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Abstract
This study explores the integration of directional changes (DC), genetic pro-
gramming (GP), and multi-objective optimisation (MOO) to develop advanced
algorithmic trading strategies. Directional changes offer a dynamic, event-based
approach to market analysis, identifying significant price movements and trends.
Genetic programming evolves trading rules to discover effective and profitable
strategies. However, financial trading presents a multi-objective challenge, bal-
ancing conflicting objectives such as returns and risk. We propose a novel
algorithmic trading framework, termed MOO3, which integrates genetic pro-
gramming with the NSGA-II multi-objective optimisation algorithm to optimise
three fitness functions: total return, expected rate of return, and risk. While the
use of NSGA-II itself is well-established, our contribution lies in how we apply it
within a trading context that combines (i) directional changes, (ii) genetic pro-
gramming with both DC-based and physical-time indicators, and (iii) a modified
Sharpe Ratio for post-optimisation strategy selection based on trader prefer-
ences. Utilising indicators from both paradigms allows the GP algorithm to create
profitable trading strategies, while the multi-objective fitness function allows it
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to simultaneously optimise for risk. A definitive strategy is chosen from Pareto-
optimal solutions using the modified Sharpe Ratio, allowing traders to prioritise
multiple objectives. Our methodology is tested on 110 stock datasets from 10
international markets, aiming to demonstrate that the multi-objective frame-
work can yield superior trading strategies with lower risk. Results indicate that
the MOO3 algorithm consistently and significantly outperforms single-objective
optimisation (SOO) methods, even when the same SOO criterion is employed for
choosing a single, definitive investment strategy from the Pareto front.

Keywords: Directional changes, Genetic programming, Algorithmic trading,
Multi-objective optimisation

1 Introduction

Algorithmic trading has attracted increased attention from investors over the last

few years. The adaptability of the market to new algorithms has led to the constant

pursuit of novel and efficient trading strategies. One such algorithm is directional

changes (DC), which is an event-based technique that summarises physical time series

into a series of significant events. These significant events are defined as the price

movement over a user-defined threshold θ, such as a price change of 0.5%. Under the

DC framework, the market is divided into uptrend and downtrend segments, each

characterised by ‘directional change’ (DC) and ‘overshoot’ (OS) events. The DC event

is defined as the span from the beginning of a trend segment up until the price moves

by at least θ in the trend’s direction. Following this, the OS event is then defined as

the remainder of that segment; the start of the next observed DC event marks the

end of the previous segment, and the start of the new one where the trend direction

has reversed.

In addition, Genetic programming (GP), which belongs to the family of evolu-

tionary algorithms, has shown great promise in developing effective trading strategies

(Brabazon et al, 2020). GP evolves populations of trading rules or models through

processes analogous to natural selection. This evolutionary approach enables the dis-

covery of potentially profitable trading strategies that might not be evident through
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traditional methods, such as strategies derived from comparing the performance of

technical analysis indicators. GP’s flexibility and adaptability make it particularly

well-suited for the dynamic and complex nature of financial markets.

Combining directional changes with genetic programming can lead to the for-

mulation of robust trading strategies (Long et al, 2022b; Long and Kampouridis,

2024). However, the financial markets present a multi-objective optimisation (MOO)

challenge, where traders often need to balance conflicting objectives such as max-

imising returns and minimising risk. Multi-objective optimisation techniques provide

a framework for simultaneously optimising such competing goals, yielding a set of

Pareto-optimal solutions that offer various trade-offs. Ever since DC was proposed by

Guillaume et al (1997), numerous studies have demonstrated its effectiveness in creat-

ing trading strategies that achieve high returns at relatively low risk (Bakhach et al,

2016b; Ao and Tsang, 2019; Salman et al, 2022).

Most existing DC-based trading strategies rely on single-objective optimisa-

tion methods or aggregate metrics such as the Sharpe ratio. These methods often

oversimplify the trade-off between conflicting objectives like return and risk, poten-

tially leading to sub-optimal strategies. Furthermore, while genetic programming has

demonstrated effectiveness in evolving robust trading rules, previous studies typically

focus on maximising returns or minimising risk independently, neglecting the simulta-

neous optimisation of both. Existing multi-objective optimisation (MOO) techniques

in algorithmic trading tend to overlook the integration of event-based DC frameworks

with evolutionary methods like GP, limiting their adaptability in volatile and dynamic

market environments.

To address these limitations, this study proposes a novel framework for algorith-

mic trading, named MOO3 (Multi-Objective Optimisation with three objectives),

which integrates directional changes, genetic programming, and multi-objective opti-

misation to develop and evaluate advanced trading strategies. The framework uses
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genetic programming (GP) in conjunction with the well-known NSGA-II algorithm

(Deb et al, 2002) to simultaneously optimise three key fitness criteria: total return,

expected rate of return, and risk. Although NSGA-II is a well-established method

in the field of multi-objective optimisation, the novelty of this work lies in its

tailored application within a trading context that brings together several distinct

elements. Specifically, our approach uniquely integrates: (i) the directional changes

(DC) paradigm, which offers a data-driven method for analysing price movements;

(ii) genetic programming models that incorporate both DC-based features and con-

ventional time-series indicators, thereby enriching the search space with diverse

representations of market behaviour; and (iii) a modified version of the Sharpe Ratio

that is used for selecting strategies after optimisation, enabling customisation based

on trader-specific preferences for risk and return.

We run experiments on 110 datasets (stocks) from 10 different international

markets. Our aim is to show that the utilisation of a multi-objective optimisation

framework leads to more profitable trading strategies at low risk.

The rest of this study is organised as follows. Section 2 introduces the neces-

sary background information on DC, Genetic Programming, and NSGA-II. Section

3 presents related work on directional changes and multi-objective optimisation in

algorithmic trading, while Section 4 presents the methodology applied in this paper.

Section 5 discusses the experimental setup, as well as the benchmarks and datasets

used in this work. Section 6 is dedicated to presenting the findings from our exper-

iments, and finally, Section 7 concludes this paper and discusses potential future

work.

2 Background

This section provides background information on key concepts of our article, namely

directional changes, NSGA-II and genetic programming.
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2.1 Directional changes

The DC approach is an event-based approach for summarising market price move-

ments. In contrast to the physical time approach, where time is divided into fixed

intervals (e.g. daily closing price), DC summarises the price data into a series of upturn

and downturn events, which are detected when the price moves over a user-defined

relative threshold θ. That is, the time point at which the current price increases

(decreases) by θ% relative to the most recent minima (maxima), marks a new upturn

(downturn) DC event, starting at the most recent minima (maxima) and ending at

the current time point in question. Until the next downturn (upturn) DC event is

observed, the rest of the uptrend (downtrend) is considered the overshoot (OS) event.

In conclusion, the DC framework could be regarded as a series of downturn DC,

downturn OS, upturn DC, and upturn OS events.

From the structure of DC, it becomes evident that the user-defined threshold holds

a position of paramount importance within the DC algorithm. Different threshold val-

ues lead to different series of events for the same fixed-scale price series. Specifically,

higher threshold values result in fewer but more significant DC events, whereas lower

threshold values produce smaller and more frequent DC events. This is a very impor-

tant property of the DC framework, since different traders may have different opinions

as to what constitutes ‘significant’ as opposed to ‘non-significant’ events from their

point of view. The presence of such a threshold, therefore, inherently provides the DC

framework with the required flexibility, which allows traders to adapt the algorithm

so as to best match their needs.

Figure 1 presents an example of how different thresholds could impact the same

fixed-scale price series. The green line represents a series of DC and OS events when

using a threshold of 1%, while the red line represents a series of DC and OS events

using a threshold of 1.5%. The original price is denoted by the blue line. When looking

at the red line, generated by the 1% threshold:
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Fig 1 An example for DC. The blue line indicates the physical time series, the red
line denotes a series of DC and OS events as defined by a threshold of 1%, while the
green line denotes a series of DC and OS events as defined by a threshold of 1.5%.
DC events are depicted with solid lines, while dotted lines denote the OS events

• The interval between points A and C represents an uptrend segment, where AB

represents the DC upturn event, and BC represents the overshoot (OS) event,

• The interval between C and E represents a downtrend segment, where CD

represents the DC downturn event, and DE represents the OS event,

• The interval between E and G represents an uptrend segment, where EF represents

the DC upturn event, and FG represents the OS event, and

• The interval beyond G represents a downtrend segment, with a DC and OS event.

Similarly, when looking at the green line, generated by the 1.5% threshold:

• The interval between points A and C represents an uptrend segment, where AB′

represents the DC upturn event, and B′C represents the overshoot (OS) event,

• The interval between C and E represents a downtrend segment, where CD′

represents the DC downturn event, and D′E represents the OS event,

• The interval between E and G represents an uptrend segment, where EF′

represents the DC upturn event, and F′G represents the OS event, and
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• The interval beyond G represents a downtrend segment, with a DC event only.

Points B, B′, D, D′, F, and F′ are referred to as DC confirmation points, as these

are the moments in time that one can confirm that a directional change has occurred.

However, it is important to note that DC events can only be confirmed retrospectively,

i.e. once the price has changed by at least θ. For example, point D is a downwards DC

confirmation point, as it represents a change of θ relative to the previous tallest peak

occurring at C. Before reaching point D, however, the trader could not have known

they were in a DC downturn interval, but would instead have still been under the

assumption that the market is in an upwards OS event, which started at point B.

A major advantage of the directional changes paradigm is that it allows traders to

focus on meaningful market shifts (defined by the threshold θ), which reduces exposure

to noise-driven trading risks. By focusing on looking at significant events rather than

data under fixed-time methods, the algorithm adapts dynamically to different market

conditions, hence mitigating risks associated with sudden price changes.

To conclude, directional changes is an alternative to physical time price summaries,

which focuses on important events that occur in the market. Under DC frameworks,

price movements can be viewed from a new (event-based) perspective that would not

have been possible under physical time (Glattfelder et al, 2011).

2.2 Genetic programming

Genetic Programming (GP) is a bio-inspired technique that evolves computer pro-

grams to tackle problems or execute tasks. It incorporates key elements for an effective

global search: (i) instead of focusing on a single solution, GP operates with a popula-

tion of candidate solutions (individuals), (ii) the fitness function evaluates the quality

of each individual in the population, favoring higher-quality solutions for progres-

sion to the next generation, and (iii) genetic operators explore the solution space by

generating new offspring individuals through a stochastic selection process based on

fitness.
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Algorithm 1 High-level pseudocode of a genetic programming algorithm.
GP(p, Fitness, pc, pm)

p: population size
Fitness: determines the quality of solutions
pc: crossover rate

1: Initialise population: P ← Generate p individuals (candidate solutions) at random
2: Evaluate: for each i in P , calculate Fitness(i)
3: while termination condition not satisfied do
4: Pg ← Create new (empty) population for generation g
5: Mating: probabilistically select p individuals from P . For each of these:

i. Toss a biased coin, with bias = pc
ii. if Heads then perform crossover with another probabilistically selected

individual
iii. otherwise perform mutation on the selected individual
iv. finally add the resulting offpsring to Pg

6: Evaluate: for each i in Pg, calculate Fitness(i)
7: Survival: P ← return the best p individuals from the set P ∪ Pg

8: end while
9: Return the individual with the highest fitness from P

Algorithm 1 outlines the high-level pseudocode of GP. It initiates a population of

p candidate solutions, assessed by a fitness function. This fitness function is problem-

specific. In each iteration (within the while loop), a new population emerges by

probabilistically selecting fitter individuals from the current population. Some undergo

crossover or mutation, introducing modifications for exploring the search space, while

others are retained unchanged. This process continues until a maximum number of

generations is reached or a (near-)optimal solution is found, serving as a termination

condition. This evolutionary approach allows GP to conduct a robust global search in

the candidate solution space, minimising the risk of being confined to local minima.

Details about the specific GP we use in our experiments are given in Section 4.

2.3 NSGA-II

In the real world, there are plenty of problems that require a trade-off solution among

multiple conflicting objectives. For instance, in the field of finance, traders seek a

balance between profit and risk. They look for a trading strategy that combines high
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profit with low risk. In other words, they are solving a problem that maximises a

profit objective and minimises a risk objective. It is vital to recognise that profit and

risk represent two inherently conflicting objectives, where, traditionally, high profit

is often associated with high risk, while low risk tends to correlate with reduced

profit. Usually, traders consider profit and risk together, trying to achieve a good

balance between the two. One way of tackling this problem is by using aggregate

metrics; these involve combining all the different objectives into a single mathematical

expression, to be optimised directly as a single objective. A common example of such

an aggregate metric is the Sharpe ratio (Sharpe, 1994), defined as the ratio of the

expected rate of return over the risk. Fusing multiple objectives in this manner can be

appealing, as this can simplify the evaluation of the genetic algorithm considerably.

It also easily allows one to specify ‘weights’ for each objective, denoting the extent to

which an investor values each of the different components of the problem. However,

using such a predefined ‘recipe’ for condensing multiple factors into a single number,

risks oversimplifying the complex relationship which underlies the different objectives,

and thus risks misrepresenting the performance evaluation of the investment portfolios

in question during the algorithmic process. On the other hand, in a multi-objective

optimisation (MOO) approach, the different objectives (e.g. both return and risk) are

optimised independently.

NSGA-II (Non-dominated Sorting Genetic Algorithm II) (Deb et al, 2002) is a

state-of-the-art genetic algorithm, effectively an extension of the traditional single-

objective genetic algorithm approach, allowing one to efficiently tackle problems with

multiple, potentially conflicting objectives. Its key innovation is the non-dominated

sorting technique, which relies on the concept of Pareto dominance in order to enforce

a ranking among the pool of potential candidate solutions (in the context of GP, these

would reflect different investment strategies, for instance). A candidate solution is said

to Pareto-dominate another solution if it is better in at least one objective, and not
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worse in any other objective. At any point during the course of a GP algorithm, the

population of candidate solutions can therefore be divided into two subsets: a set of

dominated ‘individuals’ (i.e. candidate solutions), for which there is at least one other

solution which Pareto dominates the former; and a set of non-dominated individuals,

where no such other dominating solution exists in the population. In this scenario, the

subset of non-dominated individuals then naturally forms a kind of “outer boundary”,

whereby the ‘inner’ individuals that find themselves surrounded by this boundary are

all effectively dominated by the points that make up the boundary. We call this bound-

ary formed by non-dominated individuals the Pareto front. NSGA-II leverages this

concept of a Pareto front, by partitioning the population into multiple fronts, each of

which is ranked according to their order of non-dominance. In other words, if we define

the primary front as having the topmost rank (i.e. rank 1), then we can obtain the

next front (i.e. rank 2), by removing all the rank 1 individuals from the population,

and recalculating the Pareto front for the remaining population. Repeating this pro-

cess until all the individuals in the population have been allocated a rank, results in

a hierarchical partitioning of the population into multiple fronts, whereby each front

consists of individuals that Pareto dominate individuals in subsequent fronts. NSGA-

II then simply uses this ranking as the main force driving the evolutionary process;

this allows the genetic algorithm to favour non-dominated solutions over dominated

ones during the mating selection process, while still maintaining diversity over gener-

ations by virtue of solutions being suitably distributed over the entire Pareto front. In

order to ensure good coverage over the whole Pareto front in this manner, NSGA-II

also introduces the concept of crowding distance, which encourages the spread of solu-

tions by considering the density of Pareto optimal solutions around each candidate,

and incorporating that information into the fitness function. The crowding distance

is calculated as the normalised Manhattan distance between the two individuals clos-

est to the solution of interest within the same front. This is effectively calculated as
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Fig 2 An example of crowding distance for a two-objective problem. The crowding
distance of solution i here is defined as the Manhattan distance of its closest neigh-
bours, denoted here as i−1 and i+1

the sum of absolute differences between the two individuals, across the various objec-

tives. An example of the crowding distance calculation for a return-risk two-objective

problem is shown in Figure 2, where points i−1 and i+1 are the two neighbouring

points of point i within the same front. The generic formula for a crowding distance

with k objectives is presented by Equation 1 below:

Crowding distance for individual i =
k∑

x=1

∣∣∣∣∣ fx(i+1) − fx(i−1)
maxj

[
fx(j)

]
−minj

[
fx(j)

] ∣∣∣∣∣ (1)

where fx(i) represents how well the i-th individual in the population performs with

respect to a specific objective ‘x’; maxj

[
fx(j)

]
is the performance of the individual for

which objective ‘x’ achieves its most favorable value (assuming a ‘maximizing’ fitness

objective); and minj

[
fx(j)

]
corresponds to the performance of the individual with

the least favourable value for ‘x’. It is worth noting that the individuals with the best

value on a particular objective are assigned the maximum crowding distance of 1 for

that component, since they lack nearby individuals with comparable fitness values.
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Once the crowding distance is obtained in the manner described above, this is

then used as a tie-breaker strategy when choosing between individuals with the same

Pareto rank. In other words, during selection, NSGA-II first compares the Pareto

front rank; the individual with the lowest (i.e. best) rank is selected for mating. For

individuals with equal Pareto front rank, the one with the higher crowding distance

is selected. Once the mating phase for that generation is complete, the algorithm

proceeds to the survival phase. For this step, NSGA-II uses a so-called “(µ + λ)”

selection strategy: once a new population of λ ‘offspring’ individuals has been formed

via genetic operations performed on the original population of µ ‘parent’ individuals,

the entire pool of µ+λ individuals is then evaluated and ranked based on their Pareto

front rank and crowding distance. The topmost µ individuals from this pool are then

selected to become the next generation of ‘parent’ individuals. In other words, by the

end of the selection process, an equal number of individuals with lower Pareto front

rank and higher crowding distance survive as the next population. Figure 3 presents a

flowchart of the NSGA-II algorithm in the context of this work on algorithmic trading.

3 Literature review

3.1 Directional changes

Algorithmic trading has traditionally focused more on physical time data as the main

algorithmic substrate in the academic literature (Long et al, 2022a; Christodoulaki

et al, 2022, 2023). Nevertheless, newer literature seems to suggest that the use of

directional changes has gained significant traction in recent years. The first work to

introduce the concept of directional changes (DC) in financial markets was Guillaume

et al (1997). The DC framework was subsequently formalised by Tsang (2010). Fol-

lowing this, the DC framework found wide application in the development of trading

strategies within the Foreign Exchange (FX) market, due to its ability to represent

irregularly spaced high-frequency tick data in an intuitive manner. For example, Aloud
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Fig 3 Flowchart of the NSGA-II algorithm. n represents the current generation and
N indicates the number of generations (50 in this paper)

(2012, 2015) developed trading strategies that reframed the widely used trend follow-

ing and contrarian strategies under the DC framework; their work focused on how

traders will react, and how adaptable such DC-based strategies are in response to FX

market movements. Later, Aloud (2016a) built an automated DC trading strategy

that could learn the size and direction of periodic patterns from historical asset prices.

Similarly, Bakhach et al (2016a) introduced the Backlash Agent, a novel contrarian

trading strategy, exhibiting strong performance within the FX market.
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Additionally, Glattfelder et al (2011) discovered 12 ‘scaling laws’ that could hold

under 13 foreign exchange pairs.1 Based on this study, Aloud and Fasli (2016) pro-

posed an additional four scaling laws under the DC framework; their work entailed an

assessment of the efficacy of these scaling laws in the context of the FX market. Other

work by Ao and Tsang (2019) similarly focused on using scaling laws, by exploring

the relationship between DC and OS events.

More recently, machine learning has gained popularity within directional changes.

Gypteau et al (2015) was the first work to use a GP-based approach to predict the

future price movement of financial markets. Subsequently, Adegboye and Kampouridis

(2021) and Adegboye et al (2021) applied classification and regression algorithms to

predict when a trend would reverse, while Adegboye et al (2023) used a genetic algo-

rithm to optimise the recommendations of multiple DC thresholds. Rostamian and

O’Hara (2022) employed a Convolutional Neural Network Long Short-Term Mem-

ory (CNN-LSTM) model to predict DC events. Long et al (2022b) demonstrated the

advantages of combining indicators derived from directional changes alongside indica-

tors from technical analysis. Finally, Rayment and Kampouridis (2023, 2024) applied

reinforcement learning to learn from directional changes in FX data.

While these promising results highlight the effectiveness of DC-based approaches

in both the FX and stock markets, with or without the utilisation of machine learn-

ing algorithms, a notable gap emerges. To the best of our knowledge, all published

DC works utilise single objectives, or at most, aggregate metrics that combine multi-

ple objectives into a single metric, such as the Sharpe ratio. As previously mentioned,

such aggregate metrics have the disadvantage of oversimplifying and potentially mis-

representing the relationship between the different components involved, therefore any

strategies developed on the basis of such metrics could be sub-optimal. Therefore, to

fill the above gap, we proposed a novel NSGA-II algorithm directly optimising TR,

1Scaling laws are empirical observations, similar to stylised facts in physical time frameworks, which are
commonly observed in markets. Scaling laws capture statistical regularities and tendencies in financial data.
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E[RoR], and risk under the DC framework. The proposed method enables the discov-

ery of a diverse set of Pareto-optimal solutions that balance a trade-off among the

three fitness functions.

3.2 Multi-objective optimisation

Optimisation techniques are commonly applied in financial decision-making, ranging

from wealth allocation strategies to algorithmic trading and multi-objective optimisa-

tion (MOO), as explored in this study (Chen et al, 2022; Leung and Wang, 2020). In

particular, MOO has attracted a lot of attention in the financial literature (although

not in the DC domain as of yet) and in algorithmic trading in particular. The rea-

son behind this is that the real-world traders naturally pursue a trade-off between

the conflict objectives, such as maximum excess return and minimum risk. How-

ever, most traders do not have a precise expectation of the objectives. Furthermore,

Lai et al (2021) show that the low volatility effect is primarily driven by stocks with

high specific risks, rather than a monotonic relationship between lower volatility and

higher returns. To deal with this issue, Leung and Wang (2020) used a Collaborative

Neurodynamic Optimisation approach for bi-objective portfolio selection, where they

trained an ensemble of neural networks to predict asset allocation using a bi-objective

function considering both return and risk. The ensemble collaborates during train-

ing to explore a diverse set of solutions, and the final set of solutions then undergoes

Pareto filtering in order to obtain the final set of Pareto-optimal solutions. Similarly,

Wu and Tsai (2014) applied three fuzzy goal programming models to simulate the

uncertain satisfaction of trades when balancing error minimisation and excess return

maximisation. The proposed model successfully identified an index tracking portfolio

with a lower error while maintaining a similar excess return with the 0050 index fund,

one of the most popular exchange-traded funds in Taiwan. Moreover, Wu et al (2022)

proposed a three-step model to help traders determine the number of stocks in the
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portfolio including the stock filter. All the above studies addressed the challenge that

real-world traders often struggle to find optimal solutions and introduced improve-

ments to assist them in determining suitable solutions. Although this work does not

involve portfolio management, it also motivates us to propose trader-preference sce-

narios to help traders select the optimal solutions from the Pareto front generated by

the multi-objective optimisation algorithm.

Additionally, searching such trade-offs among the conflict objectives requires

robust optimization techniques, where evolutionary algorithms (EAs) have been

widely applied in algorithmic trading, particularly in multi-objective optimization

tasks. Recent works in the area include de Almeida et al (2016), which proposed a

differential evolution model analyzing four technical indicators, aiming to maximise

profit, and minimise the level of risk and the number of trading actions. Furthermore,

Kim and Enke (2016) proposed a rule change trading system using a genetic algorithm

to maximise profit and payoff ratio. More recently, Atiah and Helbig (2019) conducted

an in-depth study regarding the performance of three state-of-the-art dynamic multi-

objective optimisation algorithms. They evaluated dynamic vector-evaluated particle

swarm optimisation, a multi-objective particle swarm optimisation with crowded dis-

tance, and a dynamic non-dominated sorting genetic algorithm in the foreign exchange

market. This particular work used NSGA-II, which is also the chosen MOO algo-

rithm in our paper. In addition, Karasu et al (2020) developed a new model based on

support vector regression with a wrapper-based feature-selection approach employing

multi-objective optimisation. The primary aim of their work was to forecast future

prices of crude oil, demonstrating the potential of this advanced methodology in pre-

dictive analysis. Noticing that feature engineering was overlooked in previous studies,

Zeng et al (2023) proposed a random forest-based algorithm (I-NSGA-II-RF) that
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incorporates a three-stage feature engineering process. Their approach aims to iden-

tify optimal feature sets that influence stock prices, achieving higher accuracy and

lower computational time compared to deep learning models.

With regards to directional changes, Long et al (2023) was the first work to intro-

duce multi-objective optimisation within a DC framework. Our current article extends

Long et al (2023) in several ways: (i) we examine a three-objective GP problem instead

of a two-objective one, and introduce a corresponding three-objective variant of the

Sharpe Ratio; the latter is used in two ways in this work: one, as the fitness function

in the context of an SOO strategy serving as a benchmark algorithm, and two, as a

post-MOO final decision strategy for selecting a single solution from the final front of

Pareto-optimal solutions. (ii) we double the number of datasets we experiment with.

(iii) we additionally benchmark against three standard ‘zero-crossing’ trading strate-

gies based on technical analysis indicators, together with a trading strategy using a

start-of-the-art deep learning model. We also benchmark against a Transformer-based

architecture, due to its ability to capture complex temporal dependencies in financial

data. And finally, (iv) we provide a more in-depth presentation of our methodology

and results discussion.

To sum up, evolutionary algorithms have been used in conjunction with multi-

objective optimisation in the domain of algorithmic trading; additionally, the incor-

poration of technical indicators has been proven to enhance the performance of these

algorithms, as demonstrated in prior research (de Almeida et al, 2016; Kim and

Enke, 2016). The present study builds upon these foundations by applying both

DC-based and fixed-time technical indicators in the context of the NSGA-II frame-

work, and thereby exploring the effectiveness of multi-objective optimisation under

the DC framework. As an alternative approach to summarising the stock market into

a series of significant events, DC can provide valuable insights from a new perspec-

tive while reducing market noise. Together with the traditional fixed-time technical
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indicators, the DC indicators could enrich the information used to train the proposed

MOO3 algorithms, leading algorithms to discover more stable and profitable trading

strategies.

4 Methodology

This section presents in detail the methodology followed in our work. Multi-objective

optimisation (MOO) in algorithmic trading presents several challenges that arise

from the inherently conflicting nature of financial objectives and the complexities of

real-world markets. Traders must often balance maximising returns with minimising

risk, objectives that naturally oppose each other. Additionally, financial markets are

dynamic and noisy, making the identification of stable and robust trading strategies

difficult. MOO algorithms must, therefore, not only deal with these conflicting goals,

but also adapt to the rapidly changing market conditions. In addition, another chal-

lenge in this domain is selecting a final solution from a set of Pareto-optimal solutions.

While MOO provides a diverse range of trade-offs, practitioners typically require a sin-

gle, actionable strategy. Without a structured selection mechanism, choosing from the

Pareto front can be subjective and inconsistent. Addressing these challenges is crucial

for developing practical and effective algorithmic trading strategies. Our methodology

below addresses these issues.

This study’s proposed framework directly addresses these issues by integrating

directional changes (DC) with genetic programming (GP) and using the NSGA-II

algorithm for MOO. The role of the GP algorithm is to use evolutionary techniques, to

efficiently explore the space of all possible ‘programs’ (i.e. trading recipes) that can be

defined from a predefined set of functions and terminals. In this case, the GP terminals

consist of DC-related indicators, as well as technical analysis (TA) indicators. The

end-goal of the algorithm is to evolve trading strategies, which are optimal in the

multi-objective sense; specifically, we aim to discover strategies that achieve a desirable
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balance between total return, expected rate of return, and risk. To this end, we employ

NSGA-II (Deb et al, 2002) as the main GP evolution strategy. Once the set of suitable,

Pareto-optimal solutions has been obtained via this process, we make a final, singular

choice from within that set, by using a predefined criterion designed to reflect trader

preference (i.e. the desired balance among the various objectives). By employing a

modified Sharpe Ratio (mSR), the framework provides a systematic way to select a

single strategy from the Pareto front, tailored to individual trader preferences, thus

enhancing the usability and relevance of the generated solutions. The sections that

follow explore the different parts of the process described above in more detail.

4.1 GP Representation

As with all evolutionary approaches, GP is a population-based approach, meaning that

it requires a population of ‘individuals’, which evolves over a number of generations

(i.e. iterations of the algorithm, see Algorithm 1) to adopt certain useful characteris-

tics. Individuals (here corresponding to trading ‘recipes’) are represented as computer

programs in the form of strongly-typed syntax-trees, where the tree nodes consist of

appropriate functions and terminals.

The Function set consists of the logic operators ‘AND’ and ‘OR’, and the comparison

operators ‘>’ and ‘<’. The Terminal set consists of 28 DC indicators (listed in Table 1),

28 physical time TA indicators (listed in Table 2), and an ephemeral random constant

(ERC), which assigns a random value between 0 and 1 each time one is inserted into a

GP tree. All indicators are normalised in the range [0, 1]. Figure 4 shows a sample tree

that can be produced by the GP. Note that only Part 1 is evolved by the GP, while

Part 2 remains fixed throughout the evolutionary process. The ‘root’ note is always

an “If-Then-Else” (ITE) function, which decides whether to perform a ‘Buy’ or ‘Hold’

action, based on the (boolean) outcome of the leftmost branch. In this example, the

first branch checks if the OSV indicator is greater than 0.22 and the 10-day NDC
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indicator is greater than −0.68; if both statements are true, then the leftmost branch

evaluates to true, causing the ITE function to invoke a ‘Buy’ decision. Otherwise, if

the branch evaluates to false, a ‘Hold’ decision is invoked instead. In our setup, when

the GP tree outputs a ‘Buy’ signal, a long position is opened at the next available

price. If the signal is ‘Hold’, no position is entered. For simplicity, we assume full

capital allocation per trade, executed as a market order without slippage, latency, or

partial fills. This stylised setup allows us to isolate and evaluate the effectiveness of

the evolved trading rules without introducing execution complexity.

Note that ‘Sell’ actions are not part of the GP tree. To decide when a ‘Sell’ action

will occur, we consider two things: the number of days n since the asset was bought,

and its current price, or more specifically the percentage r by which the stock price

has increased since its purchase. Specifically, our strategy for selling an asset is to sell

either after n days have already passed from the initial purchase, or when a price

increase of r% has occurred, whichever comes first. This provides a consistent and

rule-based position control mechanism for closing trades, enabling fair comparison

across evolved strategies. Note that short-selling is not allowed in this trading strategy.

Whenever a trade is completed (a buy action and a corresponding sell action have

occurred), we calculate and record the buy and sell prices, Pb and Ps, respectively.

All buy and sell actions factor in a 0.025% transaction cost.

4.2 Model evaluation

We evaluate each individual’s performance, by considering three financial metrics,

serving as the GP objectives from which suitable Pareto fronts will be obtained

(i.e. for the purposes of the NSGA-II algorithm). These metrics are: total return (TR),

expected rate of return (E[RoR]), and risk (Risk). The first two are maximisation objec-

tives, and the third one is a minimisation one. Equations 2 - 4 present the relevant

formulae:
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Table 1: DC indicators; see also Aloud (2016b).
Indicator Description Periods

(days)

TMV Total price movement; this is defined as the price movement
between the extreme point at the beginning and end of a
trend, normalised by the threshold θ.

N/A

OSV Overshoot Value; this is defined as the percentage difference
between the current price and the last directional changes
confirmation price divided by the threshold θ.

N/A

Average OSV This is the average value of OSV over the selected period. 3, 5, 10
RDC RDC represents the time-adjusted return of DC. It could be

calculated as TMV times threshold θ divided by the time
intervals between each extreme point.

N/A

Average RDC This is the average value of RDC over the selected period. 3, 5, 10
TDC This is the time spent on a trend. N/A
Average TDC This is the average value of TDC over the selected period. 3, 5, 10
NDC NDC is the total number of DC events over the selected

period.
10, 20, 30, 40,
50

CDC CDC is defined as the sum of the absolute value of TMV over
the selected period.

10, 20, 30, 40,
50

AT AT represents the difference between the time that the DC
spends on uptrends compared to downtrends over the selected
period.

10, 20, 30, 40,
50

Table 2: Physical time (technical analysis) indicators; see also Kelotra and Pandey
(2020).

Indicator Description Periods
(days)

MA Moving average for a given period. 10, 20, 30, 40,
50

CCI Commodity Channel Index, which measures the deviation of
an asset’s price from its statistical average.

10, 20, 30, 40,
50

RSI Relative Strength Index, which is a momentum oscillator to
measure the magnitude of recent price changes and determine
overbought or oversold conditions of an asset.

10, 20, 30, 40,
50

William’s %R Measures oversold or overbought conditions of an asset by
comparing the closing price of an asset to its price range over
a set period of time.

10, 20, 30, 40,
50

ATR Average True Range, which measures the volatility of an asset
by calculating the average of the true range over a set period
of time.

3, 5, 10

EMA Exponential Moving Average, which calculates a weighted
average of a series of prices over a set period of time, where
more recent prices are given greater weight in the calculation.

3, 5, 10

OBV On Balance Volume, which measures buying and selling pres-
sure, by calculating the cumulative total of an asset’s volume,
where positive volume is added to the total of an up day and
negative volume is subtracted on a down day.

N/A

PSAR Parabolic Stop and Reverse, which identifies potential rever-
sals in the direction of an asset’s price movement by placing
dots on a chart that indicate potential stop and reverse points
for a long or short position.

N/A
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Fig 4 Sample GP tree. If OSV is greater than 0.22 and NDC for 10 days is greater
than −0.68, then we get a signal for a buy action; otherwise, we hold; 0.22 and −0.68
are two random values generated by ERC

RoR(i) = (1− c) · Ps(i)− (1 + c) · Pb(i)
(1 + c) · Pb(i) · 100% (2)

TR =

∑
i

[
(1− c) · Ps(i)− (1 + c) · Pb(i)

]
(1 + c) · Pb(i0) · 100% (3)

Risk =
√

Var[RoR] (4)

where the i indices here correspond to completed trade events (i.e. where both a buy

and a sell event have taken place for a particular asset) within the period of interest,

Ps(i) refers to the sell price for that event, Pb(i) refers to the buy price for that event,
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Pb(i0) denotes the buy price of the first ever trade event for that period, and c is the

transaction cost.

The rate of return (RoR) is a measure of how profitable a particular trade turned

out to be. It is a particularly useful metric for short-term investors, as it allows them

to evaluate individual trades. The expectation E[RoR] over all such events in a given

period (e.g. the training or test periods) is therefore a measure of how profitable trades

were for that period on average, given a particular trading strategy. The total return

(TR) on the other hand, is a measure related to the overall return over a certain

period, defined as the total profit over that period, expressed relative to the purchase

price of the first event in the sequence. Note that its value is not necessarily capped at

100%. Its advantage over the E[RoR] as a metric is that, in the presence of more trade

events having a similar rate of return, the TR will be higher, accurately reflecting the

fact that the trades during that period resulted in better overall profit. Lastly, Risk

acts as an indicator of the uncertainty and potential for financial loss associated with

the fluctuation of the rate of return.

For completeness, we also introduce in Equation 5 an aggregate metric, namely

the Sharpe ratio (Sharpe, 1994), which is intended to be applied to entire portfolios

rather than individual datasets. This is defined as:

Sharpe ratio = E[R−Rf ]√
Var[R]

, (5)

where R here reflects the expected rate of return for a given portfolio, and Rf is

the risk-free rate; for the sake of simplicity, we assume here that each dataset is

adequately represented by its expected rate of return, and that Rf is constant. We

will use the Sharpe ratio in the results section to evaluate the risk-adjusted return of

each algorithm.
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4.3 Selection and Genetic operators

The GP algorithm above requires two separate selection events. The first selec-

tion event determines the ‘mating pool’, i.e. which individuals in the population will

undergo genetic operations in order to produce new ‘offspring’ (i.e. candidate solu-

tions). For this selection event, we use tournament selection as the GP selection

method. To identify the winner of a tournament event, we consider the Pareto front

rank and the crowding distance of each of the tournament ‘contestants’. Specifically,

after obtaining a number of k random individuals from the population, who are to

compete in the tournament, NSGA-II first compares the Pareto front rank; the indi-

vidual with the lowest rank ‘wins’ the tournament, and is selected for mating. For

individuals with equal Pareto front rank, the one with the highest crowding distance

is selected instead. The second selection event takes place after all mating operations

have completed, which will have resulted in λ offspring being generated from µ par-

ents. This selection step then determines which individuals will ‘survive’ to become

the next generation, using a “(µ + λ)” strategy; this effectively selects the topmost

µ individuals from the resulting µ+λ population of parents and offspring combined,

using the same fitness strategy as above (see also section 2.3).

With regard to genetic operators, we use subtree crossover and point mutation.

The former exchanges subtrees between two parent individuals; the latter randomly

changes a node of the resulting tree, which may be a function or a terminal, into

another (compatible) function or terminal respectively.

4.4 Designating NSGA-II’s final solution using a modified

Sharpe Ratio

The output of the GP at the end of the training process is not a single solution, but

an entire front of solutions, that are optimal in the Pareto sense. While obtaining

such a Pareto front is a desired property of any multi-objective algorithm in theory,
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in practice it is useful to designate a single, definitive choice from that front, as the

desired, most representative solution resulting from this process. This serves at least

two purposes. Firstly, it provides a single, final solution (i.e. trading strategy), whose

performance or quality can be evaluated and compared directly, against other trading

algorithms or strategies serving as benchmarks. Secondly, it allows the trader to select

the ‘best’ solution from the set, according to some criteria valued by the trader, namely

the differential extent to which they value each of the multiple objectives. Note that

prior to this point in the process, such a preference would not have played any part

in the genetic process.

For the purposes of selecting such a definitive solution, we define a new aggregate

metric, which effectively acts as a generalisation of the Sharpe ratio that is able to

take into account total return as well as expected rate of return and risk. We include

both total return and expected rate of return in our evaluation because they capture

complementary aspects of strategy performance. Total return reflects the cumulative

profit over the entire trading period, while expected return measures the average

profitability per trade. These two metrics may diverge depending on the number and

distribution of trades. For example, a strategy that achieves a high total return by

capitalising on a few outlier trades may still exhibit a low expected return if the

majority of trades are unprofitable. Conversely, a strategy that produces small but

consistent gains on each trade can yield a high expected return, even if the total return

remains modest due to the fixed trade size limiting cumulative profit.

In order to be able to calculate the metric, we first need to normalise the three

objectives into the range [0, 1]; we do so by considering the range of values resulting

for each objective in the final Pareto front. This ‘modified Sharpe Ratio’ (mSR) metric

is then defined as per Equation 6:

mSR =
(T̂R + 1)a × (Ê[RoR] + 1)b

(R̂isk + 1)c

(6)
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where T̂R is the normalised total return value of the particular individual, Ê[RoR]

is its normalised expected rate of return, R̂isk is its normalised risk value, and a, b,

and c are weights that determine the importance of each term in the metric, where

we impose the additional constraint here that a + b + c = 1. Normalisation of the

objectives ensures that each objective contributes equally to each term of the mSR

in terms of strength. Furthermore, it is necessary to add 1 to each normalised value

here, so that each term becomes monotonically non-decreasing as its corresponding

weight increases. Under this scheme, each term can achieve a minimum value of 1,

and a maximum value of 2. By adjusting the values of a, b, and c, we can control the

emphasis placed on each metric within the GP process. For example, a term with zero

weight will contribute a constant value of 1, thus having no influence on the end-score;

a term assigned full weight of 1 results in that term dominating the calculation and all

other terms being ignored due to the constraint. In the special case where b and c are

both equal to 0.5 (and thus a = 0), the metric disregards total return, and effectively

reduces to the square root of the Sharpe ratio (assuming normalised values). Once the

mSR values are calculated for all solutions in the Pareto front, we select the one with

the highest mSR as the final model produced by the algorithm. This model represents

the trader’s preferred trade-off among the objectives and is subsequently evaluated on

the test set.

It is important to note here that, due to the normalisation requirement, the above

metric primarily serves as a way of scoring solutions within a given Pareto front (or

population of solutions more generally); it is not a general aggregate metric that can

be used to evaluate individual solutions directly, outside of a population context,

such as in the case of the original Sharpe Ratio. If we did want to use this metric to

compare against benchmark solutions, these would first need to have their objectives

normalised within the same range, as dictated by the Pareto front of interest.
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Table 3: International stock indices considered in this study.
These represent the broader markets from which stock-level
datasets were also obtained.

Dow Jones Industrial Average (DJIA)
NASDAQ Stock Market (NASDAQ)
New York Stock Exchange (NYSE)
Russell 2000 Index
Standard and Poor’s 500 (S&P500) in the United States
Nifty Fifty (NIFTY 50) in India
Taiwan Stock Exchange Corporation (TSEC) in China (Taiwan)
DAX performance index in Germany
Nikkei 225 in Japan
Financial Times Stock Exchange 100 Index in the United Kingdom

5 Experimental set up

In this section, we present how our experiments are set up: we describe the data we

used, the benchmark algorithms / strategies against which we compare our proposed

approach, what metrics we used to evaluate performance, and how we performed

hyperparameter tuning for the algorithms involved.

5.1 Data

This study uses 110 datasets derived from 10 international stock markets listed in

Table 3. These datasets fall into two categories: (i) 100 stock-level datasets, comprising

daily closing price data for 10 arbitrarily selected stocks from each market; and (ii) 10

index-level datasets, comprising daily closing price data for the representative stock

indiex of each market (as listed in Table 3). Each dataset spans a 10-year period from

25th November 2010 to 24th November 2020, resulting in approximately 2,500 data

points per dataset. The daily closing prices were then used to generate the indicators

by using the process described earlier in Section 4. The aim of using a broad geographic

and economic spread — including markets from North America, Europe, and Asia —

is to evaluate the generalisability and robustness of the proposed algorithms across

diverse market structures and volatility conditions.
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The data was sourced from Yahoo! Finance. Our evaluation methodology involved

dividing each dataset into three separate parts: the initial 60% of the data served as

the training set, the subsequent 20% as the validation set and the final 20% as the

testing set. During parameter tuning, the algorithms were trained using the training

set and evaluated on the validation set. Once the optimal set of parameters had

been determined, the GP was trained one final time using the combined training and

validation set, and subsequently applied to the test set to assess the performance of

the model.

5.2 Benchmarks

In this paper, we propose a novel multi-objective optimisation GP, denoted here as

‘MOO3’, designed to optimise three objectives: total return, expected rate of return,

and risk. We compare our approach against the following benchmarks:

• A single-objective optimisation GP, denoted here as ‘SOO’, which uses the

‘modified Sharpe Ratio’ aggregate metric (see Equation 6) as its fitness function.

• Standard strategies relying on the straightforward application of popular tech-

nical analysis (TA) indicators, as representatives of a physical time setup:

a zero-crossing strategy based on the moving average convergence diver-

gence (MACD) indicator (Vaidya, 2020), a zero-crossing strategy of long-

and short-term moving averages of the on-balance-volume (OBV) indicator

(Deprez and Frömmel, 2024), and a threshold-crossing strategy based on the

momentum (MTM) indicator (Fong et al, 2012).

• A single-objective Transformer-based model (Vaswani et al, 2017) due to its abil-

ity to capture long-range dependencies and complex patterns in financial data.

We use the TransformerModel from the Darts Python library for financial

time series forecasting. Like all other SOO algorithms in this article, the Trans-

former uses the Sharpe ratio as its objective. We performed hyperparameter
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tuning through a grid search process as per Gal and Ghahramani (2016) and

Gao et al (2021); the final model was configured with 4 encoder layers, 4 atten-

tion heads, a dropout rate of 0.1, and a batch size of 32. It was trained for 50

epochs using an Adam optimiser with a learning rate of 5e-4. The input and out-

put chunk lengths were set to 30 and 7, respectively. Lastly, we used the Bernoulli

likelihood function to simulate a classification process. The above Transformer is

using the MOO’s trading strategy, as described earlier in Section 4.

• The passive trading strategy of buy-and-hold, which is a popular benchmark

against active trading strategies, such as the GPs utilised in this paper.

5.3 Trader-preference scenarios

As mentioned in section 4.4, while a multi-objective optimisation framework is neces-

sary and beneficial to obtain solutions that optimise conflicting objectives, in the end

a trader will require a single trading strategy to deploy. Therefore it is imperative to

be able to designate a single solution from the Pareto front, in a manner that allows

the trader to specify their preference over the various objectives. We do this here via

the modified Sharpe Ratio, as introduced in Equation 6, by modifying the different

weight values (a, b, c), where a corresponds to the weight given to total return, b to

the expected rate of return, and c to risk. In our experiments, we have focused on

seven different scenarios/setups:

[a=0.5, b=0.5, c=0] : The final solution focuses equally on total return and

expected rate of return.

[a=0, b=0.5, c=0.5] : The final solution focuses equally on expected rate of return

and risk.

[a=0.5, b=0, c=0.5] : The final solution focuses equally on total return and risk.

[a=0.33, b=0.33, c=0.33] : The final solution focuses equally on all three metrics.

[a=1, b=0, c=0] : The final solution focuses only on total return.
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[a=0, b=1, c=0] : The final solution focuses only on expected rate of return.

[a=0, b=0, c=1] : The final solution focuses only on risk.

These setups allow us to consider different extreme cases, where only one or two

metrics are being considered, and also the case where all three metrics are equally

being considered.

5.4 Parameter tuning

The parameter tuning process consists of two stages. The first stage involves opti-

mising the GP algorithm’s standard parameters, which are then used identically over

all datasets. These parameters are the maximum depth, which controls the depth of

the GP trees; the population size, which controls the number of individuals (trading

strategies) in the population; crossover probability, which determines when crossover

and mutation will take place (Probxover = 1−Probmutation); tournament size, which

controls the selection pressure of the GP algorithm; and generations number, which

determines how many generations a single GP run will run over.2 To determine these

parameters, we conducted a grid search over the parameters, and selected the param-

eter set which resulted in the best ‘performance’ over the validation dataset; in this

context, ‘performance’ was evaluated specifically as the Sharpe Ratio over the entire

portfolio. For computational reasons, rather than use all datasets, the above tuning

was only performed using 10 datasets, chosen at random. The above optimal GP

parameter set is then used universally across all datasets and scenarios, to train the

set of final GPs (i.e. specific to each dataset and scenario) on the combined train-

ing+validation sets; this is the case for both the MOO3 approach and the SOO

benchmark approach. The GP parameters and their corresponding values after tuning

are summarised in Table 4.

2Generally, in evolutionary algorithms such as the NSGA-II, larger populations tend to improve solution
diversity and prevent premature convergence. On the other hand, they increase computational cost. Similar
observations can be made to other parameters such as crossover and mutation. For example, with regards
to mutation, higher rates encourage greater exploration, but delay convergence. Hence there’s a trade-off
when selecting values for these parameters. Our thorough parameter tuning approach described above is to
ensure that we use values that take into account this trader-off.
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Table 4: Selected param-
eters of the GP algorithm
after parameter tuning.
Parameter Value

Max depth 6
Population size 500
Crossover probability 0.95
Tournament size 2
Number of generations 50

The second stage of parameter tuning involves optimising the remaining three

parameters for our problem, on a per-dataset-and-scenario basis. The first two param-

eters are related to the trading strategy used by the GP. As previously mentioned, a

‘sell’ action is triggered automatically if n days have passed since the ‘buy’ event, or if

the stock price has increased by r%, whichever comes first. Here, the variables r and n

signify the anticipated future price movement and a temporal constraint respectively,

and need to be tuned accordingly for each dataset/scenario pair. The third param-

eter is the threshold θ, which controls the definition of the significant event under

the DC framework. Similar to r and n, instead of optimising θ universally across all

datasets and scenarios as we did for the parameters of the GP-based algorithms, we

opt instead for tailored values for each dataset/scenario pair. For the above purposes,

we considered 3 representative values for n, 4 values for r, and 5 values for θ, leading

to a grid of 3× 4× 5 = 60 configurations per dataset/scenario pair. The configuration

space for these three parameters is presented in Table 5.

Armed with the above, we conducted tuning experiments as follows: we con-

ducted 5 experiments per parameter configuration, for each dataset/scenario pair.

Each such experiment resulted in a population of solutions (i.e. trading strategies),

with a corresponding Pareto Front; the modified Sharpe Ratio was thus used to select

a definitive trading strategy per experiment, and the performance of each such defini-

tive trading strategy was then evaluated on the validation set. The resulting overall

performance of each configuration was then obtained as the average performance over
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Table 5: Configuration space for the trading strategy’s
n days and r%, and DC’s θ.
Parameter Configuration space

n (days-ahead of prediction) 1, 5, 15
r (percentage of price movement) 1%, 5%, 10%, 20%
θ (threshold of DC) 0.001, 0.002, 0.005, 0.01, 0.02

the 5 corresponding runs for that configuration, and the configuration with the best

average performance was selected for each data/scenario pair. Note that, unlike the

GP parameters, the above process was conducted separately for the MOO3 and SOO

approaches. In other words, for each of the algorithms, the number of tuning experi-

ments performed per scenario was: 110 datasets× 60 configurations× 5 repetitions =

33, 000 experiments.

Note that, to some extent, the choice of optimal GP parameters depends on r, n,

and θ, and vice-versa, in a cyclical manner. To work around this cyclical dependency,

we bootstrap this process as follows: first, we use an initial parameterisation for the GP

serving as a reasonable ‘prior’ (in our case, we used values based on previous work);

this allows performing a first round of tuning over r, n, and θ for all dataset/scenario

combinations, as above. With these resulting ‘prior’ values for r, n, and θ at hand,

we then proceed with the first stage of the tuning process, as described above.

6 Results and analysis

In this section, we report and analyse the performance of the multi-objective opti-

misation GP approach (MOO3) against the benchmark approaches. We start this

section by visualising the performance of MOO3 against corresponding single-objective

approaches (SOO) for each of the 7 scenarios presented in section 5.3. We then per-

form a statistical analysis, comparing single and multi-objective optimisation GP

algorithms, followed by a comparison against the more traditional, TA-indicator based

benchmarks, Transformer, and finally against the buy-and-hold strategy.
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In order to compare the MOO3 approach statistically against each of the bench-

marks, we perform multiple experiments as follows: first, we run the MOO3 algorithm

50 times for each of the 110 datasets, and each of the 7 scenarios. This means we obtain

50 different, final Pareto fronts per dataset and scenario. For each of these runs, we

obtain the best model from the training set with respect to the corresponding mod-

ified Sharpe Ratio for that scenario. Given that the proposed algorithm is designed

as a maximisation problem, the model exhibiting the highest modified Sharpe Ratio

is selected from the Pareto-optimal set. We then evaluate this model on the test set,

and measure its performance using a variety of evaluation metrics. Finally, for each

evaluation metric, we obtain the average such test-set performance over the 50 runs.

Similarly, for the SOO algorithm, we run the SOO algorithm 50 times per setup and

dataset, obtain the fittest solution arising from the training-set in each case, and

apply it to the test-set; we then average this test-set performance over all 50 runs.

The end-result is that we have an average performance from MOO3, and an average

performance from SOO to compare, per dataset and scenario. This process allows us

to make a direct comparison of the SOO and MOO3 models, since they have both

been selected using the same aggregate metric and ‘trader-preference’ weightings in

each case. Finally, we also obtain the results of the TA-indicator based, Transformer-

based, and buy-and-hold benchmark trading approaches, as applied directly onto the

test set.

6.1 Pareto front

We begin by presenting the results of the MOO3 algorithm, and examining the

placement of the MOO3-designated solutions (and the Pareto front solutions more

generally) compared to the single-objective optimisation (SOO) solutions, for each

of the seven scenarios considered. For illustration, we use a single GP run for each

scenario, focusing on the Apple stock. Figure 5 displays the generated solutions and
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resulting interpolated surface making up the Pareto front (grey mesh/markers), the

designated MOO3-solution from that front (blue triangle marker), and the corre-

sponding SOO solution (orange diamond marker), for each of the seven scenarios. The

MOO3 and SOO solutions are accompanied by 2D projections to aid interpretation

and comparison. Each scenario is identified via its [a, b, c] weight-triplet; to enhance

clarity, each triplet is also expressed as the corresponding subset of the set {T,E,R},

where the choice out of T, E, and/or R represents how preference was distributed

among total return, expected rate of return, and risk respectively in the weighting;

e.g. {T,R} indicates the scenario where total return and risk are valued equally and

exclusively, therefore corresponding to the weighting [a=0.5, b=0, c=0.5].

Looking at the figure, we observe the following:

• In the {T} and {T,E} scenarios, the SOO solution dominates a handful of solu-

tions of MOO3’s Pareto front, but neither SOO nor the MOO3 designated

solution dominate each other.

• In the {E} scenario, SOO dominates the MOO3-designated solution, as well as

the (unusually small) Pareto front.

• In the {R}, {T,R}, {E,R}, and {T,E,R} scenarios, the MOO3 designated solution

dominates the SOO solution, and SOO does not dominate any solutions on the

Pareto front.

The above suggests that, in this example at least, MOO3 had superior performance

when non-singular objectives were considered, showing its ability to consider multiple

objectives in a natural manner, driven by the concept of the Pareto front, as com-

pared to an aggregate approach which imposes an arbitrary relationship between the

objectives. By contrast, when dealing with single-objective scenarios, SOO was able

to compete well with MOO3; in particular, when considering single-objective scenar-

ios, SOO achieved better total return and expected rate of return in the {T} and {E}

scenarios respectively. However, MOO3 achieved better risk for the {R} scenario; this
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Fig 5 Representative run of the MOO3 and SOO algorithms for the Apple stock.
The SOO and MOO3-designated solutions are overlaid onto the MOO3 Pareto front,
for all seven scenarios considered. Risk, expected rate of return, and total return are
shown here in their original units, rather than the normalised ones used during fitness
evaluation
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demonstrates that MOO3 still has the ability to obtain good-quality single-objective

designated solutions that may compete with explicitly single-objective approaches,

even though the Pareto front driven evolution process has to take into account and

accommodate multiple objectives, partly acting as constraints. In the next section,

we perform statistical analyses over multiple runs, in order to examine how the two

algorithms compare over multiple runs and datasets more generally.

6.2 Convergence Analysis

To better understand the optimisation behaviour of the proposed GP algorithms, we

include a convergence analysis, which reveals how performance evolves across gener-

ations and whether the search consistently leads to improved solutions. Specifically,

we record the best individual (SOO) and Pareto front (MOO3) fitness at Generations

1, 10, 25, and 50 in the training set of a single GP run. For each generation, we anal-

yse how the objective metrics — total return (TR), expected rate of return (E[RoR]),

risk (Risk) — evolve during the evolutionary process. Due to space constraints and

the large number of datasets used in our study (110 in total), we present the results

for two representative stock datasets for each of the SOO and MOO3 on the basis

of an [a = 1, b = 0, c = 0] weighting. These stocks were selected to illustrate typical

convergence behaviour observed across the broader dataset collection.

Figure 6 displays the performance of individuals in the population at each selected

generation for the chosen SOO and MOO3 runs, respectively. The plots clearly demon-

strate a progressive improvement in performance across generations. For the SOO,

Figure 6a and Figure 6b present the best individual in the population across the gen-

erations. The value of TR for both stocks increases rapidly between Generations 1

and 10, after which the rate of improvement slows considerably. This pattern indi-

cates that the majority of optimisation occurs early in the evolutionary process, with
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subsequent generations yielding only minor improvement, providing clear evidence of

convergence in the SOO evolutionary process.

In contrast, the MOO3 results, illustrated in Figures 6c and 6d, demonstrate

continuous improvement in the trade-offs among the three objectives, reflected by a

progressively refined Pareto front. Both Figures show rapid improvements in the met-

ric values of the Pareto Front (particularly Total Return, as it is given 100% weight),

followed by only minor improvements in later generations, and convergence around

generation 40-50.

In summary, the convergence analysis shows that both the SOO and MOO3 algo-

rithms improve steadily over generations and eventually reach stable solutions. Most

of the progress happens early on, with smaller improvements later, which suggests

that the algorithms are working efficiently. For MOO3, the gradual shaping of the

Pareto front across generations shows that the algorithm is learning to balance the

different objectives well.

6.3 Comparison between multi-objective and corresponding

single-objective approaches

Table 6 presents the summary statistics for SOO and MOO3 across five metrics:

total return (TR), expected rate of return (E[RoR]), risk (Risk), and the standard

Sharpe ratio (SR) for the whole portfolio. The portfolio Sharpe ratio assumes an equal

distribution of the 110 stocks (i.e. each stock has the same weight in the portfolio)3;

since this figure is calculated over the whole portfolio of stocks, there’s no summary

statistics to calculate, just a single value, which is presented in the table. For the

remaining four metrics (TR, E[RoR], Risk) we present the mean, median, standard

deviation, maximum and minimum values across the results of the 110 stocks. The

left hand-side of the table presents the results for the single-objective (SOO) GP,

3This assumption is made for simplification purposes. It is beyond the scope of this work to look into
portfolio optimisation algorithms, which would seek to find the optimal set of portfolio weights for all stocks
present.
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(a) (b)

(c) (d)

Fig 6 Convergence behaviour of the SOO and MOO3 algorithms across generations.
The plots show how the fitness function evolves over time for two representative stock
datasets (2382TW and 399001SZ) under each optimisation framework. Results are
recorded at generations 1, 10, 20, 30, 40, and 50 to illustrate the improvement of the
population as evolution progresses.

while the right hand-side presents the results for the multi-objective MOO3 algorithm.

Results are separated by the seven different sets for Equation 6’s [a, b, c] weights. To

enhance clarity, similarly to Figure 5, we also present the algorithms in the format

SOO{·} (or MOO{·}), with the denominator able to represent any subset of {T,E,R},

as explained in Section 6.1 (e.g. MOO{T, E} denotes a MOO3 algorithm where the

designated solution was selected on the basis of an [a=0.5, b=0.5, c=0] weighting).

As we can observe, MOO3 generally has higher mean and median TR across dif-

ferent weight setups compared to SOO. In addition, MOO3 shows a higher mean and
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median E[RoR] compared to SOO for most weight setups. With regards to Risk, both

algorithms show similar risk levels, but MOO3 offers small improvements in a few

weight setups. Lastly, MOO3 has a higher Sharpe Ratio in six out of the seven weights

setups, suggesting better risk-adjusted portfolio returns.

We perform a Kolmogorov-Smirnov (KS) test for each of the pairwise comparisons

between SOO and MOO3 on three metrics: Total Return (TR), Expected Rate of

Return (E[RoR]), and Risk. The null hypothesis for each KS test is that the two

samples (SOO and MOO3) come from the same population distribution. Since we are

conducting multiple comparisons, we apply the Holm-Bonferroni correction to control

the family-wise error rate at a significance level of 5%. Specifically, we adjust the

significance threshold required for each of the three comparisons (TR, E[RoR], Risk)

within each [a, b, c] weights setup. This is done by arranging p-values from smallest to

largest, and assigning a corresponding rank from 1 to 3 respectively. The minimum

acceptable p-value for a comparison to be considered statistically significant is then

decided based on its rank. The adjusted significance level for each rank is calculated as

αrank = α

m + 1− rank

where alpha = 0.05 for the 5% significance level, and m = 3, since we have 3 multiple

comparisons per weight setup.

Given the three possible different ranks, we have the following adjusted significance

levels :

• The smallest p-value (rank 1) must be less than 0.05
3 or approximately 0.0167.

• The second smallest p-value (rank 2) must be less than 0.05
2 or 0.025.

• The largest p-value (rank 3) must be less than 0.05.

Therefore, we compare the ranked p-values against these thresholds to determine if

there is a significant difference between the SOO and MOO3 samples for each metric.
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Table 6: Summary statistics over assets, contrasted between the SOO and MOO3
approaches for the different trader-preference scenarios. Best value for each respective
metric shown in boldface. Keys: TR: total return, E[RoR]: expected rate of return, SR:
Sharpe ratio, SOO: single-objective optimisation GP, MOO3: three-objective optimi-
sation GP. The values of a, b, c correspond to the weights as defined in Equation 6.

SOO MOO

[a, b, c] TR E[RoR] Risk SR TR E[RoR] Risk SR

[0.5, 0.5, 0]

Mean 38.78% 2.08% 0.09 0.72 51.90% 2.76% 0.09 1.10
Median 24.94% 1.79% 0.07 37.88% 2.38% 0.07
StDev 0.60 0.03 0.07 0.61 0.02 0.06
Max 381.49% 21.66% 0.39 324.26% 13.07% 0.41
Min -63.09% -5.17% 0.01 -42.72% -2.98% 0.00

[0, 0.5, 0.5]

Mean 11.94% 0.80% 0.06 0.57 29.45% 1.85% 0.06 1.03
Median 6.03% 0.69% 0.05 17.97% 1.64% 0.05
StDev 0.28 0.01 0.04 0.41 0.02 0.04
Max 136.38% 4.72% 0.22 268.50% 10.59% 0.24
Min -106.33% -4.42% 0.01 -27.55% -2.22% 0.00

[0.5, 0, 0.5]

Mean 40.11% 2.03% 0.08 0.86 41.58% 1.63% 0.06 1.12
Median 26.89% 1.53% 0.06 24.18% 1.44% 0.05
StDev 0.62 0.02 0.06 0.52 0.01 0.04
Max 314.31% 11.20% 0.33 258.04% 6.80% 0.29
Min -219.85% -6.47% 0.01 -37.47% -1.23% 0.01

[0.33, 0.33, 0.33]

Mean 44.73% 2.17% 0.08 0.84 50.47% 2.51% 0.08 1.03
Median 31.18% 1.66% 0.07 34.98% 2.16% 0.06
StDev 0.57 0.03 0.05 0.61 0.02 0.05
Max 312.83% 16.18% 0.34 285.05% 11.42% 0.34
Min -43.55% -6.52% 0.01 -38.68% -3.74% 0.01

[1, 0, 0]

Mean 47.36% 2.23% 0.08 0.79 61.33% 3.28% 0.08 0.66
Median 31.25% 1.66% 0.06 41.68% 2.52% 0.06
StDev 0.64 0.03 0.06 0.67 0.05 0.06
Max 366.13% 18.63% 0.39 341.71% 44.36% 0.43
Min -46.60% -4.05% 0.02 -44.63% -4.03% 0.01

[0, 1, 0]

Mean 29.46% 2.08% 0.11 0.48 48.29% 3.38% 0.09 0.76
Median 15.92% 1.50% 0.08 32.81% 2.62% 0.07
StDev 0.71 0.04 0.08 0.69 0.04 0.07
Max 552.10% 24.58% 0.52 544.98% 25.92% 0.49
Min -63.57% -6.10% 0.01 -44.89% -4.28% 0.01

[0, 0, 1]

Mean 3.21% 0.14% 0.06 0.10 15.15% 0.99% 0.05 0.65
Median -0.59% 0.14% 0.05 10.06% 0.86% 0.03
StDev 0.32 0.01 0.04 0.24 0.02 0.05
Max 279.63% 5.62% 0.19 152.06% 12.24% 0.42
Min -45.49% -4.92% 0.01 -32.11% -1.98% 0.01
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The ranked p-values indicate a significant difference if the smallest p-value is less than

0.0167, the second smallest is less than 0.025, and the largest is less than 0.05.

Table 7 presents the KS test results, along with the p-value and the adjusted

significance level, across the different weight setups ([a, b, c]). As we can observe, the

differences between MOO3 and SOO are statistically significant at the 5% level in 9

out of the 21. Particularly, MOO3 shows statistically significant improvements in TR

and E[RoR] in most weight configurations and also in managing risk in some setups.

The above findings lead us to conclude that our multi-objective optimisation GP

algorithm provides a more robust and efficient optimisation strategy compared to the

single-objective optimisation GP, particularly in balancing return and risk.

Table 7: Kolmogorov-Smirnov test results p-values for different weight setups
([a, b, c]). Statistically significant results at the 5% level are denoted in bold face.
Keys: TR: total return, E[RoR]: expected rate of return, SR: Sharpe ratio.

[a, b, c] Metric p-value Adjusted significance level

[0.5, 0.5, 0]

TR 0.3141 0.025 (0.05/2)
E[RoR] 0.0209 0.0167 (0.05/3)
Risk 0.9751 0.05 (0.05/1)

[0, 0.5, 0.5]

TR 3.71E-05 0.0167 (0.05/3)
E[RoR] 6.98E-05 0.025 (0.05/2)
Risk 0.0666 0.05 (0.05/1)

[0.5, 0, 0.5]

TR 0.506 0.05 (0.05/1)
E[RoR] 0.179 0.025 (0.05/2)
Risk 0.0088 0.0167 (0.05/3)

[0.33, 0.33, 0.33]

TR 0.7336 0.05 (0.05/1)
E[RoR] 0.0944 0.0167 (0.05/3)
Risk 0.2395 0.025 (0.05/2)

[1, 0, 0]

TR 0.3141 0.025 (0.05/2)
E[RoR] 0.0137 0.0167 (0.05/3)
Risk 0.9958 0.05 (0.05/1)

[0, 1, 0]

TR 0.0034 0.025 (0.05/2)
E[RoR] 0.0021 0.0167 (0.05/3)
Risk 0.0313 0.05 (0.05/1)

[0, 0, 1]

TR 5.41E-08 0.025 (0.05/2)
E[RoR] 2.38E-08 0.0167 (0.05/3)
Risk 2.33E-04 0.05 (0.05/1)
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While the above KS test was useful for making pairwise comparisons between

the SOO and MOO3 algorithms under different weight setups and metrics, we are

also interested in gaining a better understanding of the overall performance of all

SOO and MOO3 algorithms across the different weight setups. The non-parametric

Friedman test is particularly useful for comparing multiple algorithms across multiple

datasets, as it ranks the algorithms for each metric, providing an average rank for

each algorithm. A lower average rank indicates better performance. In each Friedman

test (one per TR, E[RoR], and Risk metric), the algorithms included are the SOO

and MOO3 algorithms under the different weight setups. Additionally, we applied

the Hommel post-hoc test to ascertain the significance of the differences between the

average ranks (Demšar, 2006; Garcia and Herrera, 2008). We present both in Table 8.

For each algorithm, the table shows the average rank (first column), and the adjusted

p−value of the statistical test when that algorithm’s average rank is compared to

the average rank of the algorithm with the best rank (control algorithm) according

to Hommel’s post-hoc test (second column). When statistically significant differences

between the average ranks of an algorithm and the control algorithm at the 5% level

(p ≤ 0.05) are observed, the relevant average rank is put in bold face.

As we can observe from the total return results of Table 8a, the control algorithm

is MOO{T}, i.e. the multi-objective optimisation GP algorithm that extracts the best

model from the Pareto front based on the highest total return value. In addition, it

statistically and significantly outperforms all other algorithms at the 5% level. Given

that we are currently considering total return results in this subtable, it is unsurprising

that the control algorithm is one that prioritises total return. It is also worth noting

that the second and third ranked algorithms are also MOO ones, namely MOO{T,E} and

MOO{T,E,R}. The former gives equal weight to total return and risk (a=b=0.5, c=0),

and the latter assigns equal weight to all three metrics (a = b = c = 0.33). This is

an important finding, because it demonstrates that these multi-objective algorithms
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are able to outrank all SOO algorithms; hence, confirming the fact that considering

multiple objectives under a MOO framework such as NSGA-II has significant benefits

over an SOO algorithm which uses the aggregate fitness function directly. Similar

findings can be observed for the expected rate of return and risk results (Tables 8b

Table 8: Statistical test results for average TR, E[RoR], and Risk, according to
the non-parametric Friedman test with the Hommel post-hoc test of different MOO
and SOO algorithms. The subscript for each algorithm denotes which metrics were
optimised. When more than one metric is present, equal weights have been assigned to
each metric. Significant differences at the α = 5% level between the control algorithm
(appearing as the top row in each case) and the remaining algorithms are shown in
boldface, indicating that the adjusted p-value is lower than 0.05.

(a) Total Return

Avg Rank Adj pHomm

MOO{T} 4.02 -
MOO{T,E} 5.60 2.58E-03
MOO{T,E,R} 5.86 6.34E-04
SOO{T,E,R} 5.90 4.95E-04
SOO{T} 6.03 2.21E-04
SOO{T,R} 6.14 1.07E-04
MOO{E} 6.47 1.06E-05
SOO{T,E} 6.72 1.51E-06
MOO{T,R} 7.15 3.28E-08
MOO{E,R} 8.32 5.77E-14
SOO{E} 9.30 9.98E-20
MOO{R} 10.45 8.41E-28
SOO{E,R} 11.01 2.98E-32
SOO{R} 11.95 1.95E-40

(b) Expected Rate of Return

Avg Rank Adj pHomm

MOO{E} 4.63 -
MOO{T,E} 4.74 2.34E-01
MOO{T} 4.81 2.17E-01
MOO{T,E,R} 5.70 3.42E-05
SOO{T} 6.76 8.05E-05
SOO{T,E,R} 6.89 3.42E-05
SOO{T,R} 7.05 1.18E-05
SOO{T,E} 7.16 5.09E-06
MOO{E,R} 7.44 5.21E-07
SOO{E} 8.00 2.91E-09
MOO{T,R} 8.32 1.06E-10
MOO{R} 10.39 4.74E-23
SOO{E,R} 10.78 8.44E-26
SOO{R} 12.21 3.31E-37

(c) Risk

Avg Rank Adj pHomm

MOO{R} 2.16 -
MOO{T,R} 4.85 1.01E-06
SOO{R} 5.11 1.04E-07
SOO{E,R} 5.16 6.55E-08
MOO{E,R} 5.30 1.66E-08
MOO{T,E,R} 7.51 2.10E-20
MOO{T} 7.68 1.42E-21
SOO{T,R} 7.99 8.88E-24
SOO{T} 8.30 4.43E-26
SOO{T,E,R} 9.26 1.03E-33
MOO{E} 9.71 1.35E-37
SOO{T,E} 10.03 1.82E-40
MOO{T,E} 10.15 1.69E-41
SOO{E} 11.75 1.52E-57
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and 8c). More specifically, when looking into the expected rate of return results, the

best rank algorithm is MOO{E}, which optimises only the expected rate of return. In

the next three positions there are again multi-objective optimisation algorithms that

optimise different combinations of the metrics, even risk (MOO{T,E,R}). This again

shows the advantages of multi-objective optimisation. Furthermore, when looking into

the risk results, MOO{R} ranks first, followed by MOO{T,R}. So we again see the same

pattern, where the algorithm is specifically optimised for a particular metric (Risk in

this instance) tends to perform best in this specific metric, and then being followed by

another multi-objective optimisation algorithm that considers two or three objectives.

Lastly, it is also worth noting that in the top 2 positions of each subtable we have

a MOO{T} variant, i.e. a MOO3 algorithm that has used total return (alone or in

consideration with another metric) to extract the best model from the Pareto front.

This suggests that prioritising total return in the optimisation process can lead to

favourable outcomes.

To conclude, the Friedman test results highlight the effectiveness of the MOO3

algorithms over their SOO counterparts. Combining up to two metrics tends to be

beneficial (or at least have comparable performance to the MOO algorithms optimis-

ing a single metric), as we have seen in the case of MOO{T,E}, which performs well for

both total return and expected rate of return. However, the trade-offs become appar-

ent when more metrics are combined (e.g. MOO{T,E,R}), where balancing multiple

objectives leads to a slight drop in the performance of the individual metrics.

6.3.1 Summary of MOO vs SOO comparison

In this section, we conducted an in-depth analysis of the kind of improved performance

that a three-objective GP algorithm (MOO3) can achieve over a single-objective

GP (SOO). The algorithms were evaluated across various weight configurations for

three objectives: total return, expected rate of return, and risk. The results showed

that MOO3 generally outperformed SOO in terms of mean and median total return,
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expected rate of return, and portfolio Sharpe ratio across different weight setups.

Kolmogorov-Smirnov tests confirmed that the differences between MOO3 and SOO

were statistically significant in several cases. Furthermore, the non-parametric Fried-

man test with Hommel’s post-hoc analysis revealed that MOO3 algorithms that

focused on individual objectives (e.g. total return or expected rate of return) per-

formed the best for their respective objectives, followed by MOO3 algorithms that

combined multiple objectives.

Of particular note is the perhaps somewhat surprising fact that MOO3 variants

consistently outperformed SOO algorithms, even in scenarios focused on single objec-

tives. One might have expected the reverse to happen, under the understanding that

the SOO algorithms are explicitly trying to optimise the single objective directly,

whereas MOO3 has to take trade-offs between multiple objectives into account during

the training process, as guided by the Pareto Rank instead. However, our findings sug-

gest that the multi-objective approach proves advantageous, and that accounting for

the interplay between conflicting objectives during training leads to superior trading

strategies, even when optimizing for singular objectives.

6.4 MOO algorithms under different market conditions

Financial trading strategies must adapt to the different market conditions and liq-

uidity constraints (Sun et al, 2019). Therefore, having established that the MOO

algorithms can outperform the SOO algorithm, we shift our focus to understanding

the MOO’s performance under different market conditions. As previously discussed

in Section 5, we have obtained data from 10 different financial markets: DJIA, NAS-

DAQ, NYSE, Russel 2000, S&P500, NIFTY 50, TSEC, DAX, Nikkei 225, and FTSE

100. We are interested in understanding if the same algorithms perform consistently

well under the same markets or if their performance varies, depending on how the

market conditions change.
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From Table 9, we conclude that MOO{T} consistently achieved the highest aver-

age TR values among the seven MOO3 algorithms, except in the NASDAQ market,

where MOO{E} obtained 104.15% average TR, followed by MOO{T} with 97.16%. Fur-

thermore, in terms of E[RoR], MOO{E} had the highest average E[RoR] in four out of

ten markets, while MOO{T} achieved this in three out of ten markets. However, as a

trade-off, the model which achieved the highest average TR or E[RoR] always comes

with the worst corresponding standard deviation values. In terms of Risk, MOO{E}

had the lowest risk in nine out of ten markets. Moreover, it also could maintain the

best standard deviation risk value in eight out of ten markets.

Similar to what we observed earlier, each algorithm that achieved the best average

value was optimized for the respective objective. Across the ten markets, the per-

formance of the MOO3 algorithms remains consistent, with MOO{T}, MOO{E}, and

MOO{R} always ranking first in terms of their corresponding objectives. We conclude

that the different markets did not affect the performance of the MOO3 algorithms.

The above findings are further supported by the Friedman test presented in Table

10. To improve clarity, the order of algorithms in the table corresponds to their ranking

on the Friedman test with the values in parentheses representing the adjusted p-values.

From Table 10, we can confirm that in most cases the highest ranking algorithms are

then ones that were optimized for the respective objective.

6.5 Comparison of MOO algorithms to three standard

TA-indicator based strategies

The previous section of this paper established that our proposed multi-objective GP

algorithm is able to outperform its SOO counterpart. In the current section, we are

interested in benchmarking the MOO3 algorithm against the three simple, widely-used

TA-indicator based trading strategies identified in section 5.2, namely: a zero-crossing

strategy for the Moving Average Convergence Divergence (MACD) indicator, which
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Table 9: Average (standard deviation) results of the MOO3 approaches for the
different trader-preference scenarios across various markets. Best value for each
respective metric shown in boldface. Keys: TR: total return, E[RoR]: expected rate
of return, SR: Sharpe ratio.

(a) NYSE

TR E[RoR] Risk SR

MOO{T,E} 28.37%(0.38) 1.33%(0.02) 0.09(0.04) 0.75
MOO{E,R} 15.16%(0.12) 1.08%(0.01) 0.06(0.02) 1.78
MOO{T,R} 22.36%(0.33) 1.09%(0.01) 0.07(0.03) 0.94
MOO{T,E,R} 25.36%(0.32) 1.48%(0.01) 0.07(0.03) 1.11
MOO{T} 33.02%(0.43) 1.65%(0.02) 0.09(0.05) 0.68
MOO{E} 18.43%(0.26) 1.16%(0.02) 0.09(0.04) 0.50
MOO{R} 4.04%(0.15) 0.33%(0.01) 0.04(0.03) 0.40

(b) NASDAQ

TR E[RoR] Risk SR

MOO{T,E} 77.97%(0.96) 3.62%(0.04) 0.16(0.09) 0.90
MOO{E,R} 56.03%(0.89) 2.04%(0.03) 0.12(0.07) 0.81
MOO{T,R} 57.22%(0.81) 1.96%(0.02) 0.12(0.07) 0.87
MOO{T,E,R} 77.48%(0.96) 2.78%(0.03) 0.14(0.08) 1.06
MOO{T} 97.16%(1.01) 3.63%(0.04) 0.16(0.11) 0.95
MOO{E} 104.15%(1.62) 5.21%(0.07) 0.19(0.13) 0.79
MOO{R} 31.33%(0.55) 2.45%(0.04) 0.13(0.12) 0.67

(c) TSEC

TR E[RoR] Risk SR

MOO{T,E} 23.98%(0.26) 2.70%(0.04) 0.05(0.05) 0.75
MOO{E,R} 11.78%(0.17) 1.23%(0.01) 0.03(0.02) 0.87
MOO{T,R} 19.65%(0.31) 1.10%(0.01) 0.03(0.02) 0.85
MOO{T,E,R} 19.72%(0.27) 1.96%(0.03) 0.04(0.03) 0.75
MOO{T} 24.54%(0.28) 5.20%(0.12) 0.04(0.02) 0.42
MOO{E} 19.56%(0.20) 3.60%(0.07) 0.03(0.02) 0.51
MOO{R} 10.95%(0.15) 0.48%(0.01) 0.02(0.01) 0.46

(d) DAX

TR E[RoR] Risk SR

MOO{T,E} 48.38%(0.33) 3.42%(0.02) 0.07(0.02) 1.62
MOO{E,R} 22.59%(0.14) 2.50%(0.02) 0.05(0.01) 1.60
MOO{T,R} 34.19%(0.27) 2.14%(0.01) 0.05(0.01) 1.75
MOO{T,E,R} 38.99%(0.29) 2.98%(0.02) 0.06(0.02) 1.49
MOO{T} 55.39%(0.38) 3.94%(0.02) 0.06(0.01) 2.34
MOO{E} 40.93%(0.21) 3.79%(0.01) 0.07(0.02) 3.16
MOO{R} 12.31$(0.10) 1.33$(0.01) 0.03(0.01) 1.86

(e) RUSSELL 2000

TR E[RoR] Risk SR

MOO{T,E} 47.67%(0.70) 2.23%(0.02) 0.11(0.05) 1.30
MOO{E,R} 32.35%(0.49) 1.57%(0.02) 0.07(0.05) 0.95
MOO{T,R} 40.15%(0.67) 1.54%(0.01) 0.08(0.04) 1.06
MOO{T,E,R} 51.26%(0.74) 2.09%(0.02) 0.09(0.05) 1.08
MOO{T} 55.72%(0.74) 2.48%(0.02) 0.10(0.05) 1.46
MOO{E} 36.95%(0.42) 2.57%(0.02) 0.13(0.09) 1.50
MOO{R} 8.20%(0.18) 0.79%(0.01) 0.06(0.04) 0.57

(f) NIFTY 50

TR E[RoR] Risk SR

MOO{T,E} 58.88%(0.64) 3.19%(0.03) 0.10(0.06) 1.21
MOO{E,R} 28.90%(0.35) 2.31%(0.03) 0.07(0.05) 0.78
MOO{T,R} 45.46%(0.54) 1.70%(0.01) 0.06(0.03) 1.48
MOO{T,E,R} 53.90%(0.62) 3.31%(0.04) 0.09(0.05) 0.77
MOO{T} 76.42%(0.74) 4.14%(0.05) 0.08(0.04) 0.83
MOO{E} 57.77%(0.51) 4.59%(0.04) 0.09(0.04) 1.09
MOO{R} 18.73%(0.17) 1.03%(0.01) 0.04(0.01) 1.33

(g) DJIA

TR E[RoR] Risk SR

MOO{T,E} 74.66%(0.74) 2.96%(0.02) 0.08(0.03) 1.83
MOO{E,R} 38.45%(0.36) 1.67%(0.01) 0.06(0.02) 1.47
MOO{T,R} 49.49%(0.54) 1.36%(0.01) 0.05(0.02) 2.12
MOO{T,E,R} 65.27%(0.73) 2.34%(0.01) 0.06(0.02) 1.76
MOO{T} 81.78%(0.77) 2.87%(0.02) 0.07(0.03) 1.89
MOO{E} 57.52%(0.63) 2.90%(0.02) 0.08(0.03) 1.67
MOO{R} 18.42%(0.17) 0.85%(0.01) 0.03(0.02) 1.94

(h) NIKKEI 225

TR E[RoR] Risk SR

MOO{T,E} 11.90%(0.17) 1.21%(0.01) 0.14(0.27) 0.99
MOO{E,R} 12.21%(0.16) 1.58%(0.01) 0.14(0.27) 1.17
MOO{T,R} 26.16%(0.41) 1.59%(0.02) 0.05(0.03) 0.84
MOO{T,E,R} 29.80%(0.48) 2.16%(0.03) 0.06(0.01) 0.79
MOO{T} 31.97%(0.45) 2.02%(0.04) 0.04(0.02) 0.54
MOO{E} 24.41%(0.48) 1.69%(0.03) 0.06(0.04) 0.60
MOO{R} 8.65%(0.10) 0.78%(0.01) 0.03(0.01) 0.73

(i) S&P 500

TR E[RoR] Risk SR

MOO{T,E} 66.96%(0.51) 2.78%(0.01) 0.07(0.03) 2.17
MOO{E,R} 31.44%(0.24) 1.65%(0.01) 0.05(0.02) 1.97
MOO{T,R} 52.33%(0.47) 1.39%(0.01) 0.05(0.03) 2.43
MOO{T,E,R} 62.17%(0.51) 2.39%(0.01) 0.07(0.03) 2.12
MOO{T} 66.99%(0.53) 2.65%(0.01) 0.07(0.03) 2.02
MOO{E} 47.29%(0.36) 2.57%(0.01) 0.07(0.02) 2.27
MOO{R} 12.74%(0.13) 0.58%(0.01) 0.03(0.02) 1.35

(j) FTSE 100

TR E[RoR] Risk SR

MOO{T,E} 80.25%(0.38) 4.12%(0.01) 0.07(0.03) 2.80
MOO{E,R} 45.57%(0.28) 2.83%(0.01) 0.05(0.02) 1.93
MOO{T,R} 68.83%(0.38) 2.46%(0.01) 0.05(0.02) 1.84
MOO{T,E,R} 80.72%(0.38) 3.64%(0.01) 0.06(0.03) 2.50
MOO{T} 90.31%(0.51) 4.22%(0.02) 0.07(0.04) 1.87
MOO{E} 74.94%(0.33) 5.69%(0.07) 0.08(0.05) 0.87
MOO{R} 26.13%(0.18) 1.32%(0.01) 0.03(0.02) 2.80

compares two exponential moving averages obtained over a long and a short term

period respectively; a zero-crossing strategy based on the comparison between long
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Table 10: Statistical test results for average TR, E[RoR], and Risk, according
to the non-parametric Friedman test with the Hommel post-hoc test of different
MOO algorithms. The order of algorithms in the table corresponds to their ranking
according to the Friedman test, with the value in parentheses representing the
adjusted p-values. The subscript for each algorithm denotes which metrics were
optimised. When more than one metric is present, equal weights have been assigned
to each metric. Significant differences at the α = 5% level between the control
algorithm (appearing as the top row in each case) and the remaining algorithms are
shown in boldface, indicating that the adjusted p-value is lower than 0.05. Keys:
TR: total return, E[RoR]: expected rate of return, SR: Sharpe ratio.

(a) NYSE

TR E[RoR] Risk

MOO{T}(-) MOO{T}(-) MOO{R}(-)
MOO{T,E,R}(0.75) MOO{T,E,R}(0.76) MOO{E,R}(0.13)
MOO{T,E}(0.72) MOO{E}(0.76) MOO{T,R}(0.05)
MOO{T,R}(0.69) MOO{T,E}(0.76) MOO{T,E,R}(1.59E-3)
MOO{E,R}(0.48) MOO{E,R}(0.55) MOO{T}(1.12E-4)
MOO{E}(0.47) MOO{T,R}(0.55) MOO{E}(4.30E-5)
MOO{R}(0.07) MOO{R}(0.03) MOO{T,E}(1.4E-5)

(b) NASDAQ

TR E[RoR] Risk

MOO{T}(-) MOO{T}(-) MOO{R}(-)
MOO{T,E,R}(0.52) MOO{E}(0.81) MOO{T,R}(0.44)
MOO{T,E}(0.24) MOO{T,E}(0.74) MOO{E,R}(0.34)
MOO{E}(0.16) MOO{T,E,R}(0.48) MOO{T,E,R}(0.17)

MOO{E,R}(0.08) MOO{E,R}(0.20) MOO{T}(0.08)
MOO{T,R}(0.06) MOO{R}(0.20) MOO{T,E}(0.01)
MOO{R}(0.02) MOO{T,R}(0.20) MOO{E}(0.01)

(c) TSEC

TR E[RoR] Risk

MOO{T,E}(−) MOO{T,E}(−) MOO{R}(−)
MOO{T}(0.66) MOO{E}(0.47) MOO{E,R}(0.18)

MOO{T,E,R}(0.30) MOO{T,E,R}(0.45) MOO{T,R}(0.11)
MOO{T,R}(0.29) MOO{T}(0.45) MOO{E}(0.02)
MOO{E}(0.13) MOO{E,R}(0.05) MOO{T}(0.01)

MOO{E,R}(0.02) MOO{T,R}(0.02) MOO{T,E,R}(3.76E-3)
MOO{R}(4.17E-3) MOO{R}(2.54E-3) MOO{T,E}(5.80E-5)

(d) DAX

TR E[RoR] Risk

MOO{T}(-) MOO{T}(-) MOO{R}(-)
MOO{T,E}(0.30) MOO{E}(0.44) MOO{E,R}(0.23)
MOO{E}(0.13) MOO{T,E}(0.16) MOO{T,R}(0.12)

MOO{T,E,R}(0.06) MOO{T,E,R}(0.02) MOO{T,E,R}(0.02)
MOO{T,R}(0.04) MOO{E,R}(0.004) MOO{T}(0.02)
MOO{E,R}(4E-4) MOO{T,R}(7.2E-4) MOO{E}(7.4E-4)
MOO{R}(1.6E-5) MOO{R}(1.09E-4) MOO{T,E}(2.01E-4)

(e) RUSSELL 2000

TR E[RoR] Risk

MOO{T}(-) MOO{T,E}(-) MOO{R}(-)
MOO{T,E,R}(0.46) MOO{T,E,R}(1.00) MOO{E,R}(0.26)

MOO{E}(0.43) MOO{T}(1.00) MOO{T,R}(0.06)
MOO{T,E}(0.31) MOO{E}(1.00) MOO{T,E,R}(0.003)
MOO{E,R}(0.31) MOO{T,R}(0.23) MOO{T}(0.002)
MOO{T,R}(0.31) MOO{E,R}(0.23) MOO{T,E}(1.6E-4)
MOO{R}(0.06) MOO{R}(0.10) MOO{E}(8.5E-5)

(f) NIFTY 50

TR E[RoR] Risk

MOO{T}(-) MOO{E}(-) MOO{R}(-)
MOO{E}(0.22) MOO{T,E}(0.34) MOO{T,R}(0.13)

MOO{T,E}(0.12) MOO{T}(0.29) MOO{E,R}(0.04)
MOO{T,E,R}(0.06) MOO{T,E,R}(0.14) MOO{T}(0.003)
MOO{T,R}(0.02) MOO{T,R}(0.012) MOO{T,E,R}(0.002)
MOO{R}(8E-4) MOO{E,R}(0.01) MOO{T,E}(5E-5)

MOO{E,R}(8E-4) MOO{R}(0.002) MOO{E}(5E-5)

(g) DJIA

TR E[RoR] Risk

MOO{T}(-) MOO{E}(-) MOO{R}(-)
MOO{T,E}(0.26) MOO{T,E}(0.44) MOO{T,R}(0.08)

MOO{T,E,R}(0.07) MOO{T}(0.41) MOO{E,R}(0.009)
MOO{E}(0.003) MOO{T,E,R}(0.13) MOO{T,E,R}(0.006)

MOO{T,R}(0.001) MOO{E,R}(0.03) MOO{T}(0.001)
MOO{E,R}(6E-4) MOO{T,R}(0.004) MOO{E}(1.1E-4)
MOO{R}(1.6E-5) MOO{R}(5.9E-4) MOO{T,E}(1.1E-4)

(h) NIKKEI 225

TR E[RoR] Risk

MOO{T}(-) MOO{T,E,R}(-) MOO{R}(-)
MOO{T,E,R}(0.69) MOO{T}(0.92) MOO{T}(0.02)
MOO{T,R}(0.62) MOO{E,R}(0.81) MOO{T,R}(0.01)
MOO{E,R}(0.26) MOO{T,E}(0.663603) MOO{T,E,R}(0.001)
MOO{T,E}(0.26) MOO{E}(0.53) MOO{E,R}(0.001)
MOO{E}(0.20) MOO{T,R}(0.45) MOO{T,E}(6E-4)
MOO{R}(0.20) MOO{R}(0.09) MOO{E}(5.3E-5)

(i) S&P 500

TR E[RoR] Risk

MOO{T}(-) MOO{T,E}(-) MOO{R}(-)
MOO{T,E}(0.28) MOO{E}(0.44) MOO{T,R}(0.08)

MOO{T,E,R}(0.18) MOO{T}(0.33) MOO{E,R}(0.06)
MOO{E}(0.04) MOO{T,E,R}(0.17) MOO{T,E,R}(0.001)

MOO{T,R}(0.009) MOO{E,R}(0.02) MOO{T}(2.1E-4)
MOO{E,R}(0.005) MOO{T,R}(0.005) MOO{E}(1.2E-4)
MOO{R}(5.8E-5) MOO{R}(9E-5) MOO{T,E}(1.2E-4)

(j) FTSE 100

TR E[RoR] Risk

MOO{T}(-) MOO{T,E}(-) MOO{R}(-)
MOO{T,E,R}(0.20) MOO{E}(0.26 MOO{T,R}(0.09)
MOO{T,E}(0.20) MOO{T}(0.17) MOO{E,R}(0.03)
MOO{E}(0.14) MOO{T,E,R}(0.12) MOO{T,E,R}(0.001)

MOO{T,R}(0.02) MOO{E,R}(0.02) MOO{T}(4E-4)
MOO{E,R}(4E-4) MOO{T,R}(0.001) MOO{E}(2.3E-5)
MOO{R}(4.2E-5) MOO{R}(4.6E-5) MOO{T,E}(1.6E-5)48



and short-term values for the On Balance Volume (OBV) indicator; and a threshold-

based strategy based on the Momentum (MTM) indicator, which generates a buy

signal when the MTM exceeds a specified positive threshold, and a sell signal when it

falls below a specified negative threshold respectively (which, in our case, was made to

coincide with the chosen threshold for the DC framework). All TA benchmarks were

fine-tuned to choose optimal values for long/short period hyperparameters in the set

{5, 10, 30, 50}; fine-tuning was performed in a similar manner to that described for

MOO and SOO in section 5.4.

From Table 8, we concluded that MOO{T}, MOO{E}, and MOO{R} rank first at

their corresponding Friedman tests. We therefore bring forward these algorithms to

be compared against the TA indicators. In addition to MOO3 algorithms optimising

a single metric, we are also interested in bringing forward for comparison, algorithms

that optimised more than one metric; we thus looked at the second rank of each of

Tables 8a, 8b, and 8c, and we will also compare MOO{T,E} and MOO{T,R} against the

TA benchmarks.

Table 11 presents the results across total return, expected rate of return, risk, and

portfolio Sharpe ratio. As we can observe, in all cases the MOO3 algorithms have sig-

nificantly improved values over MACD, OBV, and MTM. As previously seen, MOO{T}

and MOO{E} offer the best performance for total return and expected rate of return

respectively, and generally have a good overall performance on maximising returns;

however, this comes at the cost of higher risk. On the other hand, MOO{R} minimises

risk effectively, but at the cost of lower returns. Lastly, MOO{T,R} offers a balanced

approach with a high Sharpe ratio, indicating good risk-adjusted performance.

Figure 7 further illustrates the findings of Table 11 in the form of a box-plot. In the

case of TR and E[RoR], all MOO algorithms have boxes that are above the zero line

(i.e. not only the median, but also the first quartile of the distribution of TRs is positive

in the case of MOO algorithms). Whereas, the three standard TA-indicator based
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Table 11: Summary statistics of the three-objective optimisation algorithms and
technical analysis indicators. We use boldface for the best values for each measure.
Measure Algorithm

Total return

MOO{T} MOO{E} MOO{R} MOO{T,E} MOO{T,R} MACD OBV MTM

Average 61.33% 48.29% 15.15% 51.90% 41.58% 13.99% 2.63% 16.25%
Median 41.68% 32.81% 10.06% 37.88% 24.18% 2.22% 1.73% 2.03%
Standard deviation 0.67 0.69 0.24 0.61 0.52 0.58 0.43 0.81
Max 341.71% 544.98% 152.06% 324.26% 258.04% 360.11% 148.28% 659.06%
Min -44.63% -44.89% -32.11% -42.72% -37.47% -90.38% -177.72% -50.62%

Rate of return

MOO{T} MOO{E} MOO{R} MOO{T,E} MOO{T,R} MACD OBV MTM

Average 3.28% 3.38% 0.99% 2.76% 1.63% 1.71% 0.77% 0.95%
Median 2.52% 2.62% 0.86% 2.38% 1.44% 0.14% 0.18% 0.22%
Standard deviation 0.05 0.04 0.02 0.02 0.01 0.06 0.05 0.06
Max 44.36% 25.92% 12.24% 13.07% 6.80% 36.01% 35.65% 36.28%
Min -4.03% -4.28% -1.98% -2.98% -1.23% -9.04% -11.11% -22.32%

Risk

MOO{T} MOO{E} MOO{R} MOO{T,E} MOO{T,R} MACD OBV MTM

Average 0.08 0.09 0.05 0.09 0.06 0.12 0.12 0.09
Median 0.06 0.07 0.03 0.07 0.05 0.07 0.09 0.06
Standard deviation 0.06 0.07 0.05 0.06 0.04 0.22 0.12 0.12
Max 0.43 0.49 0.42 0.41 0.29 1.58 0.76 1.15
Min 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00

Sharpe ratio

MOO{T} MOO{E} MOO{R} MOO{T,E} MOO{T,R} MACD OBV MTM

SR 0.66 0.76 0.65 1.10 1.12 0.24 0.06 0.17

strategy benchmarks demonstrate medians very close to zero, and in fact negative first-

quartiles. When looking at Risk, we can observe that MOO{T}, MOO{E}, and MOO{T,E}

obtain similar values to the benchmarks, but all are outperformed by MOO{R} and

MOO{T,R}, both in terms of median risk values, as well as in terms of demonstrating

a more concentrated risk distribution, and fewer outliers.

The above findings are further supported by the Friedman tests (one per met-

ric) presented in Table 12. In all three tables, we can observe that the first rank

MOO3 algorithm statistically and significantly outperforms all other algorithms at

the 5% significance level. In addition, the majority of the multi-objective optimisation

algorithms are able to outrank the trading strategies derived by using TA indicators.
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Fig 7 Box plot of MOO algorithms and three standard TA-indicator based strategies
in terms of TR, E[RoR], and Risk
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Table 12: Statistical test results between MOO3 algorithms and technical
analysis indicators for average TR, E[RoR], and Risk, according to the non-
parametric Friedman test with the Hommel post-hoc test. The subscript for
each algorithm denotes which metrics were optimised. When more than one
metric is present, equal weights have been assigned to each metric. Significant
differences at the α = 5% level between the control algorithm (appearing as
the top row in each case) and the remaining algorithms are shown in boldface,
indicating that the adjusted p-value is lower than 0.05.

(a) Total Return

Avg Rank Adj pHomm

MOO{T} 2.17 -
MOO{T,E} 3.07 2.48E-03
MOO{E} 3.46 4.11E-05
MOO{T,R} 3.78 5.93E-07
MOO{R} 5.48 6.32E-22
MACD 5.76 3.36E-25
MTM 6.08 4.25E-29
OBV 6.18 3.98E-30

(b) Expected rate of Return

Avg Rank Adj pHomm

MOO{E} 2.91 -
MOO{T,E} 2.94 3.00E-01
MOO{T} 3.13 1.99E-01
MOO{T,R} 4.53 8.71E-07
MACD 5.38 2.48E-13
MOO{R} 5.61 2.65E-15
MTM 5.67 1.24E-15
OBV 5.79 2.18E-16

(c) Risk

Avg Rank Adj pHomm

MOO{R} 1.60 -
MOO{T,R} 3.33 1.72E-07
MOO{T} 4.49 2.69E-17
MTM 4.50 2.08E-17
MACD 5.11 2.92E-24
MOO{E} 5.47 1.27E-28
MOO{T,E} 5.59 5.27E-30
OBV 5.87 1.50E-33

6.6 Comparison of MOO algorithms to a Transformer-based

architecture

In the previous section, we observed that our proposed multi-objective GP algorithm

outperformed three standard TA-indicator-based strategies. In this section, we extend

the comparison to the state-of-the-art Transformer-based model described in Section

5.2. As shown in Table 13, the proposed MOO algorithms consistently achieve higher

TR values than the Transformer, which, despite achieving the highest maximum TR,

shows poor consistency with a significantly lower median and higher variability. In

contrast, the Transformer achieves the lowest risk on average, comparable to MOO{R},
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Table 13: Summary statistics for the three-objective optimisation algorithms and
the Transformer benchmark. Best values per metric appear in boldface.

Total return

MOO{T} MOO{E} MOO{R} MOO{T,E} MOO{T,R} Transformer

Average 61.33% 48.29% 15.15% 51.90% 41.58% 8.81%
Median 41.68% 32.81% 10.06% 37.88% 24.18% 0.96%
Standard deviation 0.67 0.69 0.24 0.61 0.52 0.77
Max 341.71% 544.98% 152.06% 324.26% 258.04% 762.04%
Min -44.63% -44.89% -32.11% -42.72% -37.47% -78.30%

Rate of return

MOO{T} MOO{E} MOO{R} MOO{T,E} MOO{T,R} Transformer

Average 3.28% 3.38% 0.99% 2.76% 1.63% 0.68%
Median 2.52% 2.62% 0.86% 2.38% 1.44% 0.51%
Standard deviation 0.05 0.04 0.02 0.02 0.01 0.01
Max 44.36% 25.92% 12.24% 13.07% 6.80% 6.91%
Min -4.03% -4.28% -1.98% -2.98% -1.23% -2.45%

Risk

MOO{T} MOO{E} MOO{R} MOO{T,E} MOO{T,R} Transformer

Average 0.08 0.09 0.05 0.09 0.06 0.05
Median 0.06 0.07 0.03 0.07 0.05 0.04
Standard deviation 0.06 0.07 0.05 0.06 0.04 0.04
Max 0.43 0.49 0.42 0.41 0.29 0.22
Min 0.01 0.01 0.01 0.01 0.01 0.01

Sharpe ratio

MOO{T} MOO{E} MOO{R} MOO{T,E} MOO{T,R} Transformer

SR 0.66 0.76 0.65 1.10 1.12 0.50

though it is still statistically outperformed by the latter. However, this comes at a

trade-off: the Transformer has the worst Sharpe Ratio (0.50), whereas MOO{T,R} and

MOO{T,E} demonstrate significantly better return-risk trade-offs. These findings are

further confirmed by the Friedman test results in Table 14, where the Transformer

ranks last for TR and E[RoR] and second for risk, though still significantly weaker

than MOO{R} (p = 1.15E-05).

6.7 Buy and hold

We now compare the proposed MOO3 algorithms with the buy-and-hold strategy. A

critical aspect to note is that the buy-and-hold strategy inherently involves a single

transaction over the entire period under study, where we buy one unit of stock on
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Table 14: Statistical test results between MOO3 algorithms and Transformer
for average TR, E[RoR], and Risk, according to the non-parametric Friedman
test with the Hommel post-hoc test. The subscript for each algorithm denotes
which metrics were optimised. When more than one metric is present, equal
weights have been assigned to each metric. Significant differences at the α = 5%
level between the control algorithm (appearing as the top row in each case) and
the remaining algorithms are shown in boldface, indicating that the adjusted
p-value is lower than 0.05.

(a) Total Return

Avg Rank Adj pHomm

MOO{T} 1.83 -
MOO{T,E} 2.65 2.33E-04
MOO{E} 3.10 1.56E-07
MOO{T,R} 3.34 1.33E-09
MOO{R} 4.71 3.86E-27
Transformer 5.35 1.40E-37

(b) Expected rate of Return

Avg Rank Adj pHomm

MOO{E} 2.41 -
MOO{T,E} 2.44 2.36E-01
MOO{T} 2.52 1.97E-01
MOO{T,R} 3.78 4.87E-08
MOO{R} 4.80 7.01E-20
Transformer 5.02 1.85E-22

(c) Risk

Avg Rank Adj pHomm

MOO{R} 1.55 -
Transformer 2.53 1.15E-05
MOO{T,R} 3.11 1.53E-10
MOO{T} 4.01 2.89E-21
MOO{E} 4.80 1.93E-33
MOO{T,E} 4.97 4.04E-36

the first day of trading and sell it on the last day; hence, the Risk metric cannot be

calculated. Furthermore, due to buy-and-hold making only a single trade (while the

MOO GPs make several), it is fairer to compare them across the total return over the

test set period rather than in terms of expected rate of return.

Table 15 presents the performance metrics of the MOO3 algorithms alongside

the buy-and-hold strategy. We can observe that buy-and-hold has a strong average

performance (mainly due to outliers), while its median value of 11.44% is only able to

outperform MOO{R}, which is understandable, given that the latter does not optimise

total return. All other algorithms have significantly higher average and median values.

These results are also confirmed by the Friedman test presented in Table 16, which

show that buy-and-hold is statistically and significantly outperformed by MOO{T}.
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Table 15: Summary statistics for the three-objective optimisation algorithms and
buy-and-hold in terms of total return. The best values per metric appear in boldface.
Algorithm MOO{T} MOO{E} MOO{R} MOO{T,E} MOO{T,R} Buy-and-hold

Average 61.33% 48.29% 15.15% 51.90% 41.58% 41.11%
Median 41.68% 32.81% 10.06% 37.88% 24.18% 11.44%
Standard deviation 0.67 0.69 0.24 0.61 0.52 1.81
Max 341.71% 544.98% 152.06% 324.26% 258.04% 1753.05%
Min -44.63% -44.89% -32.11% -42.72% -37.47% -89.62%

Table 16: Statistical test results between MOO3 algorithms and
buy-and-hold strategy in terms of average Total Return, according
to the non-parametric Friedman test with the Hommel post-hoc test.
The subscript for each algorithm denotes which metrics were opti-
mised. When more than one metric is present, equal weights have
been assigned to each metric. Significant differences at the α = 5%
level between the control algorithm (appearing as the top row) and
the other algorithms are shown in boldface, indicating that the
adjusted p-value is lower than 0.05.

Algorithm Avg rank Adj pHomm

MOO{T} (c) 1.97 -
MOO{T,E} 2.83 1.24E-04
MOO{E} 3.26 1.14E-07
MOO{T,R} 3.51 6.24E-10
Buy-and-hold 4.40 2.88E-20
MOO{R} 5.00 2.44E-20

6.8 Algorithmic complexity

To discuss the potential scalability of the approach, this section demonstrates the

computational cost of the proposed GP-based algorithm throughout its process and

evolutionary operations. To calculate the algorithmic complexity of the GP-based

algorithm, some related parameters need to be introduced as the number of optimi-

sation objectives (M), the population size (P ), maximum depth of tree (N), dataset

period days (m), and tournament size (T ). The main process of the proposed GP-based

algorithm could be broken down into the following steps:

1. Population initialisation:

The initialisation of one individual has a computational complexity O(N) with
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an N maximum depth of the tree. As the population size is P , the initialisation

is repeated P times, tuning out a complexity of O(PN).

2. Fitness function calculation:

Similarly, calculating fitness functions for one individual has a complexity O(m)

throughout the whole dataset period of m days. With the P population size, the

computational complexity of fitness function calculation is O(Pm).

3. Non-dominated Sorting:

In this process, each individual needs to be compared with the rest of the popula-

tion to determine dominance. In the worst case, where no individual is dominated,

the complexity is O(P 2). Taking M objectives into account, the non-dominated

sorting requires O(MP 2) complexity.

4. Crowding distance calculation:

For each front, individuals are sorted in terms of each objective. Per the objective,

the sorting takes O(P log P ), leading to an overall complexity of O(MP log P ).

5. Tournament selection:

With a tournament size of T and a population size of P , it requires O(PT )

complexity.

6. Genetic operators:

In the proposed algorithms, subtree crossover and point mutation are applied.

For both operators, a node needs to be selected randomly. It requires O(N)

as the algorithm to traverse the whole tree. Furthermore, the subtree needs to

be traversed during subtree crossover, which takes another O(N) in the worst

condition. The process takes P times. So the complexity of subtree crossover and

point mutation is O(2PN) = O(PN) and O(PN).

7. Population replacement:

After applying crossover and mutation, the proposed algorithms created a new

population containing P offspring. The next step is to select the top P individuals
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from the combination of the new population and the old population, result-

ing in 2P individuals. It also requires non-dominated sorting (O(M(2P )2) =

O(MP 2)) and crowding distance calculation (O(2P log(2P )) = O(P log P ))

of the combining population. So, the complexity of population replacement is

O(MP 2 + P log P )

In conclusion, the overall complexity of the proposed GP-based algorithm is

O(PN + Pm + MP 2 + MP log P + PT + PN + PN + MP 2 + P log P ), which is

equivalent to O(PN + Pm + MP 2 + MP log P + PT ).

6.9 Real-world scalability

Although training the proposed GP-based algorithm is computationally expensive,

applying predictions is not. This is because once the algorithm has been trained and

a trading model has been obtained, executing it can happen in a fraction of a second.

Nevertheless, given the market’s inherent volatility and instability, it may be

necessary to periodically re-train the algorithm to capture new changes in market con-

ditions. To avoid long periods of retraining the GP algorithm, parallelisation should

be used. Evolutionary algorithms are well-suited for parallelisation since each individ-

ual in the population is produced and evaluated independently. Previous studies have

demonstrated that parallel implementation can achieve speedups of up to 21 times

(Brookhouse et al, 2014).

7 Conclusions

In this study, we explored the integration of directional changes, genetic programming,

and multi-objective optimisation (MOO) to develop and evaluate advanced algorith-

mic trading strategies. The proposed MOO3 algorithm, using the NSGA-II algorithm,

optimised three objectives: total return, expected rate of return, and risk. Further-

more, we devised a novel aggregate metric, dubbed here the ‘modified Sharpe Ratio’,
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allowing us to designate a final solution from the Pareto front, by means of adjustable

weights reflecting trader preference among the different objectives. Our experimental

results, conducted on 110 datasets from 10 different international markets, demon-

strate the superiority of the MOO3 algorithm over single-objective optimisation (SOO)

methods employing the same aggregate metric.

The MOO3 algorithm effectively generated a diverse set of Pareto-optimal solu-

tions that provided optimal trade-offs among the three objectives. This was evidenced

by higher mean and median total returns, expected rate of returns, and Sharpe ratios

across various weight setups when compared to SOO. Statistical analysis further

reinforced the findings. Kolmogorov-Smirnov tests indicated significant differences

between MOO3 and SOO in several cases, while the non-parametric Friedman test

with Hommel’s post-hoc analysis showed that MOO3 algorithms focusing on indi-

vidual objectives performed best, followed by those combining multiple objectives.

These results highlight the benefits of considering multiple objectives under a MOO

framework, particularly in balancing return and risk. Moreover, MOO3 algorithms

were benchmarked against traditional technical analysis indicators (MACD, OBV,

and MTM),the state-of-the-art Transformer model, and the buy-and-hold strategy.

The MOO3 algorithms consistently outperformed these benchmarks, demonstrating

their robustness and efficiency in optimising trading strategies.

In summary, this study provides compelling evidence that multi-objective optimi-

sation under the directional changes framework offers significant improvements over

single-objective optimisation. The MOO3 algorithm not only produces superior trad-

ing strategies but is also able to consider diverse investor preferences through the use of

the modified Sharpe Ratio aggregate metric, making it a valuable tool for algorithmic

trading.
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Future work in this area could explore several promising directions to further

enhance the effectiveness and robustness of algorithmic trading under the DC frame-

work. One potential direction is the incorporation of additional objectives, such as the

number of trades that each trading strategy can perform. Another research direction

could be the integration of alternative data sources, such as social media sentiment,

which would enrich the feature set used in the genetic programming algorithm. Finally,

the weighting approach used in the context of the modified Sharpe Ratio aggregate

metric, while allowing traders to state their relative preferences for each objective, is

still somewhat mathematical in nature; developing / assessing more intuitive meth-

ods for designating a single, final trading strategy from the Pareto front could allow

traders increased flexibility and clarity when stating their relative preferences over

the multiple objectives.
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