP into Listg
WB <— WB + Wj
end if
end for
if Ws > Wg then
TRPptimal; < optimise Listg according to Equation 6.1
Insert T RPypiimal; and Sell into Dict at position i
else
TRP,ptimal; < optimise Listp according to Equation 6.1
Insert T RPyptima, and Buy into Dict at position 1
end if
if Dictli] is not empty then
if Dictli] == Sell then
current_price < dataset_length;,sp)
Trade with Sell Rule [See Algorithm 6.3]
else if Dict[i] == Buy then
current_price < dataset_length;q
Trade with Buy Rule [See Algorithm 6.4]
end if
end if
end for
Wealth < base_quantity — budget

Return < 100 x Izved“”h
udget
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Algorithm 6.3 Trading rules used for selling the base currency

Require: Sell rule

if base_quantity > 0 then
base_quantity < base_quantity - transaction_Cost
quote_quantity <— base_quantity X current_price
base_quantity < 0.0
LastUpPrice <— current_price

else Hold

end if

Algorithm 6.4 Trading rules used for buying the base currency

Require: Buy rule
if quote_quantity > 0 && current_price < LastUpPrice then
quote_quantity < quote_quantity - transaction_Cost
base_quantity <+ quote-quantity
- current_price
quote_quantity <— 0.0
else Hold

end if

selected parent’s gene have a fixed probability of 0.5 of being swapped as well. Fig-

ures 6.3 and 6.4 illustrate our uniform crossover and uniform mutation respectively.

We measure the quality of our GA individual using Sharpe ratio presented in
Section 5.5. We choose Sharpe ratio because it is an aggregate metric of risk-adjusted
return, as it takes into account both the return and the risk of a given trading

strategy.

0.1]0.1]0.2[0.3]0.4] (0.1 ][0I 0.2]0M 0.4]
osloslososfoz  0sfuifo9]isog

parent child

Figure 6.3: A sample uniform crossover operation by our GA. Either of the children is
randomly selected for the next generation
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[0.2]0.1]0.8[0.3]0.4] —— [0.2 ]88 0.3 [N 0.4]
parent child

Figure 6.4: A sample uniform mutation operation by our GA .

6.2 Experimental Setup

Data

The same 10-minute interval high frequency data already described in Chapter 5 are
used for experimenting our proposed multi-threshold strategy. We considered each
month in the period as a separate physical-time dataset. In our tuning phase, we
used 200 DC datasets for tuning (i.e., 5 DC thresholds x 20 currency pairs X first 2
months of our physical-time data). For the rest of the experiment, we use 1000 DC
datasets (i.e. 5 DC thresholds x 20 currency pairs X remaining 10 months of our
physical time datasets). The tuning and non-tuning DC datasets were split in 70:30

ratio as training and testing sets.

Parameter tuning

Since we are building on our previous contribution in Chapter 5 and the trend reversal
forecasting model should remain unchanged, we use the same parameter setup for
our classifier and symbolic regression GP models. Auto-WEKA execution time to
select and configure tailored classification model is set to 60 minutes and Table 6.1
presents the GP configuration to evolve the symbolic regression model for estimating
the OS event length.

To determine the values for the parameters in our GA algorithm, we performed
parameter tuning using I/F-Race package (Lépez-Ibanez et al. 2011), already de-

scribed in Chapter 4. The tuned parameters are population size, generation size,
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Table 6.1: Regression GP experimental parameters for detecting DC-OS relationship, de-
termined using I/F-Race.

Parameter

Population 500
Generation 37
Tournament size 3
Crossover probability 0.98
Mutation probability 0.02
Maximum depth 3
Elitism 0.10

tournament size, crossover probability, mutation probability and elitism. Table 6.2
present the value of our tuned parameters. We did not tune the number of thresholds
instead we choose the same number of thresholds as our previous contributions in

Chapter 4 (5 threshold) to facilitate comparison.

Table 6.2: GA experimental parameters for multi-threshold trading strategy determined
using I/F-Race.

Parameter

Population size 500
Generation size 50
Tournament size 7
Crossover probability 0.90
Mutation probability 0.10
Elitism 1

Trading Experimental Setup

We embedded the 5 trend reversal forecasting models in the trading strategy already
described in Section 6.1.1. The strategy combines these models to make trading
decisions. Our goal in this contribution is to investigate whether our multi-threshold

trading strategy can outperform the best performing single threshold strategy. Thus,
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we compare the performance of our multi-threshold strategy against the 5 best per-
forming single threshold strategies. The single thresholds are the same thresholds

that make up the genes of the GA chromosome.

6.3 Trading Results

In this section, we present the summary of our experimental result. As a reminder,
the goal of this contribution is to demonstrate that by optimising recommendations
from multiple thresholds using machine learning techniques we can further improve
profitability and risk, statistically outperforming single threshold strategies.

Table 6.3 presents returns of single threshold and multi-threshold trading strate-
gies calculated monthly. In this table, cases where 0.00 is reported as return indicates
that the strategy is passive (i.e., hold action). Trading return results show that the
multi-threshold strategy has the highest return (1.15%), which is over 100% better
than the best single threshold strategy that recorded return of 0.53%. The 1.15% re-
turn is earned over a month period, annualising the return results in 14.707% return
in a year. The result of the multi-threshold strategy is also the best per currency pair
(highlighted in bold in Table 6.3. Table 6.4 present the non-parametric Friedman
test with the Hommel post-hoc test to determine if the differences in performance are
statistically significance. The null hypothesis is again that the strategies come from
the same continuous distribution. As we could observe, the best ranking strategy
was the multi-threshold strategy, and it statistically outranked the 5 single threshold
strategies at the 5% significance level in all pairs.

We evaluated our risk adjusted return over the transactions that occurred in the
10-minutes monthly dataset. Table 6.5 presents the result, and it shows that multi-
threshold strategy outperformed single threshold strategy in all 20 currency pairs.
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The Sharpe ratio of 0.78 is over 200% better than the Sharpe ratio of the best single
threshold strategy. We also tested the statistical significance of the Sharpe ratio
result using Friedman nonparametric test. The null hypothesis is that the strategies
come from the same continuous distribution. We reject the null hypothesis because
the statistical test results presented in Table 6.6 shows that multi-threshold strategy
outperformed the 5 single threshold strategies.

We also performed risk analysis, measuring maximum drawdown and standard
deviation of our daily return. Table 6.7 presents the maximum drawdown results,
where the lower the drawdown the better the result. Our multi-threshold strategy
recorded the lowest overall average maximum drawdown (0.02). On average, the
risk was 10 times lower than trading using single threshold strategies. We also
perform Friedman test and Table 6.8 presents the result that shows that multi-
threshold strategy statistically outperformed all single threshold strategies at the
5% significance level.

Finally, Table 6.9 presents our standard deviation results. The results are not as
homogenous as in the previous tables, where the multi-threshold strategy is ranking
first across all datasets. Nevertheless, the multi-threshold strategy remained ranking
the highest for the number of currency pairs(7), it has the lowest average standard
deviation (0.1638). We also performed Friedman statistically test, presented in Table
6.10. The results show that multi-threshold strategy ranks first overall, although
the performance was not statistically significant against any of the single threshold
strategies. It appears that the Sharpe ratio, which is the fitness function of our GA
and thus drives the search, is heavily affected by the non-homogeneity of the standard
deviation result, where we are unable to record statistically significant result against
the single threshold strategies. In terms of standard deviation, it appears that the

profit volatility is relatively similar across the different strategies even though we see
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slight improvements using multi-threshold strategy. It is also important to remember
that in terms of a different risk metric (MDD), we have observed that the multi-
threshold strategy is outperforming the individual thresholds across all currency

pairs.

Table 6.3: Average return result (% ) for trading strategies of individual single threshold
strategies and multi-threshold strategy. 10-minute interval out-of-sample data. 20 different
currency pairs and 10 calendar months each representing the physical dataset. 5 DC dataset
were generated using 5 dynamically generated thresholds tailored to each DC dataset. Best
value for each row (currency pair) is shown in boldface.

Dataset Thresholdl Threshold2 Threshold3 Threshold4 Threshold5 Multi-threshold

AUD_JPY 0.9032 1.1177 1.0361 1.0132 1.2644 1.4018
AUD_NZD 0.4716 0.4831 0.3926 0.3365 0.2377 1.1877
AUD_USD 0.3970 0.5281 0.5813 0.7310 0.7253 0.8701
CAD_JPY 0.8736 0.8969 0.8264 0.7082 0.7935 1.3208
EUR_AUD 0.6808 0.5261 0.3586 0.3850 0.3508 1.0787
EUR_CAD 0.4677 0.3900 0.3471 0.4886 0.4250 0.9773
EUR_CSK 0.0232 0.0372 0.0025 0.0474 0.0432 0.3955
EUR_GBP 0.2132 0.2712 0.0583 0.2139 0.2121 0.8233
EUR_JPY 0.5475 0.5171 0.4380 0.5985 0.5385 0.8509
EUR_NOK 0.2632 0.4388 0.3222 0.6373 0.2553 0.8889
EUR_USD 0.2139 0.2427 0.1494 0.1022 0.0777 1.0474
GBP_AUD 0.5770 0.3854 0.5816 0.7964 0.6471 1.4298
GBP_CHF 0.2575 0.0779 0.6074 0.1904 0.3013 0.5371
GBP_USD 0.1141 0.1997 0.0648 0.2228 0.1140 0.8567
NZD_USD 0.5130 0.5937 0.7069 0.7858 0.5984 0.9422
USD_CAD 0.2078 0.1658 0.4274 0.3773 0.4194 0.8522
USD_JPY 0.4411 0.6448 0.3829 0.3914 0.3428 1.2062
USD_NOK 0.3836 0.4253 1.0093 0.4595 0.4502 1.5360
USD_SGD 0.1525 0.1325 0.2305 0.2991 0.3777 0.7704
USD_ZAR 1.5811 1.4437 1.8097 1.7583 1.4155 4.1808
Average 0.4641 0.4759 0.5167 0.5271 0.4795 1.1577

6.3.1 Computational time

Table 6.11 presents the average computational time for multi-threshold strategy in
comparison to single threshold strategy. The results show an increase in computation
time taken by multi-threshold strategy. This is expected since it includes the time

required to train multiple classification models. Additional time is also used in
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Table 6.4: Statistical test results for average returns according to the non-parametric Fried-
man test with the Hommel post-hoc test of multi-threshold (c) vs other single threshold
based trading strategies. 10-minute interval out-of-sample date. Significant differences be-
tween the control algorithm (denoted with (c) and the algorithms represented by a row at
the o = 5% level are shown in boldface indicating that the adjusted p value is lower than
0.05.

Trading strategies Average Rank Adjusty Homm
Multi-threshold (c) 1.0500 -

Threshold4 3.3000 1.4284E-4
Threshold2 3.9999 1.2302E-6
Threshold3 4.1000 7.5910E-7
Threshold1 4.2500 2.5353E-7
Threshold5 4.3000 1.5846E-7

Table 6.5: Average Sharpe ratio result for trading strategies of individual single threshold
strategies and multi-threshold strategy. 10-minute interval out-of-sample data. 20 different
currency pairs and 10 calendar months each representing the physical dataset. 5 DC dataset
were generated using 5 dynamically generated thresholds tailored to each DC dataset. Best
value for each row (currency pair) is shown in boldface.

Dataset Thresholdl Threshold2 Threshold3 Threshold4 Threshold5 Multi-threshold

AUD_JPY 0.3469 0.2082 0.2335 0.2245 0.2451 0.7026
AUD_NZD 0.2565 0.2129 0.2289 0.1246 0.3348 0.7912
AUD_USD 0.2749 0.2183 0.3149 0.3396 0.3702 0.8014
CAD_JPY 0.2614 0.1879 0.3268 0.1664 0.2708 0.6804
EUR_AUD 0.2812 0.2310 0.2358 0.2855 0.2961 0.9101
EUR_CAD 0.3972 0.1807 0.2865 0.3229 0.2964 0.7496
EUR_CSK 0.0970 0.1190 0.0370 0.1893 -0.0555 1.2658
EUR_GBP 0.0845 0.0035 0.1589 0.1077 0.2287 0.7330
EUR_JPY 0.3539 0.3183 0.3371 0.4049 0.2846 1.0389
EUR_NOK 0.1292 0.2177 0.2578 0.2430 0.2778 0.5835
EUR_USD 0.2370 0.1381 0.1073 0.1328 0.1258 0.5673
GBP_AUD 0.2579 0.2179 0.2326 0.2619 0.3402 0.9387
GBP_CHF 0.2793 0.0216 0.3019 0.2840 0.2367 0.7413
GBP_USD 0.0779 0.2178 0.1344 0.2539 0.1855 0.6961
NZD_USD 0.1753 0.2463 0.2388 0.3418 0.2365 0.6223
USD_CAD 0.1780 0.3044 0.3232 0.3508 0.2181 0.6328
USD_JPY 0.2140 0.2205 0.0582 0.2940 0.2303 0.6499
USD_NOK 0.2614 0.2526 0.3395 0.1712 0.2156 0.7604
USD_SGD 0.0434 0.1260 0.1219 0.1236 0.1910 0.7305
USD_ZAR 0.2555 0.2741 0.2420 0.2576 0.2401 0.9430

Average 0.2231 0.1958 0.2259 0.2440 0.2384 0.7769
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Table 6.6: Statistical test results for average Sharpe ratio according to the non-parametric
Friedman test with the Hommel post-hoc test of multi-threshold (c) vs other single thresh-
old based trading strategies. 10-minute interval out-of-sample date. Significant differences
between the control algorithm (denoted with (c) and the algorithms represented by a row
at the a = 5% level are shown in boldface indicating that the adjusted p value is lower
than 0.05.

Trading strategies Average Rank Adjusty Homm
Multi-threshold (c) 1.0000 -

Threshold4 3.4500 3.4541E-5
Threshold5 3.7000 1.0046E-5
Threshold3 4.1000 4.8184E-7
Threshold1 4.2000 2.5353E-7
Threshold2 4.5500 9.8300E-9

Table 6.7: Average Maximum drawdown (% ) result for trading strategies of individual
single threshold strategies and multi-threshold strategy. 10-minute interval out-of-sample
data. 20 different currency pairs and 10 calendar months each representing the physical
dataset. 5 DC dataset were generated using 5 dynamically generated thresholds tailored
to each DC dataset. Best value for each row (currency pair) is shown in boldface.

Dataset Thresholdl Threshold2 Threshold3 Threshold4 Threshold5 Multi-threshold

AUD_JPY 0.7447 0.2441 0.2796 0.2773 0.5053 0.0262
AUD_NZD 0.3235 0.2914 0.2642 0.2910 0.1143 0.0177
AUD_USD 0.2810 0.1617 0.2001 0.3173 0.2748 0.0261
CAD_JPY 0.1864 0.2537 0.2720 0.1687 0.3897 0.0124
EUR_AUD 0.5627 0.4365 0.0977 0.2828 0.2400 0.0087
EUR_CAD 0.2956 0.3051 0.0928 0.0964 0.1094 0.0293
EUR_CSK 0.0007 0.0302 0.0076 0.0383 0.0706 0.0000
EUR_GBP 0.1635 0.2833 0.0445 0.1823 0.1492 0.0077
EUR_JPY 0.2932 0.3777 0.2856 0.3772 0.3927 0.0391
EUR_NOK 0.1774 0.2326 0.1978 0.4144 0.0894 0.0112
EUR_USD 0.1499 0.2006 0.0973 0.0832 0.0487 0.0303
GBP_AUD 0.3190 0.2690 0.4058 0.4627 0.3772 0.0074
GBP_CHF 0.1020 0.1239 0.4167 0.1069 0.0923 0.0035
GBP_USD 0.1311 0.1223 0.0753 0.1477 0.0598 0.0057
NZD_USD 0.1884 0.1971 0.2058 0.2131 0.1720 0.0342
USD_CAD 0.1451 0.0469 0.2685 0.1434 0.3030 0.0353
USD_JPY 0.2563 0.3516 0.2688 0.3132 0.1097 0.0160
USD_NOK 0.2655 0.3375 0.6848 0.3467 0.3476 0.0243
USD_SGD 0.0383 0.0354 0.1351 0.1351 0.1890 0.0071
USD_ZAR 1.1300 1.0217 1.3708 1.3680 1.0740 0.0196

Average 0.2877 0.2661 0.2835 0.2883 0.2554 0.0181
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Table 6.8: Statistical test results for average maximum drawdown according to the non-
parametric Friedman test with the Hommel post-hoc test of multi-threshold (c) vs other
single threshold based trading strategies. 10-minute interval out-of-sample date. Significant
differences between the control algorithm (denoted with (c) and the algorithms represented
by a row at the a = 5% level are shown in boldface indicating that the adjusted p value is
lower than 0.05.

Trading strategies Average Rank Adjusty Homm
Multi-threshold (c) 1.0000 -

Threshold5 3.7500 3.3460E-6
Threshold3 3.9000 1.8983E-6
Threshold1 3.9000 1.8983E-6
Threshold2 4.0000 1.2655E-6
Threshold4 4.4500 2.7455E-8

Table 6.9: % Average Standard Deviation (SD) result for trading strategies of individual
single threshold strategies and multi-threshold strategy. 10-minute interval out-of-sample
data. 20 different currency pairs and 10 calendar months each representing the physical
dataset. 5 DC dataset were generated using 5 dynamically generated thresholds tailored
to each DC dataset. Best value for each row (currency pair) is shown in boldface.

Dataset Thresholdl Threshold2 Threshold3 Threshold4 Threshold5 Multi-threshold

AUD_JPY 0.4511 0.5528 0.5686 0.5502 0.4419 0.5334
AUD_NZD 0.2481 0.1745 0.1339 0.0882 0.0939 0.1048
AUD_USD 0.2142 0.2355 0.2512 0.2939 0.3751 0.1945
CAD_JPY 0.3759 0.3256 0.3656 0.2963 0.2130 0.3167
EUR_AUD 0.2798 0.2698 0.1849 0.1667 0.1491 0.1571
EUR_CAD 0.2184 0.1827 0.1910 0.2509 0.1993 0.2714
EUR_CSK 0.0144 0.0247 0.0087 0.0301 0.0380 0.0418
EUR_GBP 0.0898 0.1465 0.0250 0.0846 0.0802 0.0812
EUR_JPY 0.2309 0.2323 0.2104 0.2762 0.2718 0.1408
EUR_NOK 0.1155 0.1676 0.0993 0.1956 0.1349 0.0863
EUR_USD 0.0898 0.1326 0.0859 0.0577 0.0311 0.0884
GBP_AUD 0.2618 0.1671 0.2520 0.3044 0.2601 0.1867
GBP_CHF 0.1021 0.1575 0.2216 0.1277 0.1421 0.1647
GBP_USD 0.1104 0.1164 0.0841 0.1188 0.0993 0.1073
NZD_USD 0.2209 0.2201 0.2944 0.3090 0.2113 0.1483
USD_CAD 0.1218 0.0676 0.2414 0.1647 0.2023 0.1356
USD_JPY 0.2053 0.2749 0.2051 0.1725 0.1658 0.1186
USD_NOK 0.1543 0.1999 0.4327 0.1649 0.2033 0.1299
USD_SGD 0.0651 0.0721 0.0868 0.1636 0.1629 0.0925
USD_ZAR 0.4146 0.4244 0.5034 0.6268 0.3746 0.1764

Average SD 0.1992 0.2072 0.2223 0.2221 0.1925 0.1638
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Table 6.10: Statistical test results for average Standard deviation according to the non-
parametric Friedman test with the Hommel post-hoc test of multi-threshold (c) vs other
single threshold based trading strategies. 10-minute interval out-of-sample date. Significant
differences between the control algorithm (denoted with (c) and the algorithms represented
by a row at the a = 5% level are shown in boldface indicating that the adjusted p value is
lower than 0.05.

Trading strategies Average Rank Adjusty Homm
Multi-threshold (¢)  2.6999 -

Threshold5 3.0500 0.5541
Threshold1 3.5500 0.3016
Threshold3 3.6500 0.2262
Threshold2 3.8500 0.2010
Threshold4 4.2000 0.0561

Table 6.11: Average computational times per trend for single threshold strategy and multi-
threshold strategy

Trading strategies Single threshold Multi-threshold

Classification ~ 65 mins ~ 330 mins
Estimation ~ 5.45 mins ~ 5.45 mins
GA optimisation —- ~ 7 mins
Trading ~ 3 secs ~ 9 secs

training our GA based strategy. The computation time was measured on a non-
dedicated! Red Hat Enterprise Linux (Maipo) with a 24 core, 2.53 GHz processor
and 24 Gigabit memory. Although auto-WEKA, the tool for our classification step
can be executed using multiple threads of concurrent execution, we chose to run serial
mode using a single CPU core due to limitation on hardware resources. Beside the
classification step, we acknowledge that improvements can be made in computation
time through parallelisation of the different steps that make up the trading strategy
framework (Brookhouse, Otero and Kampouridis 2014; Ong and Schroder 2020). We

do not consider the additional time to be a significant drawback as the framework

!There were other processes unrelated to the experiment running on the server at the time the
experiments were performed
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is used off-line, therefore the significant improvement observed in trading results,

outweigh any extra computational time needed.

6.4 Summary

Based on our experimental results, we are able to reach the following conclusion.

Viewing data from multiple perspectives augments insight into price movement.
As we observed in Tables 6.3 and 6.5, profit obtained trading using a multi-threshold
strategy outperformed single threshold 2 and 4 folds respectively. The statistical test
performed showed that that the increase in profit is statistically significant. In addi-
tion, having better insight into price movement enables traders make better decisions
without increasing risk. We were able to achieve afore mentioned profit without in-
creasing risk. As we observed in Table 6.10, although multi-threshold strategy was
unable to statistically outperform single thresholds in standard deviation risk mea-
sure, it was ranked first, and we consider this to be a positive result.

Optimisation of individual threshold recommendation is beneficial. Optimising
both the trading actions and the forecasted trend reversal point from multiple thresh-
olds using machine learning techniques is an effective way of developing profitable
strategies without increasing risk. We also observed that Genetic algorithm, an opti-
misation technique is a tool that can be used in performing multiple recommendation

optimisation successfully.



Chapter 7

Conclusion

In this thesis, we focused our research on: (1) extending the types of discoverable
relationships between DC and OS event length; (2) Identifying two kinds of DC
trends; DC trend that compose of DC and OS event and DC trend of only DC event;
and (3) developing a novel trading strategy that optimises recommendation from
individual DC thresholds.

The aim in (1) was to discover equations that express richer relationships between
DC event length and OS event length using symbolic regression GP approach. Pre-
vious approaches discovered linear relationships. With our approach, we were able
to discover more complex relationships that could be linear or non-linear tailored to
a specific dataset. This resulted in an improvement in OS event length estimation
accuracy and, consequently, led to improvements in DC trend reversal forecasting
accuracy'. In addition, the improved forecasting model was embedded in a trading
strategy and resulted in increased trading returns at reduced risk.

To further improve our DC trend reversal forecasting accuracy, in (2) we made the

!By adding estimated OS event length to the DC event length known at DCC point we can
forecast trend reversal point
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distinction between DC trends that end at the direction change confirmation point
and others that continue beyond the said point. We extended the trend reversal
forecasting algorithm by introducing a classification step that categorises DC trends
into two kinds, 1) composed of DC and OS event, and 2) composed of only DC
event. This knowledge significantly improved trend reversal estimation accuracy as
OS event length estimation was calculated only when a trend is categorised to have
one. Additionally, we dynamically selected threshold for sampling event series from a
pool of thresholds by choosing the threshold with the best trend reversal forecasting
accuracy in training.

In (3), we developed a GA based trading strategy that optimised trading actions
and trend reversal point recommendations from multiple thresholds. Our approach
was compared with results from a single threshold trading strategy. Results showed
that further increase in profitability and reduction in risk is achieved by the multi-

threshold trading.

7.1 Contributions

To tackle the problem of forecasting trend reversal in directional changes, we started
by proposing a novel symbolic regression GP (SRGP) that estimated the length
of an OS event based on the relationships between DC and OS event lengths. Our
approach led to the improvement in OS event length estimation accuracy (Adegboye,
Kampouridis and Johnson 2017). The estimation error of our SRGP was compared
to those of other OS event length estimation algorithms in the literature (Glattfelder,
Dupuis and Olsen 2011; Kampouridis and Otero 2017). The results showed that our
SRGP statistically significantly outperformed them. Given the enhanced OS event

length estimation to DC event length, we were also able to improve the accuracy
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at forecasting DC trend reversal. The algorithm was introduced as the forecasting
engine in an existing multi-threshold trading strategy. The trading strategy recorded
statistically significant profit in comparison to technical indicator based strategies,
buy-and-hold and the original version of the strategy that used a different DC-based
forecasting engine.

Despite the significant improvements by our approach for forecasting trend re-
versal, we identified two limitations which we addressed in our second contribution
(Adegboye and Kampouridis 2021; Adegboye, Kampouridis and Otero 2021). The
first limitation was the assumption that all DC trends are composed of DC and OS
events. Empirical observation showed DC event series could have as little as 14.77%
OS events even though this is threshold dependent. Therefore, OS event estimation
should be done only when a DC trend is expected to have an OS event. The second
limitation was the use of the same fixed-sized thresholds across the dataset which
will not necessarily capture the most significant price events. We tackled these lim-
itations by introducing a classification step before estimating OS event length. We
estimated OS event length only when DC trends are classified to consist of DC and
OS events. Otherwise, trends are considered to have only DC events. We then sam-
pled events-series using tailored thresholds. We generated a pool of thresholds and
evolved SRGPs for each threshold under perfect foresight. From the pool, we selected
the threshold associated with an SRGP that had the least root mean squared error
(RMSE) as the trading threshold.

Our results showed that this approach led to further statistically significant im-
provement to trend reversal forecasting accuracy after comparing with other known
DC-based trend reversal forecasting algorithms. The results showed that improve-
ment to trend reversal forecasting accuracy was achieved and confirmed the impor-

tance of carefully selecting thresholds and estimating OS event length only when it
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is known that an OS event exists.

To show that our improved trend reversal forecasting algorithm led to improved
trading returns and reduced risk, we developed a new trading strategy. We tested
12 versions of the strategy embedded with different DC trend reversal forecasting
algorithms. The first three forecasting algorithms assumed that all DC trends have
corresponding OS event and estimated OS event length according to the approaches
proposed by Glattfelder, Dupuis and Olsen (2011); Kampouridis and Otero (2017);
Adegboye, Kampouridis and Johnson (2017). The second three set of forecasting
algorithms introduced our classification step to the three aforementioned forecasting
approaches and estimated OS event length only when a DC trend is classified to
have an OS event. The third three set of forecasting algorithms probabilistically
categorised DC trends and estimated OS event length according to the approaches
proposed by Glattfelder, Dupuis and Olsen (2011); Kampouridis and Otero (2017);
Adegboye, Kampouridis and Johnson (2017), respectively. The last three set of fore-
casting algorithms sampled event series using approaches proposed by Glattfelder,
Dupuis and Olsen (2011); Kampouridis and Otero (2017); Adegboye, Kampouridis
and Johnson (2017), then ignored the OS events, trading at the DCC point. We mea-
sured average return, Sharpe ratio and Maximum Drawdown (MDD). In general, the
return of the variants that combined a classification model with an OS event length
estimation model outperformed the others. Specifically, the Sharpe ratio result of our
strategy (i.e., combined classification and SRGP models) statistically significantly
outranked all the other strategies. Similarly, the Sharpe ratio result statistically
outperformed seven technical analysis based strategies including buy-and-hold. The
risk measure comparison (i.e., MDD) showed that our strategy approach outranked
other strategies, but the performance was not statistically significant in comparison

to other versions of the strategy that introduced classification. The results showed
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that finding richer relationships between DC and OS event lengths is beneficial for
maximising returns and reducing risk.

Finally, as our third contribution in Chapter 6, we proposed a multi-threshold
trading strategy that optimised trading recommendations from individual thresholds.
The proposed trading strategy addresses the limitation of our single threshold based
trading strategy, which could act on only a single type of event. The ability of a
strategy to perceive and act on different types of events has the added advantage
of making robust trading decision as the information from multiple thresholds is
used to make decision. This was evident in the trading result reported where the
multi-threshold trading strategy statistically significantly outperformed individual

thresholds in both profit and risk measures.

7.2 Future Research

Although we were able to significantly improve trend reversal forecasting, future in-
vestigation is required in two areas for the approach to realise its full forecasting
potential. The classification step consumes around 96% of the computational time
that is required to create a forecasting model. It would be relevant to investigate
alternative classification techniques that can generate classification models of com-
parable accuracy at reduced computational time. By doing this, the forecasting
algorithm will be able to transition from an offline process to an online one. We also
leave for future work the experimentation with Auto-WEKA in the multi-threaded
mode for improvement in computational time spent on the classification step.

We successfully forecasted DC trend reversal using 10-minutes physical time Forex
data. It is yet to be seen whether similar performance can be achieved in other

markets (i.e., commodities, bond, indices and stocks, cryptocurrency) or not. It
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will therefore be interesting to investigate DC trend reversal forecasting in other
markets using our approach. The data used for this work might be relatively old
(i.e., between 5 and 7 years), it will be interesting to experiment with more recent
data. Additionally, our work focused on trend reversal forecasting improvement, it
will be worthwhile to evaluate the robustness of our approach at forecasting trending
reversal in higher frequency data such as 1-minute physical time data and tick-data.

The final area of research that can be investigated further is the enhancement
of our GA-based trading strategy framework. A potential limitation of our current
framework is the selection of the best 5 thresholds as genes of our GA individuals.
It could be the case that few or more genes are required. Therefore, further studies
investigating variable-sized individuals in the GA population are warranted. This can
be realised in such a way that chromosome size is one of the optimisation objectives.
Additionally, in our current implementation, the total budget was used for every
transaction. Future studies should address it by optimising minimum and maximum
quantity to trade per transaction and dynamically adjust the value during trading
using a reward/penalty system. Finally, future studies could focus on combining
intrinsic and physical time scale approaches in a trading strategy to elucidate whether
the combination could lead to improvement in trading returns and reduction in risk or
not. It could be done by optimising recommendations from both technical indicators

and multiple thresholds in the GA based trading strategy.
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