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Abstract
This study explores the integration of directional changes (DC), genetic programming 
(GP), and multi-objective optimisation (MOO) to develop advanced algorithmic trading 
strategies. Directional changes offer a dynamic, event-based approach to market analysis, 
identifying significant price movements and trends. Genetic programming evolves trading 
rules to discover effective and profitable strategies. However, financial trading presents a 
multi-objective challenge, balancing conflicting objectives such as returns and risk. We 
propose a novel algorithmic trading framework, termed MOO3, which integrates genetic 
programming with the NSGA-II multi-objective optimisation algorithm to optimise three 
fitness functions: total return, expected rate of return, and risk. While the use of NSGA-II 
itself is well-established, our contribution lies in how we apply it within a trading context 
that combines (i) directional changes, (ii) genetic programming with both DC-based and 
physical-time indicators, and (iii) a modified Sharpe Ratio for post-optimisation strategy 
selection based on trader preferences. Utilising indicators from both paradigms allows 
the GP algorithm to create profitable trading strategies, while the multi-objective fitness 
function allows it to simultaneously optimise for risk. A definitive strategy is chosen from 
Pareto-optimal solutions using the modified Sharpe Ratio, allowing traders to prioritise 
multiple objectives. Our methodology is tested on 110 stock datasets from 10 international 
markets, aiming to demonstrate that the multi-objective framework can yield superior 
trading strategies with lower risk. Results indicate that the MOO3 algorithm consistently 
and significantly outperforms single-objective optimisation (SOO) methods, even when 
the same SOO criterion is employed for choosing a single, definitive investment strategy 
from the Pareto front.

Keywords  Directional changes · Genetic programming · Algorithmic trading · Multi-
objective optimisation
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1  Introduction

Algorithmic trading has attracted increased attention from investors over the last few years. 
The adaptability of the market to new algorithms has led to the constant pursuit of novel 
and efficient trading strategies. One such algorithm is directional changes (DC), which is 
an event-based technique that summarises physical time series into a series of significant 
events. These significant events are defined as the price movement over a user-defined 
threshold θ, such as a price change of 0.5%. Under the DC framework, the market is divided 
into uptrend and downtrend segments, each characterised by ‘directional change’ (DC) and 
‘overshoot’ (OS) events. The DC event is defined as the span from the beginning of a trend 
segment up until the price moves by at least θ in the trend’s direction. Following this, the 
OS event is then defined as the remainder of that segment; the start of the next observed DC 
event marks the end of the previous segment, and the start of the new one where the trend 
direction has reversed.

In addition, Genetic programming (GP), which belongs to the family of evolutionary 
algorithms, has shown great promise in developing effective trading strategies (Brabazon 
et al. 2020). GP evolves populations of trading rules or models through processes analo-
gous to natural selection. This evolutionary approach enables the discovery of potentially 
profitable trading strategies that might not be evident through traditional methods, such as 
strategies derived from comparing the performance of technical analysis indicators. GP’s 
flexibility and adaptability make it particularly well-suited for the dynamic and complex 
nature of financial markets.

Combining directional changes with genetic programming can lead to the formulation 
of robust trading strategies (Long et al. 2022b; Long and Kampouridis 2024). However, the 
financial markets present a multi-objective optimisation (MOO) challenge, where traders 
often need to balance conflicting objectives such as maximising returns and minimising 
risk. Multi-objective optimisation techniques provide a framework for simultaneously opti-
mising such competing goals, yielding a set of Pareto-optimal solutions that offer various 
trade-offs. Ever since DC was proposed by Guillaume et al. (1997), numerous studies have 
demonstrated its effectiveness in creating trading strategies that achieve high returns at rela-
tively low risk (Bakhach et al. 2016b; Ao and Tsang 2019; Salman et al. 2022).

Most existing DC-based trading strategies rely on single-objective optimisation methods 
or aggregate metrics such as the Sharpe ratio. These methods often oversimplify the trade-
off between conflicting objectives like return and risk, potentially leading to sub-optimal 
strategies. Furthermore, while genetic programming has demonstrated effectiveness in 
evolving robust trading rules, previous studies typically focus on maximising returns or 
minimising risk independently, neglecting the simultaneous optimisation of both. Existing 
multi-objective optimisation (MOO) techniques in algorithmic trading tend to overlook the 
integration of event-based DC frameworks with evolutionary methods like GP, limiting 
their adaptability in volatile and dynamic market environments.

To address these limitations, this study proposes a novel framework for algorithmic trad-
ing, named MOO3 (Multi-Objective Optimisation with three objectives), which integrates 
directional changes, genetic programming, and multi-objective optimisation to develop and 
evaluate advanced trading strategies. The framework uses genetic programming (GP) in 
conjunction with the well-known NSGA-II algorithm (Deb et al. 2002) to simultaneously 
optimise three key fitness criteria: total return, expected rate of return, and risk. Although 
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NSGA-II is a well-established method in the field of multi-objective optimisation, the nov-
elty of this work lies in its tailored application within a trading context that brings together 
several distinct elements. Specifically, our approach uniquely integrates: (i) the directional 
changes (DC) paradigm, which offers a data-driven method for analysing price movements; 
(ii) genetic programming models that incorporate both DC-based features and conventional 
time-series indicators, thereby enriching the search space with diverse representations of 
market behaviour; and (iii) a modified version of the Sharpe Ratio that is used for selecting 
strategies after optimisation, enabling customisation based on trader-specific preferences 
for risk and return.

We run experiments on 110 datasets (stocks) from 10 different international markets. Our 
aim is to show that the utilisation of a multi-objective optimisation framework leads to more 
profitable trading strategies at low risk.

The rest of this study is organised as follows. Section 2 introduces the necessary back-
ground information on DC, Genetic Programming, and NSGA-II. Section 3 presents related 
work on directional changes and multi-objective optimisation in algorithmic trading, while 
Section 4 presents the methodology applied in this paper. Section 5 discusses the experi-
mental setup, as well as the benchmarks and datasets used in this work. Section 6 is dedi-
cated to presenting the findings from our experiments, and finally, Section 7 concludes this 
paper and discusses potential future work.

2  Background

This section provides background information on key concepts of our article, namely direc-
tional changes, NSGA-II and genetic programming.

2.1  Directional changes

The DC approach is an event-based approach for summarising market price movements. In 
contrast to the physical time approach, where time is divided into fixed intervals (e.g.  daily 
closing price), DC summarises the price data into a series of upturn and downturn events, 
which are detected when the price moves over a user-defined relative threshold θ. That is, 
the time point at which the current price increases (decreases) by θ% relative to the most 
recent minima (maxima), marks a new upturn (downturn) DC event, starting at the most 
recent minima (maxima) and ending at the current time point in question. Until the next 
downturn (upturn) DC event is observed, the rest of the uptrend (downtrend) is considered 
the overshoot (OS) event. In conclusion, the DC framework could be regarded as a series of 
downturn DC, downturn OS, upturn DC, and upturn OS events.

From the structure of DC, it becomes evident that the user-defined threshold holds a 
position of paramount importance within the DC algorithm. Different threshold values lead 
to different series of events for the same fixed-scale price series. Specifically, higher thresh-
old values result in fewer but more significant DC events, whereas lower threshold values 
produce smaller and more frequent DC events. This is a very important property of the DC 
framework, since different traders may have different opinions as to what constitutes ‘signif-
icant’ as opposed to ‘non-significant’ events from their point of view. The presence of such 
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a threshold, therefore, inherently provides the DC framework with the required flexibility, 
which allows traders to adapt the algorithm so as to best match their needs.

Figure 1 presents an example of how different thresholds could impact the same fixed-
scale price series. The green line represents a series of DC and OS events when using a 
threshold of 1%, while the red line represents a series of DC and OS events using a threshold 
of 1.5%. The original price is denoted by the blue line. When looking at the red line, gener-
ated by the 1% threshold:

	● The interval between points A and C represents an uptrend segment, where AB repre-
sents the DC upturn event, and BC represents the overshoot (OS) event,

	● The interval between C and E represents a downtrend segment, where CD represents the 
DC downturn event, and DE represents the OS event,

	● The interval between E and G represents an uptrend segment, where EF represents the 
DC upturn event, and FG represents the OS event, and

	● The interval beyond G represents a downtrend segment, with a DC and OS event.

Similarly, when looking at the green line, generated by the 1.5% threshold:

	● The interval between points A and C represents an uptrend segment, where AB’ repre-
sents the DC upturn event, and B’C represents the overshoot (OS) event,

	● The interval between C and E represents a downtrend segment, where CD’ represents 
the DC downturn event, and D’E represents the OS event,

	● The interval between E and G represents an uptrend segment, where EF’ represents the 
DC upturn event, and F’ G represents the OS event, and

	● The interval beyond G represents a downtrend segment, with a DC event only.

Fig. 1  An example for DC. The 
blue line indicates the physical 
time series, the red line denotes 
a series of DC and OS events as 
defined by a threshold of 1%, 
while the green line denotes a 
series of DC and OS events as 
defined by a threshold of 1.5%. 
DC events are depicted with 
solid lines, while dotted lines 
denote the OS events
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Points B, B’, D, D’, F, and F’ are referred to as DC confirmation points, as these are the 
moments in time that one can confirm that a directional change has occurred. However, it is 
important to note that DC events can only be confirmed retrospectively, i.e.  once the price 
has changed by at least θ. For example, point D is a downwards DC confirmation point, as it 
represents a change of θ relative to the previous tallest peak occurring at C. Before reaching 
point D, however, the trader could not have known they were in a DC downturn interval, 
but would instead have still been under the assumption that the market is in an upwards OS 
event, which started at point B.

A major advantage of the directional changes paradigm is that it allows traders to focus 
on meaningful market shifts (defined by the threshold θ), which reduces exposure to noise-
driven trading risks. By focusing on looking at significant events rather than data under 
fixed-time methods, the algorithm adapts dynamically to different market conditions, hence 
mitigating risks associated with sudden price changes.

To conclude, directional changes is an alternative to physical time price summaries, 
which focuses on important events that occur in the market. Under DC frameworks, price 
movements can be viewed from a new (event-based) perspective that would not have been 
possible under physical time (Glattfelder et al. 2011).

2.2  Genetic programming

Genetic Programming (GP) is a bio-inspired technique that evolves computer programs to 
tackle problems or execute tasks. It incorporates key elements for an effective global search: 
(i) instead of focusing on a single solution, GP operates with a population of candidate solu-
tions (individuals), (ii) the fitness function evaluates the quality of each individual in the 
population, favoring higher-quality solutions for progression to the next generation, and 
(iii) genetic operators explore the solution space by generating new offspring individuals 
through a stochastic selection process based on fitness.

Algorithm 1 outlines the high-level pseudocode of GP. It initiates a population of p can-
didate solutions, assessed by a fitness function. This fitness function is problem-specific. 
In each iteration (within the while loop), a new population emerges by probabilistically 
selecting fitter individuals from the current population. Some undergo crossover or muta-
tion, introducing modifications for exploring the search space, while others are retained 
unchanged. This process continues until a maximum number of generations is reached or 
a (near-)optimal solution is found, serving as a termination condition. This evolutionary 
approach allows GP to conduct a robust global search in the candidate solution space, mini-
mising the risk of being confined to local minima. Details about the specific GP we use in 
our experiments are given in Section 4.
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Algorithm 1  High-level pseudocode of a genetic programming algorithm.

2.3  NSGA-II

In the real world, there are plenty of problems that require a trade-off solution among 
multiple conflicting objectives. For instance, in the field of finance, traders seek a balance 
between profit and risk. They look for a trading strategy that combines high profit with low 
risk. In other words, they are solving a problem that maximises a profit objective and mini-
mises a risk objective. It is vital to recognise that profit and risk represent two inherently 
conflicting objectives, where, traditionally, high profit is often associated with high risk, 
while low risk tends to correlate with reduced profit. Usually, traders consider profit and 
risk together, trying to achieve a good balance between the two. One way of tackling this 
problem is by using aggregate metrics; these involve combining all the different objectives 
into a single mathematical expression, to be optimised directly as a single objective. A com-
mon example of such an aggregate metric is the Sharpe ratio (Sharpe 1994), defined as the 
ratio of the expected rate of return over the risk. Fusing multiple objectives in this manner 
can be appealing, as this can simplify the evaluation of the genetic algorithm considerably. 
It also easily allows one to specify ‘weights’ for each objective, denoting the extent to which 
an investor values each of the different components of the problem. However, using such a 
predefined ‘recipe’ for condensing multiple factors into a single number, risks oversimplify-
ing the complex relationship which underlies the different objectives, and thus risks mis-
representing the performance evaluation of the investment portfolios in question during the 
algorithmic process. On the other hand, in a multi-objective optimisation (MOO) approach, 
the different objectives (e.g.  both return and risk) are optimised independently.

NSGA-II (Non-dominated Sorting Genetic Algorithm II) (Deb et al. 2002) is a state-of-
the-art genetic algorithm, effectively an extension of the traditional single-objective genetic 
algorithm approach, allowing one to efficiently tackle problems with multiple, potentially 
conflicting objectives. Its key innovation is the non-dominated sorting technique, which 
relies on the concept of Pareto dominance in order to enforce a ranking among the pool of 
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potential candidate solutions (in the context of GP, these would reflect different investment 
strategies, for instance). A candidate solution is said to Pareto-dominate another solution 
if it is better in at least one objective, and not worse in any other objective. At any point 
during the course of a GP algorithm, the population of candidate solutions can therefore 
be divided into two subsets: a set of dominated ‘individuals’ (i.e.  candidate solutions), for 
which there is at least one other solution which Pareto dominates the former; and a set of 
non-dominated individuals, where no such other dominating solution exists in the popula-
tion. In this scenario, the subset of non-dominated individuals then naturally forms a kind 
of “outer boundary”, whereby the ‘inner’ individuals that find themselves surrounded by 
this boundary are all effectively dominated by the points that make up the boundary. We call 
this boundary formed by non-dominated individuals the Pareto front. NSGA-II leverages 
this concept of a Pareto front, by partitioning the population into multiple fronts, each of 
which is ranked according to their order of non-dominance. In other words, if we define the 
primary front as having the topmost rank (i.e.  rank 1), then we can obtain the next front (i.e.  
rank 2), by removing all the rank 1 individuals from the population, and recalculating the 
Pareto front for the remaining population. Repeating this process until all the individuals in 
the population have been allocated a rank, results in a hierarchical partitioning of the popu-
lation into multiple fronts, whereby each front consists of individuals that Pareto dominate 
individuals in subsequent fronts. NSGA-II then simply uses this ranking as the main force 
driving the evolutionary process; this allows the genetic algorithm to favour non-dominated 
solutions over dominated ones during the mating selection process, while still maintaining 
diversity over generations by virtue of solutions being suitably distributed over the entire 
Pareto front. In order to ensure good coverage over the whole Pareto front in this manner, 
NSGA-II also introduces the concept of crowding distance, which encourages the spread of 
solutions by considering the density of Pareto optimal solutions around each candidate, and 
incorporating that information into the fitness function. The crowding distance is calculated 
as the normalised Manhattan distance between the two individuals closest to the solution 
of interest within the same front. This is effectively calculated as the sum of absolute differ-
ences between the two individuals, across the various objectives. An example of the crowd-
ing distance calculation for a return-risk two-objective problem is shown in Figure 2, where 
points i−1 and i+1 are the two neighbouring points of point i within the same front. The 
generic formula for a crowding distance with k objectives is presented by Eq. 1 below:

Fig. 2  An example of crowding distance for a 
two-objective problem. The crowding distance 
of solution i here is defined as the Manhattan 
distance of its closest neighbours, denoted here as 
i−1 and i+1
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Crowding distance for individuali =

k∑
x=1

∣∣∣∣∣
fx(i+1) − fx(i−1)

maxj

[
fx(j)

]
− minj

[
fx(j)

]
∣∣∣∣∣� (1)

where fx(i) represents how well the i-th individual in the population performs with respect 
to a specific objective ‘x’; maxj

[
fx(j)

]
 is the performance of the individual for which 

objective ‘x’ achieves its most favorable value (assuming a ‘maximizing’ fitness objective); 
and minj

[
fx(j)

]
 corresponds to the performance of the individual with the least favourable 

value for ‘x’. It is worth noting that the individuals with the best value on a particular objec-
tive are assigned the maximum crowding distance of 1 for that component, since they lack 
nearby individuals with comparable fitness values.

Once the crowding distance is obtained in the manner described above, this is then used 
as a tie-breaker strategy when choosing between individuals with the same Pareto rank. In 
other words, during selection, NSGA-II first compares the Pareto front rank; the individual 
with the lowest (i.e.  best) rank is selected for mating. For individuals with equal Pareto front 
rank, the one with the higher crowding distance is selected. Once the mating phase for that 
generation is complete, the algorithm proceeds to the survival phase. For this step, NSGA-II 
uses a so-called “(µ + λ)” selection strategy: once a new population of λ ‘offspring’ indi-
viduals has been formed via genetic operations performed on the original population of µ 
‘parent’ individuals, the entire pool of µ+λ individuals is then evaluated and ranked based 
on their Pareto front rank and crowding distance. The topmost µ individuals from this pool 
are then selected to become the next generation of ‘parent’ individuals. In other words, by 
the end of the selection process, an equal number of individuals with lower Pareto front rank 
and higher crowding distance survive as the next population. Figure 3 presents a flowchart 
of the NSGA-II algorithm in the context of this work on algorithmic trading.

3  Literature review

3.1  Directional changes

Algorithmic trading has traditionally focused more on physical time data as the main algo-
rithmic substrate in the academic literature (Long et al. 2022a; Christodoulaki et al. 2022, 
2023). Nevertheless, newer literature seems to suggest that the use of directional changes has 
gained significant traction in recent years. The first work to introduce the concept of direc-
tional changes (DC) in financial markets was Guillaume et al. (1997). The DC framework 
was subsequently formalised by Tsang (2010). Following this, the DC framework found 
wide application in the development of trading strategies within the Foreign Exchange (FX) 
market, due to its ability to represent irregularly spaced high-frequency tick data in an intui-
tive manner. For example, Aloud (2012, 2015) developed trading strategies that reframed 
the widely used trend following and contrarian strategies under the DC framework; their 
work focused on how traders will react, and how adaptable such DC-based strategies are 
in response to FX market movements. Later, Aloud (2016a) built an automated DC trading 
strategy that could learn the size and direction of periodic patterns from historical asset 
prices. Similarly, Bakhach et al. (2016a) introduced the Backlash Agent, a novel contrarian 
trading strategy, exhibiting strong performance within the FX market.
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Additionally, Glattfelder et al. (2011) discovered 12 ‘scaling laws’ that could hold under 
13 foreign exchange pairs.1 Based on this study, Aloud and Fasli (2016) proposed an addi-
tional four scaling laws under the DC framework; their work entailed an assessment of the 
efficacy of these scaling laws in the context of the FX market. Other work by Ao and Tsang 
(2019) similarly focused on using scaling laws, by exploring the relationship between DC 
and OS events.

More recently, machine learning has gained popularity within directional changes. Gyp-
teau et al. (2015) was the first work to use a GP-based approach to predict the future price 

1 Scaling laws are empirical observations, similar to stylised facts in physical time frameworks, which are 
commonly observed in markets. Scaling laws capture statistical regularities and tendencies in financial data.

Fig. 3  Flowchart of the NSGA-II algorithm. n represents the current generation and N indicates the num-
ber of generations (50 in this paper)
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movement of financial markets. Subsequently, Adegboye and Kampouridis (2021) and Ade-
gboye et al. (2021) applied classification and regression algorithms to predict when a trend 
would reverse, while Adegboye et al. (2023) used a genetic algorithm to optimise the rec-
ommendations of multiple DC thresholds. Rostamian and O’Hara (2022) employed a Con-
volutional Neural Network Long Short-Term Memory (CNN-LSTM) model to predict DC 
events. Long et al. (2022b) demonstrated the advantages of combining indicators derived 
from directional changes alongside indicators from technical analysis. Finally, Rayment and 
Kampouridis (2023, 2024) applied reinforcement learning to learn from directional changes 
in FX data.

While these promising results highlight the effectiveness of DC-based approaches in 
both the FX and stock markets, with or without the utilisation of machine learning algo-
rithms, a notable gap emerges. To the best of our knowledge, all published DC works uti-
lise single objectives, or at most, aggregate metrics that combine multiple objectives into 
a single metric, such as the Sharpe ratio. As previously mentioned, such aggregate metrics 
have the disadvantage of oversimplifying and potentially misrepresenting the relationship 
between the different components involved, therefore any strategies developed on the basis 
of such metrics could be sub-optimal. Therefore, to fill the above gap, we proposed a novel 
NSGA-II algorithm directly optimising TR, E[RoR], and risk under the DC framework. The 
proposed method enables the discovery of a diverse set of Pareto-optimal solutions that bal-
ance a trade-off among the three fitness functions.

3.2  Multi-objective optimisation

Optimisation techniques are commonly applied in financial decision-making, ranging from 
wealth allocation strategies to algorithmic trading and multi-objective optimisation (MOO), 
as explored in this study (Chen et al. 2022; Leung and Wang 2020). In particular, MOO 
has attracted a lot of attention in the financial literature (although not in the DC domain 
as of yet) and in algorithmic trading in particular. The reason behind this is that the real-
world traders naturally pursue a trade-off between the conflict objectives, such as maximum 
excess return and minimum risk. However, most traders do not have a precise expecta-
tion of the objectives. Furthermore, Lai et al. (2021) show that the low volatility effect is 
primarily driven by stocks with high specific risks, rather than a monotonic relationship 
between lower volatility and higher returns. To deal with this issue, Leung and Wang (2020) 
used a Collaborative Neurodynamic Optimisation approach for bi-objective portfolio selec-
tion, where they trained an ensemble of neural networks to predict asset allocation using a 
bi-objective function considering both return and risk. The ensemble collaborates during 
training to explore a diverse set of solutions, and the final set of solutions then undergoes 
Pareto filtering in order to obtain the final set of Pareto-optimal solutions. Similarly, Wu 
and Tsai (2014) applied three fuzzy goal programming models to simulate the uncertain 
satisfaction of trades when balancing error minimisation and excess return maximisation. 
The proposed model successfully identified an index tracking portfolio with a lower error 
while maintaining a similar excess return with the 0050 index fund, one of the most popular 
exchange-traded funds in Taiwan. Moreover, Wu et al. (2022) proposed a three-step model 
to help traders determine the number of stocks in the portfolio including the stock filter. All 
the above studies addressed the challenge that real-world traders often struggle to find opti-
mal solutions and introduced improvements to assist them in determining suitable solutions. 
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Although this work does not involve portfolio management, it also motivates us to propose 
trader-preference scenarios to help traders select the optimal solutions from the Pareto front 
generated by the multi-objective optimisation algorithm.

Additionally, searching such trade-offs among the conflict objectives requires robust 
optimization techniques, where evolutionary algorithms (EAs) have been widely applied in 
algorithmic trading, particularly in multi-objective optimization tasks. Recent works in the 
area include de Almeida et al. (2016), which proposed a differential evolution model analyz-
ing four technical indicators, aiming to maximise profit, and minimise the level of risk and 
the number of trading actions. Furthermore, Kim and Enke (2016) proposed a rule change 
trading system using a genetic algorithm to maximise profit and payoff ratio. More recently, 
Atiah and Helbig (2019) conducted an in-depth study regarding the performance of three 
state-of-the-art dynamic multi-objective optimisation algorithms. They evaluated dynamic 
vector-evaluated particle swarm optimisation, a multi-objective particle swarm optimisa-
tion with crowded distance, and a dynamic non-dominated sorting genetic algorithm in the 
foreign exchange market. This particular work used NSGA-II, which is also the chosen 
MOO algorithm in our paper. In addition, Karasu et al. (2020) developed a new model based 
on support vector regression with a wrapper-based feature-selection approach employing 
multi-objective optimisation. The primary aim of their work was to forecast future prices of 
crude oil, demonstrating the potential of this advanced methodology in predictive analysis. 
Noticing that feature engineering was overlooked in previous studies, Zeng et al. (2023) 
proposed a random forest-based algorithm (I-NSGA-II-RF) that incorporates a three-stage 
feature engineering process. Their approach aims to identify optimal feature sets that influ-
ence stock prices, achieving higher accuracy and lower computational time compared to 
deep learning models.

With regards to directional changes, Long et al. (2023) was the first work to introduce 
multi-objective optimisation within a DC framework. Our current article extends Long et al. 
(2023) in several ways: (i) we examine a three-objective GP problem instead of a two-objec-
tive one, and introduce a corresponding three-objective variant of the Sharpe Ratio; the 
latter is used in two ways in this work: one, as the fitness function in the context of an SOO 
strategy serving as a benchmark algorithm, and two, as a post-MOO final decision strategy 
for selecting a single solution from the final front of Pareto-optimal solutions. (ii) we double 
the number of datasets we experiment with. (iii) we additionally benchmark against three 
standard ‘zero-crossing’ trading strategies based on technical analysis indicators, together 
with a trading strategy using a start-of-the-art deep learning model. We also benchmark 
against a Transformer-based architecture, due to its ability to capture complex temporal 
dependencies in financial data. And finally, (iv) we provide a more in-depth presentation of 
our methodology and results discussion.

To sum up, evolutionary algorithms have been used in conjunction with multi-objec-
tive optimisation in the domain of algorithmic trading; additionally, the incorporation of 
technical indicators has been proven to enhance the performance of these algorithms, as 
demonstrated in prior research (de Almeida et al. 2016; Kim and Enke 2016). The present 
study builds upon these foundations by applying both DC-based and fixed-time technical 
indicators in the context of the NSGA-II framework, and thereby exploring the effective-
ness of multi-objective optimisation under the DC framework. As an alternative approach 
to summarising the stock market into a series of significant events, DC can provide valuable 
insights from a new perspective while reducing market noise. Together with the traditional 
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fixed-time technical indicators, the DC indicators could enrich the information used to train 
the proposed MOO3 algorithms, leading algorithms to discover more stable and profitable 
trading strategies.

4  Methodology

This section presents in detail the methodology followed in our work. Multi-objective 
optimisation (MOO) in algorithmic trading presents several challenges that arise from the 
inherently conflicting nature of financial objectives and the complexities of real-world mar-
kets. Traders must often balance maximising returns with minimising risk, objectives that 
naturally oppose each other. Additionally, financial markets are dynamic and noisy, making 
the identification of stable and robust trading strategies difficult. MOO algorithms must, 
therefore, not only deal with these conflicting goals, but also adapt to the rapidly changing 
market conditions. In addition, another challenge in this domain is selecting a final solution 
from a set of Pareto-optimal solutions. While MOO provides a diverse range of trade-offs, 
practitioners typically require a single, actionable strategy. Without a structured selection 
mechanism, choosing from the Pareto front can be subjective and inconsistent. Addressing 
these challenges is crucial for developing practical and effective algorithmic trading strate-
gies. Our methodology below addresses these issues.

This study’s proposed framework directly addresses these issues by integrating direc-
tional changes (DC) with genetic programming (GP) and using the NSGA-II algorithm for 
MOO. The role of the GP algorithm is to use evolutionary techniques, to efficiently explore 
the space of all possible ‘programs’ (i.e.  trading recipes) that can be defined from a pre-
defined set of functions and terminals. In this case, the GP terminals consist of DC-related 
indicators, as well as technical analysis (TA) indicators. The end-goal of the algorithm is 
to evolve trading strategies, which are optimal in the multi-objective sense; specifically, we 
aim to discover strategies that achieve a desirable balance between total return, expected 
rate of return, and risk. To this end, we employ NSGA-II (Deb et al. 2002) as the main GP 
evolution strategy. Once the set of suitable, Pareto-optimal solutions has been obtained via 
this process, we make a final, singular choice from within that set, by using a predefined 
criterion designed to reflect trader preference (i.e.  the desired balance among the various 
objectives). By employing a modified Sharpe Ratio (mSR), the framework provides a sys-
tematic way to select a single strategy from the Pareto front, tailored to individual trader 
preferences, thus enhancing the usability and relevance of the generated solutions. The sec-
tions that follow explore the different parts of the process described above in more detail.

4.1  GP representation

As with all evolutionary approaches, GP is a population-based approach, meaning that it 
requires a population of ‘individuals’, which evolves over a number of generations (i.e.  
iterations of the algorithm, see Algorithm 1) to adopt certain useful characteristics. Individu-
als (here corresponding to trading ‘recipes’) are represented as computer programs in the 
form of strongly-typed syntax-trees, where the tree nodes consist of appropriate functions 
and terminals.
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The Function set consists of the logic operators ‘AND’ and ‘OR’, and the comparison 
operators ‘>’ and ‘<’. The Terminal set consists of 28 DC indicators (listed in Table 1), 28 
physical time TA indicators (listed in Table 2), and an ephemeral random constant (ERC), 
which assigns a random value between 0 and 1 each time one is inserted into a GP tree. 
All indicators are normalised in the range [0, 1]. Figure 4 shows a sample tree that can be 
produced by the GP. Note that only Part 1 is evolved by the GP, while Part 2 remains fixed 
throughout the evolutionary process. The ‘root’ note is always an “If-Then-Else” (ITE) 
function, which decides whether to perform a ‘Buy’ or ‘Hold’ action, based on the (boolean) 
outcome of the leftmost branch. In this example, the first branch checks if the OSV indicator 
is greater than 0.22 and the 10-day NDC  indicator is greater than −0.68; if both statements 
are true, then the leftmost branch evaluates to true, causing the ITE function to invoke a 
‘Buy’ decision. Otherwise, if the branch evaluates to false, a ‘Hold’ decision is invoked 
instead. In our setup, when the GP tree outputs a ‘Buy’ signal, a long position is opened 
at the next available price. If the signal is ‘Hold’, no position is entered. For simplicity, 
we assume full capital allocation per trade, executed as a market order without slippage, 

Indicator Description Peri-
ods 
(days)

TMV Total price movement; this is defined as the 
price movement between the extreme point at 
the beginning and end of a trend, normalised 
by the threshold θ.

N/A

OSV Overshoot Value; this is defined as the percent-
age difference between the current price and 
the last directional changes confirmation price 
divided by the threshold θ.

N/A

Average 
OSV

This is the average value of OSV over the 
selected period.

3, 5, 
10

RDC RDC  represents the time-adjusted return 
of DC. It could be calculated as TMV times 
threshold θ divided by the time intervals 
between each extreme point.

N/A

Average 
RDC

This is the average value of RDC  over the 
selected period.

3, 5, 
10

TDC This is the time spent on a trend. N/A
Average 
TDC

This is the average value of TDC  over the 
selected period.

3, 5, 
10

NDC NDC  is the total number of DC events over 
the selected period.

10, 
20, 
30, 
40, 
50

CDC CDC  is defined as the sum of the absolute 
value of TMV over the selected period.

10, 
20, 
30, 
40, 
50

AT AT  represents the difference between the time 
that the DC spends on uptrends compared to 
downtrends over the selected period.

10, 
20, 
30, 
40, 
50

Table 1  DC indicators; see also 
Aloud (2016b).
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latency, or partial fills. This stylised setup allows us to isolate and evaluate the effectiveness 
of the evolved trading rules without introducing execution complexity.

Note that ‘Sell’ actions are not part of the GP tree. To decide when a ‘Sell’ action will 
occur, we consider two things: the number of days n since the asset was bought, and its 
current price, or more specifically the percentage r by which the stock price has increased 
since its purchase. Specifically, our strategy for selling an asset is to sell either after n days 
have already passed from the initial purchase, or when a price increase of r% has occurred, 
whichever comes first. This provides a consistent and rule-based position control mecha-
nism for closing trades, enabling fair comparison across evolved strategies. Note that short-
selling is not allowed in this trading strategy. Whenever a trade is completed (a buy action 
and a corresponding sell action have occurred), we calculate and record the buy and sell 
prices, Pb and Ps, respectively. All buy and sell actions factor in a 0.025% transaction cost.

Indicator Description Peri-
ods 
(days)

MA Moving average for a given period 10, 
20, 
30, 
40, 
50

CCI Commodity channel index, which measures 
the deviation of an asset’s price from its 
statistical average

10, 
20, 
30, 
40, 
50

RSI Relative strength index, which is a momentum 
oscillator to measure the magnitude of recent 
price changes and determine overbought or 
oversold conditions of an asset

10, 
20, 
30, 
40, 
50

William’s 
%R

Measures oversold or overbought conditions 
of an asset by comparing the closing price of 
an asset to its price range over a set period 
of time

10, 
20, 
30, 
40, 
50

ATR Average true range, which measures the vola-
tility of an asset by calculating the average of 
the true range over a set period of time

3, 5, 
10

EMA Exponential moving average, which calculates 
a weighted average of a series of prices over 
a set period of time, where more recent prices 
are given greater weight in the calculation

3, 5, 
10

OBV On balance volume, which measures buy-
ing and selling pressure, by calculating the 
cumulative total of an asset’s volume, where 
positive volume is added to the total of an up 
day and negative volume is subtracted on a 
down day

N/A

PSAR Parabolic stop and reverse, which identi-
fies potential reversals in the direction of an 
asset’s price movement by placing dots on a 
chart that indicate potential stop and reverse 
points for a long or short position

N/A

Table 2  Physical time (techni-
cal analysis) indicators; see also 
Kelotra and Pandey (2020)
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4.2  Model evaluation

We evaluate each individual’s performance, by considering three financial metrics, serving 
as the GP objectives from which suitable Pareto fronts will be obtained (i.e.  for the purposes 
of the NSGA-II algorithm). These metrics are: total return (TR), expected rate of return 
(E[RoR]), and risk (Risk). The first two are maximisation objectives, and the third one is a 
minimisation one. Eqs. 2–4 present the relevant formulae:

	
RoR(i) = (1 − c) · Ps(i) − (1 + c) · Pb(i)

(1 + c) · Pb(i)
· 100% � (2)

	
TR =

∑
i

[
(1 − c) · Ps(i) − (1 + c) · Pb(i)

]

(1 + c) · Pb(i0 )
· 100%

� (3)

	 Risk =
√

Var[RoR] � (4)

where the i indices here correspond to completed trade events (i.e.  where both a buy and a 
sell event have taken place for a particular asset) within the period of interest, Ps(i) refers 
to the sell price for that event, Pb(i) refers to the buy price for that event, Pb(i0 ) denotes the 
buy price of the first ever trade event for that period, and c is the transaction cost.

The rate of return (RoR) is a measure of how profitable a particular trade turned out to 
be. It is a particularly useful metric for short-term investors, as it allows them to evaluate 
individual trades. The expectation E[RoR] over all such events in a given period (e.g.  the 
training or test periods) is therefore a measure of how profitable trades were for that period 

Fig. 4  Sample GP tree. If OSV is greater than 0.22 and NDC  for 10 days is greater than −0.68, then we 
get a signal for a buy action; otherwise, we hold; 0.22 and −0.68 are two random values generated by 
ERC
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on average, given a particular trading strategy. The total return (TR) on the other hand, is 
a measure related to the overall return over a certain period, defined as the total profit over 
that period, expressed relative to the purchase price of the first event in the sequence. Note 
that its value is not necessarily capped at 100%. Its advantage over the E[RoR] as a metric 
is that, in the presence of more trade events having a similar rate of return, the TR will be 
higher, accurately reflecting the fact that the trades during that period resulted in better over-
all profit. Lastly, Risk acts as an indicator of the uncertainty and potential for financial loss 
associated with the fluctuation of the rate of return.

For completeness, we also introduce in Eq. 5 an aggregate metric, namely the Sharpe 
ratio (Sharpe 1994), which is intended to be applied to entire portfolios rather than indi-
vidual datasets. This is defined as:

	
Sharpe ratio =

E[R − Rf ]√
Var[R]

,� (5)

where R here reflects the expected rate of return for a given portfolio, and Rf  is the risk-free 
rate; for the sake of simplicity, we assume here that each dataset is adequately represented 
by its expected rate of return, and that Rf  is constant. We will use the Sharpe ratio in the 
results section to evaluate the risk-adjusted return of each algorithm.

4.3  Selection and genetic operators

The GP algorithm above requires two separate selection events. The first selection event 
determines the ‘mating pool’, i.e.  which individuals in the population will undergo genetic 
operations in order to produce new ‘offspring’ (i.e.  candidate solutions). For this selection 
event, we use tournament selection as the GP selection method. To identify the winner of a 
tournament event, we consider the Pareto front rank and the crowding distance of each of 
the tournament ‘contestants’. Specifically, after obtaining a number of k random individuals 
from the population, who are to compete in the tournament, NSGA-II first compares the 
Pareto front rank; the individual with the lowest rank ‘wins’ the tournament, and is selected 
for mating. For individuals with equal Pareto front rank, the one with the highest crowd-
ing distance is selected instead. The second selection event takes place after all mating 
operations have completed, which will have resulted in λ offspring being generated from µ 
parents. This selection step then determines which individuals will ‘survive’ to become the 
next generation, using a “(µ + λ)” strategy; this effectively selects the topmost µ individu-
als from the resulting µ+λ population of parents and offspring combined, using the same 
fitness strategy as above (see also Section 2.3).

With regard to genetic operators, we use subtree crossover and point mutation. The for-
mer exchanges subtrees between two parent individuals; the latter randomly changes a node 
of the resulting tree, which may be a function or a terminal, into another (compatible) func-
tion or terminal respectively.

4.4  Designating NSGA-II’s final solution using a modified Sharpe ratio

The output of the GP at the end of the training process is not a single solution, but an entire 
front of solutions, that are optimal in the Pareto sense. While obtaining such a Pareto front 
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is a desired property of any multi-objective algorithm in theory, in practice it is useful to 
designate a single, definitive choice from that front, as the desired, most representative 
solution resulting from this process. This serves at least two purposes. Firstly, it provides a 
single, final solution (i.e.  trading strategy), whose performance or quality can be evaluated 
and compared directly, against other trading algorithms or strategies serving as benchmarks. 
Secondly, it allows the trader to select the ‘best’ solution from the set, according to some 
criteria valued by the trader, namely the differential extent to which they value each of the 
multiple objectives. Note that prior to this point in the process, such a preference would not 
have played any part in the genetic process.

For the purposes of selecting such a definitive solution, we define a new aggregate met-
ric, which effectively acts as a generalisation of the Sharpe ratio that is able to take into 
account total return as well as expected rate of return and risk. We include both total return 
and expected rate of return in our evaluation because they capture complementary aspects 
of strategy performance. Total return reflects the cumulative profit over the entire trading 
period, while expected return measures the average profitability per trade. These two met-
rics may diverge depending on the number and distribution of trades. For example, a strat-
egy that achieves a high total return by capitalising on a few outlier trades may still exhibit 
a low expected return if the majority of trades are unprofitable. Conversely, a strategy that 
produces small but consistent gains on each trade can yield a high expected return, even if 
the total return remains modest due to the fixed trade size limiting cumulative profit.

In order to be able to calculate the metric, we first need to normalise the three objectives 
into the range [0, 1]; we do so by considering the range of values resulting for each objec-
tive in the final Pareto front. This ‘modified Sharpe Ratio’ (mSR) metric is then defined as 
per Eq. 6:

	
mSR =

(T̂R + 1)a × (Ê[RoR] + 1)b

(R̂isk + 1)c
� (6)

where T̂R is the normalised total return value of the particular individual, Ê[RoR] is its 
normalised expected rate of return, R̂isk is its normalised risk value, and a, b, and c are 
weights that determine the importance of each term in the metric, where we impose the addi-
tional constraint here that a + b + c = 1. Normalisation of the objectives ensures that each 
objective contributes equally to each term of the mSR in terms of strength. Furthermore, it 
is necessary to add 1 to each normalised value here, so that each term becomes monotoni-
cally non-decreasing as its corresponding weight increases. Under this scheme, each term 
can achieve a minimum value of 1, and a maximum value of 2. By adjusting the values of 
a, b, and c, we can control the emphasis placed on each metric within the GP process. For 
example, a term with zero weight will contribute a constant value of 1, thus having no influ-
ence on the end-score; a term assigned full weight of 1 results in that term dominating the 
calculation and all other terms being ignored due to the constraint. In the special case where 
b and c are both equal to 0.5 (and thus a = 0), the metric disregards total return, and effec-
tively reduces to the square root of the Sharpe ratio (assuming normalised values). Once the 
mSR values are calculated for all solutions in the Pareto front, we select the one with the 
highest mSR as the final model produced by the algorithm. This model represents the trad-
er’s preferred trade-off among the objectives and is subsequently evaluated on the test set.
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It is important to note here that, due to the normalisation requirement, the above metric 
primarily serves as a way of scoring solutions within a given Pareto front (or population of 
solutions more generally); it is not a general aggregate metric that can be used to evaluate 
individual solutions directly, outside of a population context, such as in the case of the origi-
nal Sharpe Ratio. If we did want to use this metric to compare against benchmark solutions, 
these would first need to have their objectives normalised within the same range, as dictated 
by the Pareto front of interest.

5  Experimental set up

In this section, we present how our experiments are set up: we describe the data we used, the 
benchmark algorithms/strategies against which we compare our proposed approach, what 
metrics we used to evaluate performance, and how we performed hyperparameter tuning for 
the algorithms involved.

5.1  Data

This study uses 110 datasets derived from 10 international stock markets listed in Table 3. 
These datasets fall into two categories: (i) 100 stock-level datasets, comprising daily closing 
price data for 10 arbitrarily selected stocks from each market; and (ii) 10 index-level data-
sets, comprising daily closing price data for the representative stock indiex of each market 
(as listed in Table 3). Each dataset spans a 10-year period from 25th November 2010 to 24th 
November 2020, resulting in approximately 2,500 data points per dataset. The daily closing 
prices were then used to generate the indicators by using the process described earlier in 
Section 4. The aim of using a broad geographic and economic spread—including markets 
from North America, Europe, and Asia—is to evaluate the generalisability and robustness of 
the proposed algorithms across diverse market structures and volatility conditions.

The data was sourced from Yahoo! Finance. Our evaluation methodology involved 
dividing each dataset into three separate parts: the initial 60% of the data served as the train-
ing set, the subsequent 20% as the validation set and the final 20% as the testing set. During 
parameter tuning, the algorithms were trained using the training set and evaluated on the 
validation set. Once the optimal set of parameters had been determined, the GP was trained 
one final time using the combined training and validation set, and subsequently applied to 
the test set to assess the performance of the model.

Dow Jones Industrial Average (DJIA)
NASDAQ Stock Market (NASDAQ)
New York Stock Exchange (NYSE)
Russell 2000 Index
Standard and Poor’s 500 (S&P500) in the United States
Nifty Fifty (NIFTY 50) in India
Taiwan Stock Exchange Corporation (TSEC) in China (Taiwan)
DAX performance index in Germany
Nikkei 225 in Japan
Financial Times Stock Exchange 100 Index in the United Kingdom

Table 3  International stock indi-
ces considered in this study

These represent the broader 
markets from which stock-level 
datasets were also obtained
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5.2  Benchmarks

In this paper, we propose a novel multi-objective optimisation GP, denoted here as ‘MOO3’, 
designed to optimise three objectives: total return, expected rate of return, and risk. We 
compare our approach against the following benchmarks:

	● A single-objective optimisation GP, denoted here as ‘SOO’, which uses the ‘modified 
Sharpe Ratio’ aggregate metric (see Eq. 6) as its fitness function.

	● Standard strategies relying on the straightforward application of popular technical anal-
ysis (TA) indicators, as representatives of a physical time setup: a zero-crossing strat-
egy based on the moving average convergence divergence (MACD) indicator (Vaidya 
2020), a zero-crossing strategy of long- and short-term moving averages of the on-
balance-volume (OBV) indicator (Deprez and Frömmel 2024), and a threshold-crossing 
strategy based on the momentum (MTM) indicator (Fong et al. 2012).

	● A single-objective Transformer-based model (Vaswani et al. 2017) due to its ability to 
capture long-range dependencies and complex patterns in financial data. We use the 
TransformerModel from the Darts Python library for financial time series fore-
casting. Like all other SOO algorithms in this article, the Transformer uses the Sharpe 
ratio as its objective. We performed hyperparameter tuning through a grid search pro-
cess as per Gal and Ghahramani (2016) and Gao et  al. (2021); the final model was 
configured with 4 encoder layers, 4 attention heads, a dropout rate of 0.1, and a batch 
size of 32. It was trained for 50 epochs using an Adam optimiser with a learning rate of 
5e-4. The input and output chunk lengths were set to 30 and 7, respectively. Lastly, we 
used the Bernoulli likelihood function to simulate a classification process. The above 
Transformer is using the MOO’s trading strategy, as described earlier in Section 4.

	● The passive trading strategy of buy-and-hold, which is a popular benchmark against 
active trading strategies, such as the GPs utilised in this paper.

5.3  Trader-preference scenarios

As mentioned in Section 4.4, while a multi-objective optimisation framework is necessary 
and beneficial to obtain solutions that optimise conflicting objectives, in the end a trader will 
require a single trading strategy to deploy. Therefore it is imperative to be able to designate 
a single solution from the Pareto front, in a manner that allows the trader to specify their 
preference over the various objectives. We do this here via the modified Sharpe Ratio, as 
introduced in Eq. 6, by modifying the different weight values (a, b, c), where a corresponds 
to the weight given to total return, b to the expected rate of return, and c to risk. In our 
experiments, we have focused on seven different scenarios/setups: 
[a=0.5, b=0.5, c=0]	 : The final solution focuses equally on total return and expected 
rate of return.
[a=0, b=0.5, c=0.5]	 : The final solution focuses equally on expected rate of return 
and risk.
[a=0.5, b=0, c=0.5]	 : The final solution focuses equally on total return and risk.
[a=0.33, b=0.33, c=0.33]	 : The final solution focuses equally on all three 
metrics.
[a=1, b=0, c=0]	 : The final solution focuses only on total return.
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[a=0, b=1, c=0]	 : The final solution focuses only on expected rate of return.
[a=0, b=0, c=1]	 : The final solution focuses only on risk.
These setups allow us to consider different extreme cases, where only one or two metrics 
are being considered, and also the case where all three metrics are equally being considered.

5.4  Parameter tuning

The parameter tuning process consists of two stages. The first stage involves optimising 
the GP algorithm’s standard parameters, which are then used identically over all datasets. 
These parameters are the maximum depth, which controls the depth of the GP trees; the 
population size, which controls the number of individuals (trading strategies) in the popula-
tion; crossover probability, which determines when crossover and mutation will take place 
(Probxover = 1 − Probmutation); tournament size, which controls the selection pressure of 
the GP algorithm; and generations number, which determines how many generations a single 
GP run will run over.2 To determine these parameters, we conducted a grid search over the 
parameters, and selected the parameter set which resulted in the best ‘performance’ over the 
validation dataset; in this context, ‘performance’ was evaluated specifically as the Sharpe 
Ratio over the entire portfolio. For computational reasons, rather than use all datasets, the 
above tuning was only performed using 10 datasets, chosen at random. The above optimal 
GP parameter set is then used universally across all datasets and scenarios, to train the set 
of final GPs (i.e.  specific to each dataset and scenario) on the combined training+validation 
sets; this is the case for both the MOO3 approach and the SOO benchmark approach. The 
GP parameters and their corresponding values after tuning are summarised in Table 4.

The second stage of parameter tuning involves optimising the remaining three param-
eters for our problem, on a per-dataset-and-scenario basis. The first two parameters are 
related to the trading strategy used by the GP. As previously mentioned, a ‘sell’ action is 
triggered automatically if n days have passed since the ‘buy’ event, or if the stock price has 
increased by r%, whichever comes first. Here, the variables r and n signify the anticipated 
future price movement and a temporal constraint respectively, and need to be tuned accord-
ingly for each dataset/scenario pair. The third parameter is the threshold θ, which controls 
the definition of the significant event under the DC framework. Similar to r and n, instead 
of optimising θ universally across all datasets and scenarios as we did for the parameters of 
the GP-based algorithms, we opt instead for tailored values for each dataset/scenario pair. 
For the above purposes, we considered 3 representative values for n, 4 values for r, and 5 

2 Generally, in evolutionary algorithms such as the NSGA-II, larger populations tend to improve solution 
diversity and prevent premature convergence. On the other hand, they increase computational cost. Similar 
observations can be made to other parameters such as crossover and mutation. For example, with regards to 
mutation, higher rates encourage greater exploration, but delay convergence. Hence there’s a trade-off when 
selecting values for these parameters. Our thorough parameter tuning approach described above is to ensure 
that we use values that take into account this trader-off.

Parameter Value
Max depth 6
Population size 500
Crossover probability 0.95
Tournament size 2
Number of generations 50

Table 4  Selected parameters of 
the GP algorithm after parameter 
tuning
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values for θ, leading to a grid of 3 × 4 × 5 = 60 configurations per dataset/scenario pair. 
The configuration space for these three parameters is presented in Table 5.

Armed with the above, we conducted tuning experiments as follows: we conducted 5 
experiments per parameter configuration, for each dataset/scenario pair. Each such experi-
ment resulted in a population of solutions (i.e.  trading strategies), with a correspond-
ing Pareto Front; the modified Sharpe Ratio was thus used to select a definitive trading 
strategy per experiment, and the performance of each such definitive trading strategy 
was then evaluated on the validation set. The resulting overall performance of each con-
figuration was then obtained as the average performance over the 5 corresponding runs 
for that configuration, and the configuration with the best average performance was 
selected for each data/scenario pair. Note that, unlike the GP parameters, the above pro-
cess was conducted separately for the MOO3 and SOO approaches. In other words, for 
each of the algorithms, the number of tuning experiments performed per scenario was: 
110 datasets × 60 configurations × 5 repetitions = 33, 000 experiments.

Note that, to some extent, the choice of optimal GP parameters depends on r, n, and θ, 
and vice-versa, in a cyclical manner. To work around this cyclical dependency, we bootstrap 
this process as follows: first, we use an initial parameterisation for the GP serving as a rea-
sonable ‘prior’ (in our case, we used values based on previous work); this allows performing 
a first round of tuning over r, n, and θ for all dataset/scenario combinations, as above. With 
these resulting ‘prior’ values for r, n, and θ at hand, we then proceed with the first stage of 
the tuning process, as described above.

6  Results and analysis

In this section, we report and analyse the performance of the multi-objective optimisation 
GP approach (MOO3) against the benchmark approaches. We start this section by visualis-
ing the performance of MOO3 against corresponding single-objective approaches (SOO) 
for each of the 7 scenarios presented in Section 5.3. We then perform a statistical analysis, 
comparing single and multi-objective optimisation GP algorithms, followed by a compari-
son against the more traditional, TA-indicator based benchmarks, Transformer, and finally 
against the buy-and-hold strategy.

In order to compare the MOO3 approach statistically against each of the benchmarks, 
we perform multiple experiments as follows: first, we run the MOO3 algorithm 50 times 
for each of the 110 datasets, and each of the 7 scenarios. This means we obtain 50 differ-
ent, final Pareto fronts per dataset and scenario. For each of these runs, we obtain the best 
model from the training set with respect to the corresponding modified Sharpe Ratio for 
that scenario. Given that the proposed algorithm is designed as a maximisation problem, the 
model exhibiting the highest modified Sharpe Ratio is selected from the Pareto-optimal set. 
We then evaluate this model on the test set, and measure its performance using a variety of 
evaluation metrics. Finally, for each evaluation metric, we obtain the average such test-set 
performance over the 50 runs. Similarly, for the SOO algorithm, we run the SOO algorithm 

Parameter Configuration space
n (days-ahead of prediction) 1, 5, 15
r (percentage of price movement) 1%, 5%, 10%, 20%
θ (threshold of DC) 0.001, 0.002, 0.005, 0.01, 0.02

Table 5  Configuration space for 
the trading strategy’s n days and 
r%, and DC’s θ
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50 times per setup and dataset, obtain the fittest solution arising from the training-set in each 
case, and apply it to the test-set; we then average this test-set performance over all 50 runs. 
The end-result is that we have an average performance from MOO3, and an average per-
formance from SOO to compare, per dataset and scenario. This process allows us to make a 
direct comparison of the SOO and MOO3 models, since they have both been selected using 
the same aggregate metric and ‘trader-preference’ weightings in each case. Finally, we also 
obtain the results of the TA-indicator based, Transformer-based, and buy-and-hold bench-
mark trading approaches, as applied directly onto the test set.

6.1  Pareto front

We begin by presenting the results of the MOO3 algorithm, and examining the placement of 
the MOO3-designated solutions (and the Pareto front solutions more generally) compared 
to the single-objective optimisation (SOO) solutions, for each of the seven scenarios con-
sidered. For illustration, we use a single GP run for each scenario, focusing on the Apple 
stock. Figure 5 displays the generated solutions and resulting interpolated surface making 
up the Pareto front (grey mesh/markers), the designated MOO3-solution from that front 
(blue triangle marker), and the corresponding SOO solution (orange diamond marker), for 
each of the seven scenarios. The MOO3 and SOO solutions are accompanied by 2D projec-
tions to aid interpretation and comparison. Each scenario is identified via its [a, b, c] weight-
triplet; to enhance clarity, each triplet is also expressed as the corresponding subset of the 
set {T,E,R}, where the choice out of T, E, and/or R represents how preference was distrib-
uted among total return, expected rate of return, and risk respectively in the weighting; e.g.  
{T,R} indicates the scenario where total return and risk are valued equally and exclusively, 
therefore corresponding to the weighting [a=0.5, b=0, c=0.5].

Looking at the figure, we observe the following:

	● In the {T} and {T,E} scenarios, the SOO solution dominates a handful of solutions of 
MOO3’s Pareto front, but neither SOO nor the MOO3 designated solution dominate 
each other.

	● In the {E} scenario, SOO dominates the MOO3-designated solution, as well as the 
(unusually small) Pareto front.

	● In the {R}, {T,R}, {E,R}, and {T,E,R} scenarios, the MOO3 designated solution domi-
nates the SOO solution, and SOO does not dominate any solutions on the Pareto front.

The above suggests that, in this example at least, MOO3 had superior performance when 
non-singular objectives were considered, showing its ability to consider multiple objectives 
in a natural manner, driven by the concept of the Pareto front, as compared to an aggregate 
approach which imposes an arbitrary relationship between the objectives. By contrast, when 
dealing with single-objective scenarios, SOO was able to compete well with MOO3; in 
particular, when considering single-objective scenarios, SOO achieved better total return 
and expected rate of return in the {T} and {E} scenarios respectively. However, MOO3 
achieved better risk for the {R} scenario; this demonstrates that MOO3 still has the ability to 
obtain good-quality single-objective designated solutions that may compete with explicitly 
single-objective approaches, even though the Pareto front driven evolution process has to 
take into account and accommodate multiple objectives, partly acting as constraints. In the 
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Fig. 5  Representative run of the MOO3 and SOO algorithms for the Apple stock. The SOO and MOO3-
designated solutions are overlaid onto the MOO3 Pareto front, for all seven scenarios considered. Risk, 
expected rate of return, and total return are shown here in their original units, rather than the normalised 
ones used during fitness evaluation
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next section, we perform statistical analyses over multiple runs, in order to examine how the 
two algorithms compare over multiple runs and datasets more generally.

6.2  Convergence analysis

To better understand the optimisation behaviour of the proposed GP algorithms, we include 
a convergence analysis, which reveals how performance evolves across generations and 
whether the search consistently leads to improved solutions. Specifically, we record the 
best individual (SOO) and Pareto front (MOO3) fitness at Generations 1, 10, 25, and 50 
in the training set of a single GP run. For each generation, we analyse how the objective 
metrics—total return (TR), expected rate of return (E[RoR]), risk (Risk)—evolve during the 
evolutionary process. Due to space constraints and the large number of datasets used in our 
study (110 in total), we present the results for two representative stock datasets for each of 
the SOO and MOO3 on the basis of an [a=1, b=0, c=0] weighting. These stocks were 
selected to illustrate typical convergence behaviour observed across the broader dataset 
collection.

Figure 6 displays the performance of individuals in the population at each selected gen-
eration for the chosen SOO and MOO3 runs, respectively. The plots clearly demonstrate a 
progressive improvement in performance across generations. For the SOO, Figure 6 apre-
sent the best individual in the population across the generations. The value of TR for both 
stocks increases rapidly between Generations 1 and 10, after which the rate of improvement 
slows considerably. This pattern indicates that the majority of optimisation occurs early in 
the evolutionary process, with subsequent generations yielding only minor improvement, 
providing clear evidence of convergence in the SOO evolutionary process.

In contrast, the MOO3 results, illustrated in Figures 6c, demonstrate continuous improve-
ment in the trade-offs among the three objectives, reflected by a progressively refined Pareto 
front. Both Figures show rapid improvements in the metric values of the Pareto Front (par-
ticularly Total Return, as it is given 100% weight), followed by only minor improvements 
in later generations, and convergence around generation 40–50.

In summary, the convergence analysis shows that both the SOO and MOO3 algorithms 
improve steadily over generations and eventually reach stable solutions. Most of the prog-
ress happens early on, with smaller improvements later, which suggests that the algorithms 
are working efficiently. For MOO3, the gradual shaping of the Pareto front across genera-
tions shows that the algorithm is learning to balance the different objectives well.

6.3  Comparison between multi-objective and corresponding single-objective 
approaches

Table 6 presents the summary statistics for SOO and MOO3 across five metrics: total return 
(TR), expected rate of return (E[RoR]), risk (Risk), and the standard Sharpe ratio (SR) for the 
whole portfolio. The portfolio Sharpe ratio assumes an equal distribution of the 110 stocks (i.e.  
each stock has the same weight in the portfolio)3; since this figure is calculated over the whole 
portfolio of stocks, there’s no summary statistics to calculate, just a single value, which is pre-

3 This assumption is made for simplification purposes. It is beyond the scope of this work to look into port-
folio optimisation algorithms, which would seek to find the optimal set of portfolio weights for all stocks 
present.
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sented in the table. For the remaining four metrics (TR, E[RoR], Risk) we present the mean, 
median, standard deviation, maximum and minimum values across the results of the 110 stocks. 
The left hand-side of the table presents the results for the single-objective (SOO) GP, while 
the right hand-side presents the results for the multi-objective MOO3 algorithm. Results are 
separated by the seven different sets for Eq. 6’s [a, b, c] weights. To enhance clarity, similarly to 
Figure 5, we also present the algorithms in the format SOO{·} (or MOO{·}), with the denomi-
nator able to represent any subset of {T,E,R}, as explained in Section 6.1 (e.g.  MOO{T, E} 
denotes a MOO3 algorithm where the designated solution was selected on the basis of an 
[a=0.5, b=0.5, c=0] weighting).

As we can observe, MOO3 generally has higher mean and median TR across different 
weight setups compared to SOO. In addition, MOO3 shows a higher mean and median 
E[RoR] compared to SOO for most weight setups. With regards to Risk, both algorithms 
show similar risk levels, but MOO3 offers small improvements in a few weight setups. 
Lastly, MOO3 has a higher Sharpe Ratio in six out of the seven weights setups, suggesting 
better risk-adjusted portfolio returns.

We perform a Kolmogorov–Smirnov (KS) test for each of the pairwise comparisons 
between SOO and MOO3 on three metrics: Total Return (TR), Expected Rate of Return (E
[RoR]), and Risk. The null hypothesis for each KS test is that the two samples (SOO and 
MOO3) come from the same population distribution. Since we are conducting multiple 

Fig. 6  Convergence behaviour of the SOO and MOO3 algorithms across generations. The plots show 
how the fitness function evolves over time for two representative stock datasets (2382TW and 399001SZ) 
under each optimisation framework. Results are recorded at generations 1, 10, 20, 30, 40, and 50 to il-
lustrate the improvement of the population as evolution progresses
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Table 6  Summary statistics over assets, contrasted between the SOO and MOO3 approaches for the different 
trader-preference scenarios

SOO MOO
[a, b, c] TR E[RoR] Risk SR TR E[RoR] Risk SR
[0.5, 0.5, 0]
Mean 38.78% 2.08% 0.09 0.72 51.90% 2.76% 0.09 1.10
Median 24.94% 1.79% 0.07 37.88% 2.38% 0.07
StDev 0.60 0.03 0.07 0.61 0.02 0.06
Max 381.49% 21.66% 0.39 324.26% 13.07% 0.41
Min −63.09% −5.17% 0.01 −42.72% −2.98% 0.00
[0, 0.5, 0.5]
Mean 11.94% 0.80% 0.06 0.57 29.45% 1.85% 0.06 1.03
Median 6.03% 0.69% 0.05 17.97% 1.64% 0.05
StDev 0.28 0.01 0.04 0.41 0.02 0.04
Max 136.38% 4.72% 0.22 268.50% 10.59% 0.24
Min −106.33% −4.42% 0.01 −27.55% −2.22% 0.00
[0.5, 0, 0.5]
Mean 40.11% 2.03% 0.08 0.86 41.58% 1.63% 0.06 1.12
Median 26.89% 1.53% 0.06 24.18% 1.44% 0.05
StDev 0.62 0.02 0.06 0.52 0.01 0.04
Max 314.31% 11.20% 0.33 258.04% 6.80% 0.29
Min −219.85% −6.47% 0.01 −37.47% −1.23% 0.01
[0.33, 0.33, 0.33]
Mean 44.73% 2.17% 0.08 0.84 50.47% 2.51% 0.08 1.03
Median 31.18% 1.66% 0.07 34.98% 2.16% 0.06
StDev 0.57 0.03 0.05 0.61 0.02 0.05
Max 312.83% 16.18% 0.34 285.05% 11.42% 0.34
Min −43.55% −6.52% 0.01 −38.68% −3.74% 0.01
[1, 0, 0]
Mean 47.36% 2.23% 0.08 0.79 61.33% 3.28% 0.08 0.66
Median 31.25% 1.66% 0.06 41.68% 2.52% 0.06
StDev 0.64 0.03 0.06 0.67 0.05 0.06
Max 366.13% 18.63% 0.39 341.71% 44.36% 0.43
Min −46.60% −4.05% 0.02 −44.63% −4.03% 0.01
[0, 1, 0]
Mean 29.46% 2.08% 0.11 0.48 48.29% 3.38% 0.09 0.76
Median 15.92% 1.50% 0.08 32.81% 2.62% 0.07
StDev 0.71 0.04 0.08 0.69 0.04 0.07
Max 552.10% 24.58% 0.52 544.98% 25.92% 0.49
Min −63.57% −6.10% 0.01 −44.89% −4.28% 0.01
[0, 0, 1]
Mean 3.21% 0.14% 0.06 0.10 15.15% 0.99% 0.05 0.65
Median −0.59% 0.14% 0.05 10.06% 0.86% 0.03
StDev 0.32 0.01 0.04 0.24 0.02 0.05
Max 279.63% 5.62% 0.19 152.06% 12.24% 0.42
Min −45.49% −4.92% 0.01 −32.11% −1.98% 0.01
Best value for each respective metric shown in boldface. Keys: TR: total return, E[RoR]: expected rate of 
return, SR: Sharpe ratio, SOO: single-objective optimisation GP, MOO3: three-objective optimisation GP. 
The values of a, b, c correspond to the weights as defined in Eq. 6
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comparisons, we apply the Holm–Bonferroni correction to control the family-wise error rate 
at a significance level of 5%. Specifically, we adjust the significance threshold required for 
each of the three comparisons (TR, E[RoR], Risk) within each [a, b, c] weights setup. This 
is done by arranging p-values from smallest to largest, and assigning a corresponding rank 
from 1 to 3 respectively. The minimum acceptable p-value for a comparison to be consid-
ered statistically significant is then decided based on its rank. The adjusted significance level 
for each rank is calculated as

	
αrank = α

m + 1 − rank

where alpha = 0.05 for the 5% significance level, and m = 3, since we have 3 multiple 
comparisons per weight setup.

Given the three possible different ranks, we have the following adjusted significance 
levels :

	● The smallest p-value (rank 1) must be less than 0.05
3  or approximately 0.0167.

	● The second smallest p-value (rank 2) must be less than 0.05
2  or 0.025.

	● The largest p-value (rank 3) must be less than 0.05.

Therefore, we compare the ranked p-values against these thresholds to determine if there is 
a significant difference between the SOO and MOO3 samples for each metric. The ranked 
p-values indicate a significant difference if the smallest p-value is less than 0.0167, the sec-
ond smallest is less than 0.025, and the largest is less than 0.05.

Table 7 presents the KS test results, along with the p-value and the adjusted signifi-
cance level, across the different weight setups ([a, b, c]). As we can observe, the differences 
between MOO3 and SOO are statistically significant at the 5% level in 9 out of the 21. 
Particularly, MOO3 shows statistically significant improvements in TR and E[RoR] in most 
weight configurations and also in managing risk in some setups. The above findings lead us 
to conclude that our multi-objective optimisation GP algorithm provides a more robust and 
efficient optimisation strategy compared to the single-objective optimisation GP, particu-
larly in balancing return and risk.

While the above KS test was useful for making pairwise comparisons between the SOO 
and MOO3 algorithms under different weight setups and metrics, we are also interested in 
gaining a better understanding of the overall performance of all SOO and MOO3 algorithms 
across the different weight setups. The non-parametric Friedman test is particularly use-
ful for comparing multiple algorithms across multiple datasets, as it ranks the algorithms 
for each metric, providing an average rank for each algorithm. A lower average rank indi-
cates better performance. In each Friedman test (one per TR, E[RoR], and Risk metric), the 
algorithms included are the SOO and MOO3 algorithms under the different weight setups. 
Additionally, we applied the Hommel post-hoc test to ascertain the significance of the dif-
ferences between the average ranks (Demšar 2006; Garcia and Herrera 2008). We present 
both in Table 8. For each algorithm, the table shows the average rank (first column), and 
the adjusted p−value of the statistical test when that algorithm’s average rank is compared 
to the average rank of the algorithm with the best rank (control algorithm) according to 
Hommel’s post-hoc test (second column). When statistically significant differences between 
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the average ranks of an algorithm and the control algorithm at the 5% level (p ≤ 0.05) are 
observed, the relevant average rank is put in bold face.

As we can observe from the total return results of Table 8a, the control algorithm is 
MOO{T}, i.e.  the multi-objective optimisation GP algorithm that extracts the best model 
from the Pareto front based on the highest total return value. In addition, it statistically and 
significantly outperforms all other algorithms at the 5% level. Given that we are currently 
considering total return results in this subtable, it is unsurprising that the control algorithm is 
one that prioritises total return. It is also worth noting that the second and third ranked algo-
rithms are also MOO ones, namely MOO{T,E} and MOO{T,E,R}. The former gives equal 
weight to total return and risk (a=b=0.5, c=0), and the latter assigns equal weight to all 
three metrics (a=b=c=0.33). This is an important finding, because it demonstrates that 
these multi-objective algorithms are able to outrank all SOO algorithms; hence, confirming 
the fact that considering multiple objectives under a MOO framework such as NSGA-II 
has significant benefits over an SOO algorithm which uses the aggregate fitness function 
directly. Similar findings can be observed for the expected rate of return and risk results 
(Tables 8b and 8c). More specifically, when looking into the expected rate of return results, 
the best rank algorithm is MOO{E}, which optimises only the expected rate of return. In 
the next three positions there are again multi-objective optimisation algorithms that opti-
mise different combinations of the metrics, even risk (MOO{T,E,R}). This again shows the 
advantages of multi-objective optimisation. Furthermore, when looking into the risk results, 
MOO{R} ranks first, followed by MOO{T,R}. So we again see the same pattern, where 
the algorithm is specifically optimised for a particular metric (Risk in this instance) tends 
to perform best in this specific metric, and then being followed by another multi-objective 

[a, b, c] Metric p-value Adjusted significance level
[0.5, 0.5, 0] TR 0.3141 0.025 (0.05/2)

E[RoR] 0.0209 0.0167 (0.05/3)
Risk 0.9751 0.05 (0.05/1)

[0, 0.5, 0.5] TR 3.71E-05 0.0167 (0.05/3)
E[RoR] 6.98E-05 0.025 (0.05/2)
Risk 0.0666 0.05 (0.05/1)

[0.5, 0, 0.5] TR 0.506 0.05 (0.05/1)
E[RoR] 0.179 0.025 (0.05/2)
Risk 0.0088 0.0167 (0.05/3)

[0.33, 0.33, 0.33] TR 0.7336 0.05 (0.05/1)
E[RoR] 0.0944 0.0167 (0.05/3)
Risk 0.2395 0.025 (0.05/2)

[1, 0, 0] TR 0.3141 0.025 (0.05/2)
E[RoR] 0.0137 0.0167 (0.05/3)
Risk 0.9958 0.05 (0.05/1)

[0, 1, 0] TR 0.0034 0.025 (0.05/2)
E[RoR] 0.0021 0.0167 (0.05/3)
Risk 0.0313 0.05 (0.05/1)

[0, 0, 1] TR 5.41E-08 0.025 (0.05/2)
E[RoR] 2.38E-08 0.0167 (0.05/3)
Risk 2.33E-04 0.05 (0.05/1)

Table 7  Kolmogorov–Smirnov 
test results p-values for different 
weight setups ([a, b, c])

Statistically significant results 
at the 5% level are denoted 
in bold face. Keys: TR: total 
return, E[RoR]: expected rate 
of return, SR: Sharpe ratio
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Avg rank Adj pHomm

(a) Total return
MOO{T} 4.02 –
MOO{T,E} 5.60 2.58E-03
MOO{T,E,R} 5.86 6.34E-04
SOO{T,E,R} 5.90 4.95E-04
SOO{T} 6.03 2.21E-04
SOO{T,R} 6.14 1.07E-04
MOO{E} 6.47 1.06E-05
SOO{T,E} 6.72 1.51E-06
MOO{T,R} 7.15 3.28E-08
MOO{E,R} 8.32 5.77E-14
SOO{E} 9.30 9.98E-20
MOO{R} 10.45 8.41E-28
SOO{E,R} 11.01 2.98E-32
SOO{R} 11.95 1.95E-40
(b) Expected rate of return
MOO{E} 4.63 –
MOO{T,E} 4.74 2.34E-01
MOO{T} 4.81 2.17E-01
MOO{T,E,R} 5.70 3.42E-05
SOO{T} 6.76 8.05E-05
SOO{T,E,R} 6.89 3.42E-05
SOO{T,R} 7.05 1.18E-05
SOO{T,E} 7.16 5.09E-06
MOO{E,R} 7.44 5.21E-07
SOO{E} 8.00 2.91E-09
MOO{T,R} 8.32 1.06E-10
MOO{R} 10.39 4.74E-23
SOO{E,R} 10.78 8.44E-26
SOO{R} 12.21 3.31E-37
(c) Risk
MOO{R} 2.16 –
MOO{T,R} 4.85 1.01E-06
SOO{R} 5.11 1.04E-07
SOO{E,R} 5.16 6.55E-08
MOO{E,R} 5.30 1.66E-08
MOO{T,E,R} 7.51 2.10E-20
MOO{T} 7.68 1.42E-21
SOO{T,R} 7.99 8.88E-24
SOO{T} 8.30 4.43E-26
SOO{T,E,R} 9.26 1.03E-33
MOO{E} 9.71 1.35E-37
SOO{T,E} 10.03 1.82E-40

Table 8  Statistical test results for average TR, E[RoR], and Risk, according to the non-parametric Friedman 
test with the Hommel post-hoc test of different MOO and SOO algorithms
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optimisation algorithm that considers two or three objectives. Lastly, it is also worth noting 
that in the top 2 positions of each subtable we have a MOO{T} variant, i.e.  a MOO3 algo-
rithm that has used total return (alone or in consideration with another metric) to extract the 
best model from the Pareto front. This suggests that prioritising total return in the optimisa-
tion process can lead to favourable outcomes.

To conclude, the Friedman test results highlight the effectiveness of the MOO3 algo-
rithms over their SOO counterparts. Combining up to two metrics tends to be beneficial (or 
at least have comparable performance to the MOO algorithms optimising a single metric), 
as we have seen in the case of MOO{T,E}, which performs well for both total return and 
expected rate of return. However, the trade-offs become apparent when more metrics are 
combined (e.g.  MOO{T,E,R}), where balancing multiple objectives leads to a slight drop 
in the performance of the individual metrics.

6.3.1  Summary of MOO vs SOO comparison

In this section, we conducted an in-depth analysis of the kind of improved performance that 
a three-objective GP algorithm (MOO3) can achieve over a single-objective GP (SOO). The 
algorithms were evaluated across various weight configurations for three objectives: total 
return, expected rate of return, and risk. The results showed that MOO3 generally outper-
formed SOO in terms of mean and median total return, expected rate of return, and portfolio 
Sharpe ratio across different weight setups. Kolmogorov–Smirnov tests confirmed that the 
differences between MOO3 and SOO were statistically significant in several cases. Fur-
thermore, the non-parametric Friedman test with Hommel’s post-hoc analysis revealed that 
MOO3 algorithms that focused on individual objectives (e.g.  total return or expected rate 
of return) performed the best for their respective objectives, followed by MOO3 algorithms 
that combined multiple objectives.

Of particular note is the perhaps somewhat surprising fact that MOO3 variants consis-
tently outperformed SOO algorithms, even in scenarios focused on single objectives. One 
might have expected the reverse to happen, under the understanding that the SOO algo-
rithms are explicitly trying to optimise the single objective directly, whereas MOO3 has 
to take trade-offs between multiple objectives into account during the training process, as 
guided by the Pareto Rank instead. However, our findings suggest that the multi-objective 
approach proves advantageous, and that accounting for the interplay between conflicting 
objectives during training leads to superior trading strategies, even when optimizing for 
singular objectives.

Avg rank Adj pHomm

MOO{T,E} 10.15 1.69E-41
SOO{E} 11.75 1.52E-57
The subscript for each algorithm denotes which metrics were optimised. When more than one metric is 
present, equal weights have been assigned to each metric. Significant differences at the α = 5% level 
between the control algorithm (appearing as the top row in each case) and the remaining algorithms are 
shown in boldface, indicating that the adjusted p-value is lower than 0.05

Table 8  (continued) 
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6.4  MOO algorithms under different market conditions

Financial trading strategies must adapt to the different market conditions and liquidity con-
straints (Sun et al. 2019). Therefore, having established that the MOO algorithms can out-
perform the SOO algorithm, we shift our focus to understanding the MOO’s performance 
under different market conditions. As previously discussed in Section 5, we have obtained 
data from 10 different financial markets: DJIA, NASDAQ, NYSE, Russel 2000, S&P500, 
NIFTY 50, TSEC, DAX, Nikkei 225, and FTSE 100. We are interested in understanding if 
the same algorithms perform consistently well under the same markets or if their perfor-
mance varies, depending on how the market conditions change.

From Table 9, we conclude that MOO{T} consistently achieved the highest average 
TR values among the seven MOO3 algorithms, except in the NASDAQ market, where 
MOO{E} obtained 104.15% average TR, followed by MOO{T} with 97.16%. Furthermore, 
in terms of E[RoR], MOO{E} had the highest average E[RoR] in four out of ten markets, 
while MOO{T} achieved this in three out of ten markets. However, as a trade-off, the model 
which achieved the highest average TR or E[RoR] always comes with the worst correspond-
ing standard deviation values. In terms of Risk, MOO{E} had the lowest risk in nine out of 
ten markets. Moreover, it also could maintain the best standard deviation risk value in eight 
out of ten markets.

Similar to what we observed earlier, each algorithm that achieved the best average value 
was optimized for the respective objective. Across the ten markets, the performance of the 
MOO3 algorithms remains consistent, with MOO{T}, MOO{E}, and MOO{R} always 
ranking first in terms of their corresponding objectives. We conclude that the different mar-
kets did not affect the performance of the MOO3 algorithms.

The above findings are further supported by the Friedman test presented in Table 10. 
To improve clarity, the order of algorithms in the table corresponds to their ranking on the 
Friedman test with the values in parentheses representing the adjusted p-values. From Table 
10, we can confirm that in most cases the highest ranking algorithms are then ones that were 
optimized for the respective objective.

6.5  Comparison of MOO algorithms to three standard TA-indicator based strategies

The previous section of this paper established that our proposed multi-objective GP algo-
rithm is able to outperform its SOO counterpart. In the current section, we are interested 
in benchmarking the MOO3 algorithm against the three simple, widely-used TA-indicator 
based trading strategies identified in Section 5.2, namely: a zero-crossing strategy for the 
Moving Average Convergence Divergence (MACD) indicator, which compares two expo-
nential moving averages obtained over a long and a short term period respectively; a zero-
crossing strategy based on the comparison between long and short-term values for the On 
Balance Volume (OBV) indicator; and a threshold-based strategy based on the Momentum 
(MTM) indicator, which generates a buy signal when the MTM exceeds a specified positive 
threshold, and a sell signal when it falls below a specified negative threshold respectively 
(which, in our case, was made to coincide with the chosen threshold for the DC framework). 
All TA benchmarks were fine-tuned to choose optimal values for long/short period hyper-
parameters in the set {5, 10, 30, 50}; fine-tuning was performed in a similar manner to that 
described for MOO and SOO in Section 5.4.
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TR E[RoR] Risk SR
(a) NYSE
MOO{T,E} 28.37% (0.38) 1.33% (0.02) 0.09 (0.04) 0.75
MOO{E,R} 15.16% (0.12) 1.08% (0.01) 0.06 (0.02) 1.78
MOO{T,R} 22.36% (0.33) 1.09% (0.01) 0.07 (0.03) 0.94
MOO{T,E,R} 25.36% (0.32) 1.48% (0.01) 0.07 (0.03) 1.11
MOO{T} 33.02% (0.43) 1.65% (0.02) 0.09 (0.05) 0.68
MOO{E} 18.43% (0.26) 1.16% (0.02) 0.09 (0.04) 0.50
MOO{R} 4.04% (0.15) 0.33% (0.01) 0.04 (0.03) 0.40
(b) NASDAQ
MOO{T,E} 77.97% (0.96) 3.62% (0.04) 0.16 (0.09) 0.90
MOO{E,R} 56.03% (0.89) 2.04% (0.03) 0.12 (0.07) 0.81
MOO{T,R} 57.22% (0.81) 1.96% (0.02) 0.12 (0.07) 0.87
MOO{T,E,R} 77.48% (0.96) 2.78% (0.03) 0.14 (0.08) 1.06
MOO{T} 97.16% (1.01) 3.63% (0.04) 0.16 (0.11) 0.95
MOO{E} 104.15% (1.62) 5.21% (0.07) 0.19 (0.13) 0.79
MOO{R} 31.33% (0.55) 2.45% (0.04) 0.13 (0.12) 0.67
(c) TSEC
MOO{T,E} 23.98% (0.26) 2.70% (0.04) 0.05 (0.05) 0.75
MOO{E,R} 11.78% (0.17) 1.23% (0.01) 0.03 (0.02) 0.87
MOO{T,R} 19.65% (0.31) 1.10% (0.01) 0.03 (0.02) 0.85
MOO{T,E,R} 19.72% (0.27) 1.96% (0.03) 0.04 (0.03) 0.75
MOO{T} 24.54% (0.28) 5.20% (0.12) 0.04 (0.02) 0.42
MOO{E} 19.56% (0.20) 3.60% (0.07) 0.03 (0.02) 0.51
MOO{R} 10.95% (0.15) 0.48% (0.01) 0.02 (0.01) 0.46
(d) DAX
MOO{T,E} 48.38% (0.33) 3.42% (0.02) 0.07 (0.02) 1.62
MOO{E,R} 22.59% (0.14) 2.50% (0.02) 0.05 (0.01) 1.60
MOO{T,R} 34.19% (0.27) 2.14% (0.01) 0.05 (0.01) 1.75
MOO{T,E,R} 38.99% (0.29) 2.98% (0.02) 0.06 (0.02) 1.49
MOO{T} 55.39% (0.38) 3.94% (0.02) 0.06 (0.01) 2.34
MOO{E} 40.93% (0.21) 3.79% (0.01) 0.07 (0.02) 3.16
MOO{R} 12.31$ (0.10) 1.33$ (0.01) 0.03 (0.01) 1.86
(e) RUSSELL 2000
MOO{T,E} 47.67% (0.70) 2.23% (0.02) 0.11 (0.05) 1.30
MOO{E,R} 32.35% (0.49) 1.57% (0.02) 0.07 (0.05) 0.95
MOO{T,R} 40.15% (0.67) 1.54% (0.01) 0.08 (0.04) 1.06
MOO{T,E,R} 51.26% (0.74) 2.09% (0.02) 0.09 (0.05) 1.08
MOO{T} 55.72% (0.74) 2.48% (0.02) 0.10 (0.05) 1.46
MOO{E} 36.95% (0.42) 2.57% (0.02) 0.13 (0.09) 1.50
MOO{R} 8.20% (0.18) 0.79% (0.01) 0.06 (0.04) 0.57
(f) NIFTY 50
MOO{T,E} 58.88% (0.64) 3.19% (0.03) 0.10 (0.06) 1.21
MOO{E,R} 28.90% (0.35) 2.31% (0.03) 0.07 (0.05) 0.78
MOO{T,R} 45.46% (0.54) 1.70% (0.01) 0.06 (0.03) 1.48
MOO{T,E,R} 53.90% (0.62) 3.31% (0.04) 0.09 (0.05) 0.77
MOO{T} 76.42% (0.74) 4.14% (0.05) 0.08 (0.04) 0.83

Table 9  Average (standard deviation) results of the MOO3 approaches for the different trader-preference 
scenarios across various markets
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From Table 8, we concluded that MOO{T}, MOO{E}, and MOO{R} rank first at their 
corresponding Friedman tests. We therefore bring forward these algorithms to be compared 
against the TA indicators. In addition to MOO3 algorithms optimising a single metric, we 
are also interested in bringing forward for comparison, algorithms that optimised more than 
one metric; we thus looked at the second rank of each of Tables 8a, 8b, and 8c, and we will 
also compare MOO{T,E} and MOO{T,R} against the TA benchmarks.

Table 11 presents the results across total return, expected rate of return, risk, and port-
folio Sharpe ratio. As we can observe, in all cases the MOO3 algorithms have signifi-
cantly improved values over MACD, OBV, and MTM. As previously seen, MOO{T} and 

TR E[RoR] Risk SR
MOO{E} 57.77% (0.51) 4.59% (0.04) 0.09 (0.04) 1.09
MOO{R} 18.73% (0.17) 1.03% (0.01) 0.04 (0.01) 1.33
(g) DJIA
MOO{T,E} 74.66% (0.74) 2.96% (0.02) 0.08 (0.03) 1.83
MOO{E,R} 38.45% (0.36) 1.67% (0.01) 0.06 (0.02) 1.47
MOO{T,R} 49.49% (0.54) 1.36% (0.01) 0.05 (0.02) 2.12
MOO{T,E,R} 65.27% (0.73) 2.34% (0.01) 0.06 (0.02) 1.76
MOO{T} 81.78% (0.77) 2.87% (0.02) 0.07 (0.03) 1.89
MOO{E} 57.52% (0.63) 2.90% (0.02) 0.08 (0.03) 1.67
MOO{R} 18.42% (0.17) 0.85% (0.01) 0.03 (0.02) 1.94
(h) NIKKEI 225
MOO{T,E} 11.90% (0.17) 1.21% (0.01) 0.14 (0.27) 0.99
MOO{E,R} 12.21% (0.16) 1.58% (0.01) 0.14 (0.27) 1.17
MOO{T,R} 26.16% (0.41) 1.59% (0.02) 0.05 (0.03) 0.84
MOO{T,E,R} 29.80% (0.48) 2.16% (0.03) 0.06 (0.01) 0.79
MOO{T} 31.97% (0.45) 2.02% (0.04) 0.04 (0.02) 0.54
MOO{E} 24.41% (0.48) 1.69% (0.03) 0.06 (0.04) 0.60
MOO{R} 8.65% (0.10) 0.78% (0.01) 0.03 (0.01) 0.73
(i) S&P 500
MOO{T,E} 66.96% (0.51) 2.78% (0.01) 0.07 (0.03) 2.17
MOO{E,R} 31.44% (0.24) 1.65% (0.01) 0.05 (0.02) 1.97
MOO{T,R} 52.33% (0.47) 1.39% (0.01) 0.05 (0.03) 2.43
MOO{T,E,R} 62.17% (0.51) 2.39% (0.01) 0.07 (0.03) 2.12
MOO{T} 66.99% (0.53) 2.65% (0.01) 0.07 (0.03) 2.02
MOO{E} 47.29% (0.36) 2.57% (0.01) 0.07 (0.02) 2.27
MOO{R} 12.74% (0.13) 0.58% (0.01) 0.03 (0.02) 1.35
(j) FTSE 100
MOO{T,E} 80.25% (0.38) 4.12% (0.01) 0.07 (0.03) 2.80
MOO{E,R} 45.57% (0.28) 2.83% (0.01) 0.05 (0.02) 1.93
MOO{T,R} 68.83% (0.38) 2.46% (0.01) 0.05 (0.02) 1.84
MOO{T,E,R} 80.72% (0.38) 3.64% (0.01) 0.06 (0.03) 2.50
MOO{T} 90.31% (0.51) 4.22% (0.02) 0.07 (0.04) 1.87
MOO{E} 74.94% (0.33) 5.69% (0.07) 0.08 (0.05) 0.87
MOO{R} 26.13% (0.18) 1.32% (0.01) 0.03 (0.02) 2.80
Best value for each respective metric shown in boldface. Keys: TR: total return, E[RoR]: expected rate of 
return, SR: Sharpe ratio

Table 9  (continued) 
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TR E[RoR] Risk
(a) NYSE
MOO{T}(-) MOO{T}(-) MOO{R}(-)
MOO{T,E,R}(0.75) MOO{T,E,R}(0.76) MOO{E,R}(0.13)
MOO{T,E}(0.72) MOO{E}(0.76) MOO{T,R}(0.05)
MOO{T,R}(0.69) MOO{T,E}(0.76) MOO{T,E,R}(1.59E-3)
MOO{E,R}(0.48) MOO{E,R}(0.55) MOO{T}(1.12E-4)
MOO{E}(0.47) MOO{T,R}(0.55) MOO{E}(4.30E-5)
MOO{R}(0.07) MOO{R}(0.03) MOO{T,E}(1.4E-5)
(b) NASDAQ
MOO{T}(-) MOO{T}(-) MOO{R}(-)
MOO{T,E,R}(0.52) MOO{E}(0.81) MOO{T,R}(0.44)
MOO{T,E}(0.24) MOO{T,E}(0.74) MOO{E,R}(0.34)
MOO{E}(0.16) MOO{T,E,R}(0.48) MOO{T,E,R}(0.17)
MOO{E,R}(0.08) MOO{E,R}(0.20) MOO{T}(0.08)
MOO{T,R}(0.06) MOO{R}(0.20) MOO{T,E}(0.01)
MOO{R}(0.02) MOO{T,R}(0.20) MOO{E}(0.01)
(c) TSEC
TR E[RoR] Risk
MOO{T,E}(-) MOO{T,E}(-) MOO{R}(-)
MOO{T}(0.66) MOO{E}(0.47) MOO{E,R}(0.18)
MOO{T,E,R}(0.30) MOO{T,E,R}(0.45) MOO{T,R}(0.11)
MOO{T,R}(0.29) MOO{T}(0.45) MOO{E}(0.02)
MOO{E}(0.13) MOO{E,R}(0.05) MOO{T}(0.01)
MOO{E,R}(0.02) MOO{T,R}(0.02) MOO{T,E,R}(3.76E-3)
MOO{R}(4.17E-3) MOO{R}(2.54E-3) MOO{T,E}(5.80E-5)
(d) DAX
MOO{T}(-) MOO{T}(-) MOO{R}(-)
MOO{T,E}(0.30) MOO{E}(0.44) MOO{E,R}(0.23)
MOO{E}(0.13) MOO{T,E}(0.16) MOO{T,R}(0.12)
MOO{T,E,R}(0.06) MOO{T,E,R}(0.02) MOO{T,E,R}(0.02)
MOO{T,R}(0.04) MOO{E,R}(0.004) MOO{T}(0.02)
MOO{E,R}(4E-4) MOO{T,R}(7.2E-4) MOO{E}(7.4E-4)
MOO{R}(1.6E-5) MOO{R}(1.09E-4) MOO{T,E}(2.01E-4)
(e) RUSSELL 2000
MOO{T}(-) MOO{T,E}(-) MOO{R}(-)
MOO{T,E,R}(0.46) MOO{T,E,R}(1.00) MOO{E,R}(0.26)
MOO{E}(0.43) MOO{T}(1.00) MOO{T,R}(0.06)
MOO{T,E}(0.31) MOO{E}(1.00) MOO{T,E,R}(0.003)
MOO{E,R}(0.31) MOO{T,R}(0.23) MOO{T}(0.002)
MOO{T,R}(0.31) MOO{E,R}(0.23) MOO{T,E}(1.6E-4)
MOO{R}(0.06) MOO{R}(0.10) MOO{E}(8.5E-5)
(f) NIFTY 50
MOO{T}(-) MOO{E}(-) MOO{R}(-)
MOO{E}(0.22) MOO{T,E}(0.34) MOO{T,R}(0.13)
MOO{T,E}(0.12) MOO{T}(0.29) MOO{E,R}(0.04)
MOO{T,E,R}(0.06) MOO{T,E,R}(0.14) MOO{T}(0.003)

Table 10  Statistical test results for average TR, E[RoR], and Risk, according to the non-parametric Friedman 
test with the Hommel post-hoc test of different MOO algorithms
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MOO{E} offer the best performance for total return and expected rate of return respectively, 
and generally have a good overall performance on maximising returns; however, this comes 
at the cost of higher risk. On the other hand, MOO{R} minimises risk effectively, but at the 
cost of lower returns. Lastly, MOO{T,R} offers a balanced approach with a high Sharpe 
ratio, indicating good risk-adjusted performance.

TR E[RoR] Risk
MOO{T,R}(0.02) MOO{T,R}(0.012) MOO{T,E,R}(0.002)
MOO{R}(8E-4) MOO{E,R}(0.01) MOO{T,E}(5E-5)
MOO{E,R}(8E-4) MOO{R}(0.002) MOO{E}(5E-5)
(g) DJIA
MOO{T}(-) MOO{E}(-) MOO{R}(-)
MOO{T,E}(0.26) MOO{T,E}(0.44) MOO{T,R}(0.08)
MOO{T,E,R}(0.07) MOO{T}(0.41) MOO{E,R}(0.009)
MOO{E}(0.003) MOO{T,E,R}(0.13) MOO{T,E,R}(0.006)
MOO{T,R}(0.001) MOO{E,R}(0.03) MOO{T}(0.001)
MOO{E,R}(6E-4) MOO{T,R}(0.004) MOO{E}(1.1E-4)
MOO{R}(1.6E-5) MOO{R}(5.9E-4) MOO{T,E}(1.1E-4)
(h) NIKKEI 225
MOO{T}(-) MOO{T,E,R}(-) MOO{R}(-)
MOO{T,E,R}(0.69) MOO{T}(0.92) MOO{T}(0.02)
MOO{T,R}(0.62) MOO{E,R}(0.81) MOO{T,R}(0.01)
MOO{E,R}(0.26) MOO{T,E}(0.663603) MOO{T,E,R}(0.001)
MOO{T,E}(0.26) MOO{E}(0.53) MOO{E,R}(0.001)
MOO{E}(0.20) MOO{T,R}(0.45) MOO{T,E}(6E-4)
MOO{R}(0.20) MOO{R}(0.09) MOO{E}(5.3E-5)
(i) S&P 500
MOO{T}(-) MOO{T,E}(-) MOO{R}(-)
MOO{T,E}(0.28) MOO{E}(0.44) MOO{T,R}(0.08)
MOO{T,E,R}(0.18) MOO{T}(0.33) MOO{E,R}(0.06)
MOO{E}(0.04) MOO{T,E,R}(0.17) MOO{T,E,R}(0.001)
MOO{T,R}(0.009) MOO{E,R}(0.02) MOO{T}(2.1E-4)
MOO{E,R}(0.005) MOO{T,R}(0.005) MOO{E}(1.2E-4)
MOO{R}(5.8E-5) MOO{R}(9E-5) MOO{T,E}(1.2E-4)
(j) FTSE 100
MOO{T}(-) MOO{T,E}(-) MOO{R}(-)
MOO{T,E,R}(0.20) MOO{E}(0.26) MOO{T,R}(0.09)
MOO{T,E}(0.20) MOO{T}(0.17) MOO{E,R}(0.03)
MOO{E}(0.14) MOO{T,E,R}(0.12) MOO{T,E,R}(0.001)
MOO{T,R}(0.02) MOO{E,R}(0.02) MOO{T}(4E-4)
MOO{E,R}(4E-4) MOO{T,R}(0.001) MOO{E}(2.3E-5)
MOO{R}(4.2E-5) MOO{R}(4.6E-5) MOO{T,E}(1.6E-5)
The order of algorithms in the table corresponds to their ranking according to the Friedman test, with the 
value in parentheses representing the adjusted p-values. The subscript for each algorithm denotes which 
metrics were optimised. When more than one metric is present, equal weights have been assigned to each 
metric. Significant differences at the α = 5% level between the control algorithm (appearing as the top 
row in each case) and the remaining algorithms are shown in boldface, indicating that the adjusted p-value 
is lower than 0.05. Keys: TR: total return, E[RoR]: expected rate of return, SR: Sharpe ratio

Table 10  (continued) 
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Figure 7 further illustrates the findings of Table 11 in the form of a box-plot. In the case 
of TR and E[RoR], all MOO algorithms have boxes that are above the zero line (i.e. not 
only the median, but also the first quartile of the distribution of TRs is positive in the case 
of MOO algorithms). Whereas, the three standard TA-indicator based strategy benchmarks 
demonstrate medians very close to zero, and in fact negative first-quartiles. When looking 
at Risk, we can observe that MOO{T}, MOO{E}, and MOO{T,E} obtain similar values to 
the benchmarks, but all are outperformed by MOO{R} and MOO{T,R}, both in terms of 
median risk values, as well as in terms of demonstrating a more concentrated risk distribu-
tion, and fewer outliers.

The above findings are further supported by the Friedman tests (one per metric) pre-
sented in Table 12. In all three tables, we can observe that the first rank MOO3 algorithm 
statistically and significantly outperforms all other algorithms at the 5% significance level. 
In addition, the majority of the multi-objective optimisation algorithms are able to outrank 
the trading strategies derived by using TA indicators.

6.6  Comparison of MOO algorithms to a transformer-based architecture

In the previous section, we observed that our proposed multi-objective GP algorithm out-
performed three standard TA-indicator-based strategies. In this section, we extend the com-
parison to the state-of-the-art Transformer-based model described in Section 5.2. As shown 

Table 11  Summary statistics of the three-objective optimisation algorithms and technical analysis indicators
Measure Algorithm

MOO{T} MOO{E} MOO{R} MOO{T,E}MOO{T,R}MACD OBV MTM
Total return

Average 61.33% 48.29% 15.15% 51.90% 41.58% 13.99% 2.63% 16.25%
Median 41.68% 32.81% 10.06% 37.88% 24.18% 2.22% 1.73% 2.03%
Standard 
deviation

0.67 0.69 0.24 0.61 0.52 0.58 0.43 0.81

Max 341.71% 544.98% 152.06% 324.26% 258.04% 360.11% 148.28% 659.06%
Min −44.63% −44.89% −32.11% −42.72% −37.47% −90.38% −177.72% −50.62%

Rate of return
Average 3.28% 3.38% 0.99% 2.76% 1.63% 1.71% 0.77% 0.95%
Median 2.52% 2.62% 0.86% 2.38% 1.44% 0.14% 0.18% 0.22%
Standard 
deviation

0.05 0.04 0.02 0.02 0.01 0.06 0.05 0.06

Max 44.36% 25.92% 12.24% 13.07% 6.80% 36.01% 35.65% 36.28%
Min −4.03% −4.28% −1.98% −2.98% −1.23% −9.04% −11.11% −22.32%

Risk
Average 0.08 0.09 0.05 0.09 0.06 0.12 0.12 0.09
Median 0.06 0.07 0.03 0.07 0.05 0.07 0.09 0.06
Standard 
deviation

0.06 0.07 0.05 0.06 0.04 0.22 0.12 0.12

Max 0.43 0.49 0.42 0.41 0.29 1.58 0.76 1.15
Min 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00

Sharpe ratio
SR 0.66 0.76 0.65 1.10 1.12 0.24 0.06 0.17
We use boldface for the best values for each measure
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in Table 13, the proposed MOO algorithms consistently achieve higher TR values than 
the Transformer, which, despite achieving the highest maximum TR, shows poor consis-
tency with a significantly lower median and higher variability. In contrast, the Transformer 
achieves the lowest risk on average, comparable to MOO{R}, though it is still statistically 
outperformed by the latter. However, this comes at a trade-off: the Transformer has the worst 

Fig. 7  Box plot of MOO 
algorithms and three standard 
TA-indicator based strategies in 
terms of TR, E[RoR], and risk
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Sharpe Ratio (0.50), whereas MOO{T,R} and MOO{T,E} demonstrate significantly better 
return-risk trade-offs. These findings are further confirmed by the Friedman test results in 
Table 14, where the Transformer ranks last for TR and E[RoR] and second for risk, though 
still significantly weaker than MOO{R} (p = 1.15E-05).

6.7  Buy and hold

We now compare the proposed MOO3 algorithms with the buy-and-hold strategy. A criti-
cal aspect to note is that the buy-and-hold strategy inherently involves a single transaction 
over the entire period under study, where we buy one unit of stock on the first day of trading 
and sell it on the last day; hence, the Risk metric cannot be calculated. Furthermore, due to 
buy-and-hold making only a single trade (while the MOO GPs make several), it is fairer to 
compare them across the total return over the test set period rather than in terms of expected 
rate of return.

Table 15 presents the performance metrics of the MOO3 algorithms alongside the buy-
and-hold strategy. We can observe that buy-and-hold has a strong average performance 
(mainly due to outliers), while its median value of 11.44% is only able to outperform 
MOO{R}, which is understandable, given that the latter does not optimise total return. All 

Avg Rank Adj pHomm

(a) Total Return
MOO{T} 2.17 –
MOO{T,E} 3.07 2.48E-03
MOO{E} 3.46 4.11E-05
MOO{T,R} 3.78 5.93E-07
MOO{R} 5.48 6.32E-22
MACD 5.76 3.36E-25
MTM 6.08 4.25E-29
OBV 6.18 3.98E-30
(b) Expected rate of Return
MOO{E} 2.91 –
MOO{T,E} 2.94 3.00E-01
MOO{T} 3.13 1.99E-01
MOO{T,R} 4.53 8.71E-07
MACD 5.38 2.48E-13
MOO{R} 5.61 2.65E-15
MTM 5.67 1.24E-15
OBV 5.79 2.18E-16
(c) Risk
MOO{R} 1.60 –
MOO{T,R} 3.33 1.72E-07
MOO{T} 4.49 2.69E-17
MTM 4.50 2.08E-17
MACD 5.11 2.92E-24
MOO{E} 5.47 1.27E-28
MOO{T,E} 5.59 5.27E-30
OBV 5.87 1.50E-33

Table 12  Statistical test results 
between MOO3 algorithms and 
technical analysis indicators for 
average TR, E[RoR], and Risk, 
according to the non-parametric 
Friedman test with the Hommel 
post-hoc test

The subscript for each algorithm 
denotes which metrics were 
optimised. When more than one 
metric is present, equal weights 
have been assigned to each 
metric. Significant differences at 
the α = 5% level between the 
control algorithm (appearing as 
the top row in each case) and the 
remaining algorithms are shown 
in boldface, indicating that the 
adjusted p-value is lower than 
0.05
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other algorithms have significantly higher average and median values. These results are 
also confirmed by the Friedman test presented in Table 16, which show that buy-and-hold is 
statistically and significantly outperformed by MOO{T}.

6.8  Algorithmic complexity

To discuss the potential scalability of the approach, this section demonstrates the compu-
tational cost of the proposed GP-based algorithm throughout its process and evolution-
ary operations. To calculate the algorithmic complexity of the GP-based algorithm, some 
related parameters need to be introduced as the number of optimisation objectives (M), the 
population size (P), maximum depth of tree (N), dataset period days (m), and tournament 
size (T). The main process of the proposed GP-based algorithm could be broken down into 
the following steps: 

1.	 Population initialisation: The initialisation of one individual has a computational com-
plexity O(N) with an N maximum depth of the tree. As the population size is P, the 
initialisation is repeated P times, tuning out a complexity of O(PN).

2.	 Fitness function calculation: Similarly, calculating fitness functions for one individual 
has a complexity O(m) throughout the whole dataset period of m days. With the P pop-
ulation size, the computational complexity of fitness function calculation is O(Pm).

3.	 Non-dominated Sorting: In this process, each individual needs to be compared with the 
rest of the population to determine dominance. In the worst case, where no individual 

Table 13  Summary statistics for the three-objective optimisation algorithms and the transformer benchmark
MOO{T} MOO{E} MOO{R} MOO{T,E} MOO{T,R} Transformer

Total return
Average 61.33% 48.29% 15.15% 51.90% 41.58% 8.81%
Median 41.68% 32.81% 10.06% 37.88% 24.18% 0.96%
Standard deviation 0.67 0.69 0.24 0.61 0.52 0.77
Max 341.71% 544.98% 152.06% 324.26% 258.04% 762.04%
Min −44.63% −44.89% −32.11% −42.72% −37.47% −78.30%
Rate of return
Average 3.28% 3.38% 0.99% 2.76% 1.63% 0.68%
Median 2.52% 2.62% 0.86% 2.38% 1.44% 0.51%
Standard deviation 0.05 0.04 0.02 0.02 0.01 0.01
Max 44.36% 25.92% 12.24% 13.07% 6.80% 6.91%
Min −4.03% −4.28% −1.98% −2.98% −1.23% −2.45%
Risk
Average 0.08 0.09 0.05 0.09 0.06 0.05
Median 0.06 0.07 0.03 0.07 0.05 0.04
Standard deviation 0.06 0.07 0.05 0.06 0.04 0.04
Max 0.43 0.49 0.42 0.41 0.29 0.22
Min 0.01 0.01 0.01 0.01 0.01 0.01
Sharpe ratio
SR 0.66 0.76 0.65 1.10 1.12 0.50
Best values per metric appear in boldface
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Table 15  Summary statistics for the three-objective optimisation algorithms and buy-and-hold in terms of 
total return
Algorithm MOO{T} MOO{E} MOO{R} MOO{T,E} MOO{T,R} Buy-and-hold
Average 61.33% 48.29% 15.15% 51.90% 41.58% 41.11%
Median 41.68% 32.81% 10.06% 37.88% 24.18% 11.44%
Standard deviation 0.67 0.69 0.24 0.61 0.52 1.81
Max 341.71% 544.98% 152.06% 324.26% 258.04% 1753.05%
Min −44.63% −44.89% −32.11% −42.72% −37.47% −89.62%
The best values per metric appear in boldface

Table 16  Statistical test results between MOO3 algorithms and buy-and-hold strategy in terms of average 
total return, according to the non-parametric Friedman test with the Hommel post-hoc test
Algorithm Avg rank Adj pHomm

MOO{T} (c) 1.97 –
MOO{T,E} 2.83 1.24E-04
MOO{E} 3.26 1.14E-07
MOO{T,R} 3.51 6.24E-10
Buy-and-hold 4.40 2.88E-20
MOO{R} 5.00 2.44E-20
The subscript for each algorithm denotes which metrics were optimised. When more than one metric is 
present, equal weights have been assigned to each metric. Significant differences at the α = 5% level 
between the control algorithm (appearing as the top row) and the other algorithms are shown in boldface, 
indicating that the adjusted p-value is lower than 0.05

Avg Rank Adj pHomm

(a) Total Return
MOO{T} 1.83 –
MOO{T,E} 2.65 2.33E-04
MOO{E} 3.10 1.56E-07
MOO{T,R} 3.34 1.33E-09
MOO{R} 4.71 3.86E-27
Transformer 5.35 1.40E-37
(b) Expected rate of Return
MOO{E} 2.41 –
MOO{T,E} 2.44 2.36E-01
MOO{T} 2.52 1.97E-01
MOO{T,R} 3.78 4.87E-08
MOO{R} 4.80 7.01E-20
Transformer 5.02 1.85E-22
(c) Risk
MOO{R} 1.55 –
Transformer 2.53 1.15E-05
MOO{T,R} 3.11 1.53E-10
MOO{T} 4.01 2.89E-21
MOO{E} 4.80 1.93E-33
MOO{T,E} 4.97 4.04E-36

Table 14  Statistical test results 
between MOO3 algorithms and 
Transformer for average TR, E
[RoR], and Risk, according to 
the non-parametric Friedman test 
with the Hommel post-hoc test

The subscript for each algorithm 
denotes which metrics were 
optimised. When more than one 
metric is present, equal weights 
have been assigned to each 
metric. Significant differences at 
the α = 5% level between the 
control algorithm (appearing as 
the top row in each case) and the 
remaining algorithms are shown 
in boldface, indicating that the 
adjusted p-value is lower than 
0.05
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is dominated, the complexity is O(P 2). Taking M objectives into account, the non-
dominated sorting requires O(MP 2) complexity.

4.	 Crowding distance calculation: For each front, individuals are sorted in terms of each 
objective. Per the objective, the sorting takes O(P log P ), leading to an overall com-
plexity of O(MP log P ).

5.	 Tournament selection: With a tournament size of T and a population size of P, it requires 
O(PT ) complexity.

6.	 Genetic operators: In the proposed algorithms, subtree crossover and point mutation 
are applied. For both operators, a node needs to be selected randomly. It requires O(N) 
as the algorithm to traverse the whole tree. Furthermore, the subtree needs to be tra-
versed during subtree crossover, which takes another O(N) in the worst condition. The 
process takes P times. So the complexity of subtree crossover and point mutation is 
O(2PN) = O(PN) and O(PN).

7.	 Population replacement: After applying crossover and mutation, the proposed algorithms 
created a new population containing P offspring. The next step is to select the top P indi-
viduals from the combination of the new population and the old population, resulting 
in 2P individuals. It also requires non-dominated sorting (O(M(2P )2) = O(MP 2)) 
and crowding distance calculation (O(2P log(2P )) = O(P log P )) of the combining 
population. So, the complexity of population replacement is O(MP 2 + P log P )

In conclusion, the overall complexity of the proposed GP-based algorithm is 
O(PN + Pm + MP 2 + MP log P + PT + PN + PN + MP 2 + P log P ), which is 
equivalent to O(PN + Pm + MP 2 + MP log P + PT ).

6.9  Real-world scalability

Although training the proposed GP-based algorithm is computationally expensive, applying 
predictions is not. This is because once the algorithm has been trained and a trading model 
has been obtained, executing it can happen in a fraction of a second.

Nevertheless, given the market’s inherent volatility and instability, it may be necessary 
to periodically re-train the algorithm to capture new changes in market conditions. To avoid 
long periods of retraining the GP algorithm, parallelisation should be used. Evolutionary 
algorithms are well-suited for parallelisation since each individual in the population is pro-
duced and evaluated independently. Previous studies have demonstrated that parallel imple-
mentation can achieve speedups of up to 21 times (Brookhouse et al. 2014).

7  Conclusions

In this study, we explored the integration of directional changes, genetic programming, and 
multi-objective optimisation (MOO) to develop and evaluate advanced algorithmic trading 
strategies. The proposed MOO3 algorithm, using the NSGA-II algorithm, optimised three 
objectives: total return, expected rate of return, and risk. Furthermore, we devised a novel 
aggregate metric, dubbed here the ‘modified Sharpe Ratio’, allowing us to designate a final 
solution from the Pareto front, by means of adjustable weights reflecting trader preference 
among the different objectives. Our experimental results, conducted on 110 datasets from 
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10 different international markets, demonstrate the superiority of the MOO3 algorithm over 
single-objective optimisation (SOO) methods employing the same aggregate metric.

The MOO3 algorithm effectively generated a diverse set of Pareto-optimal solutions 
that provided optimal trade-offs among the three objectives. This was evidenced by higher 
mean and median total returns, expected rate of returns, and Sharpe ratios across various 
weight setups when compared to SOO. Statistical analysis further reinforced the findings. 
Kolmogorov–Smirnov tests indicated significant differences between MOO3 and SOO in 
several cases, while the non-parametric Friedman test with Hommel’s post-hoc analysis 
showed that MOO3 algorithms focusing on individual objectives performed best, followed 
by those combining multiple objectives. These results highlight the benefits of consid-
ering multiple objectives under a MOO framework, particularly in balancing return and 
risk. Moreover, MOO3 algorithms were benchmarked against traditional technical analy-
sis indicators (MACD, OBV, and MTM),the state-of-the-art Transformer model, and the 
buy-and-hold strategy. The MOO3 algorithms consistently outperformed these benchmarks, 
demonstrating their robustness and efficiency in optimising trading strategies.

In summary, this study provides compelling evidence that multi-objective optimisation 
under the directional changes framework offers significant improvements over single-objec-
tive optimisation. The MOO3 algorithm not only produces superior trading strategies but 
is also able to consider diverse investor preferences through the use of the modified Sharpe 
Ratio aggregate metric, making it a valuable tool for algorithmic trading.

Future work in this area could explore several promising directions to further enhance the 
effectiveness and robustness of algorithmic trading under the DC framework. One potential 
direction is the incorporation of additional objectives, such as the number of trades that each 
trading strategy can perform. Another research direction could be the integration of alterna-
tive data sources, such as social media sentiment, which would enrich the feature set used 
in the genetic programming algorithm. Finally, the weighting approach used in the context 
of the modified Sharpe Ratio aggregate metric, while allowing traders to state their relative 
preferences for each objective, is still somewhat mathematical in nature; developing/assess-
ing more intuitive methods for designating a single, final trading strategy from the Pareto 
front could allow traders increased flexibility and clarity when stating their relative prefer-
ences over the multiple objectives.
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